Supplementary Materials:

Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults

Hyun Joo Yoo¹, Kaoru Nashiro¹, Shubir Dutt¹, Jungwon Min¹, Christine Cho¹, Julian F. Thayer², Paul

Lehrer³, Catie Chang⁴, and Mara Mather¹

¹University of Southern California, Los Angeles, CA 90089

²University of California, Irvine, Irvine, CA 92697

³Rutgers University, NJ 08852

⁴Vanderbilt University, TN 37235

S1. Supplementary Methods

CONSORT 2010 Flow Diagram

Figure S1. Numbers of participants in each intervention condition, how many participants completed each measure, and how many were included vs. excluded in each analysis.

S1.1. Procedure

S1.1.1. Overview of 7-week Protocol Schedule

The study protocol involved seven weekly lab visits and five weeks of home biofeedback training. The first lab visit involved the non-MRI baseline measurements, including a number of questionnaires. The second lab visit involved the baseline MRI session, then followed by the first biofeedback calibration and training session. Each lab calibration session started with a 5-min baseline rest period followed by several 5-min intervals practicing different strategies to find the best condition. After calibration sessions were completed, participants were notified which strategy was the best and requested to practice the best condition at home for 10 min twice a day for the 1st training week (between the 1st week visit and the 2nd week visit), 15 min twice a day for the 2nd training week (between the 2nd week visit and the 3rd week visit), and 20 min twice a day for the last weeks (between the 3rd week visit and the 7th week visit).

The weekly lab visits (except for weeks with MRI sessions) were run in small groups of participants from the same condition in which participants shared their experiences and tips about biofeedback training with other participants, while 1-2 researchers facilitated the discussion. Outside the lab, participants used a customized social app to communicate with other members of their group and researchers about their progress on daily biofeedback training. For instance, participants gave each other 'thumbs-up' or smiling face emojis when they completed training for the day, and researchers sent participants a friendly reminder to complete home training when they were falling behind. The week-6 lab visit repeated the assessments from the first lab visit. The final (7th) lab visit first repeated the baseline MRI session scans in the same order.

S1.1.2. Biofeedback Training for the Osc+ condition

During all practice sessions, participants wore an ear sensor to measure their pulse. They viewed real-time heart rate biofeedback while breathing in through the nose and out through the mouth in synchrony with the emWave pacer. The emWave software {HeartMath®Institute, 2020 #38} provided a summary 'coherence' score for participants that was calculated as peak power/(total power - peak power), with peak power determined by finding the highest peak within the range of .04 - .26 Hz and calculating the integral of the window .015 Hz above and below this highest peak, and total power computed for the .0033 - .4 Hz range.

During the second lab visit, we introduced participants to the device and identified the resonance frequency for each participant during five minutes of paced breathing at 6, 6.5, 5.5, 5 and finally 4.5 breaths/min {Lehrer, 2013 #23}. After all 5-min breathing segments were complete, we computed various aspects of the oscillatory dynamics for each breathing pace using Kubios HRV Premium 3.1 software {Tarvainen, 2014 #39} and estimated which breathing pace best approximated the resonance frequency by assessing which one had the most of the following characteristics: highest low frequency (LF) power, the highest maximum LF amplitude peak on the spectral graph, highest peak-to-trough amplitude, cleanest and highest-amplitude LF peak, highest coherence score and highest the root mean squared successive differences (RMSSD). Participants were then instructed to train at home with the pacer set to their identified resonance frequency and to try to maximize their coherence scores.

During the third visit, they were asked to complete three 5-min paced breathing segments: the best condition from the last week's visit, half breath per minute faster and half breath slower than the best condition. They were then instructed to train the following week at the pace that best approximated the resonance frequency based on the characteristics listed above. In subsequent weekly visits, during 5-min training segments, they were asked to try out abdominal breathing and inhaling through nose/exhaling through pursed lips as well as other strategies of their choice.

S1.1.3. Biofeedback Training for the Osc- condition

The same biofeedback ear sensor was used in this condition. However, we created custom software to display a different set of feedback to the Osc- participants. During each Osc- training session, a 'calmness' score was provided as feedback to the participants instead of the coherence score. The calmness score was calculated by multiplying the coherence score that would have been displayed in the Osc+ condition by -1 adding 10 (an 'anti-coherence' score). Thus, participants got more positive feedback (higher calmness scores) when their heart rate oscillatory activity in the 0.04 - 0.26 Hz range was low. Participants also received a point adjustment that gave a penalty when heart rate was the lowest it had been in the past 15 s. Specifically, every 5 s, a local maximum IBI was set based on the maximum IBI from the last 15 s. If, at that point, the participant's current IBI was longer than this local maximum, the calmness score displayed for the next 5 s was the anti-coherence score - 2. Naturally, most of the time, current IBI was lower than the local maximum, and in those cases, the calmness score was the anticoherence score +1. Thus, there was a penalty in their calmness score for moments when their heart rate was slower than it had been in any of the past 15 s. However, average heart rate during biofeedback sessions did not differ significantly across conditions. Thus, this additional feedback appeared to have had little impact on heart rate.

During the initial calibration session at the end of the second lab visit, each participant was introduced to the device and feedback and was asked to come up with five strategies to lower heart rate and heart rate oscillations. The participant was instructed to wear the ear sensor and view real-time heart rate biofeedback while they tried each strategy for five minutes. We analyzed the data in Kubios and identified the best strategy as the one that had the most of the following characteristics: lowest LF power, the minimum LF amplitude peak on the spectral graph, lowest peak trough amplitude, multiple and lowest-amplitude LF peak, highest calmness score and lowest RMSSD. Participants were then instructed to use this strategy to try to maximize their calmness scores in their home training sessions.

On the third visit, they were asked to select three strategies and try each out in a 5-min session. The strategy identified as best (based on the same characteristics used in the initial calibration session) was selected as the one to focus on during home training. In subsequent weekly visits, during 5-min training segments, they were asked to try out strategies of their choice.

S1.1.4. Rewards for Performance

In addition to receiving compensation of \$15 per hour for each lab visit, participants were eligible to receive rewards based on individual and group performance. For individual performance rewards, each week participants had the opportunity to earn \$2 for each instance (up to a maximum of 10) they exceeded their assigned target score (target scores were assigned each week and were the average of the top 10 scores earned from the previous week's training sessions plus 0.3). Group performance rewards were earned when members of a participant's group completed a minimum of 80% of their assigned biofeedback training minutes. For example, if a participant completed 100% of their training, they received an additional \$3 for each group member who also completed 100% of their training. If a participant completed 80% of their training, they received an additional \$2 for each group member who also completed at least 80% of their training. Rewards were calculated weekly, and participants received weekly updates on their earnings at their lab visit. There was no significant condition difference or significant condition x age group interaction in total rewards.

S2. Supplementary Results

	Younger adults				Older adults			
	Ν	Osc+	Osc-	_	Ν	Osc+	Osc-	
No medication	77	36	34		13	6	7	
Medication (≧1 type)	19	9	9		35	15	18	
Subcategory				_				
Antihistamine	1	1			2	1	1	
Cardiac medication					24	13	11	
Vitamin/herbal supplement	1		1		10	5	5	
Pain medication	3	2	1		10	3	7	
Psychiatric medication	3		3		11	6	5	
Sedative/hypnotic	1	1			3	1	2	
Hormones	12	6	6		7	2	5	
Other	1	1			10	5	5	

Table S1. Categories of medication reported across age groups and conditions

	region	Left	Right		
Subregion	Hippocampal tail	.964**	.961**		
	subiculum-body	.960**	.965**		
	CA1-body	.961**	.968**		
	subiculum-head	.963**	.971**		
	hippocampal-fissure	.857**	.866**		
	presubiculum-head	.934**	.957**		
	CA1-head	.982**	.980**		
	presubiculum-body	.966**	.967**		
	parasubiculum	.923**	.945**		
	molecular layer-head	.979**	.975**		
	molecular layer-body	.948**	.949**		
	dentate gyrus-head	.967**	.968**		
	CA3-body	.963**	.957**		
	dentate gyrus-body	.927**	.921**		
	CA4-head	.954**	.958**		
	CA4-body	.923**	.925**		
	fimbria	.919**	.919**		
	CA3-head	.977**	.972**		
	НАТА	.923**	.933**		
ROI	4 subregions innervated by LC (CA3 body, CA4 body, dentate gyrus, molecular layer)	.942**	.940**		
Whole	Whole hippocampal-body	.957**	.963**		
	Whole hippocampal-head	.983**	.977**		
	Whole hippocampus	.982**	.979**		

Table S2. Test-retest reliability (r) for hippocampal subregions

p* < .05, *p* < .01

			Younger Adults			(Older Adu			
	Region		Osc+	Osc-	Condition main in ANCOVA	Osc+	Osc-	Condition main in ANCOVA	Condition x age group interaction in ANCOVA	
			mean	mean	р	mean	mean	р	р	${\eta_p}^2$
Left	ROI total	pre	567.95	550.08	.41	523.10	528.52	.21	.11	.019
		post	565.26	550.40		524.99	520.42			
	CA3 body	pre	95.01	88.96	.50	86.26	90.24	.31	.18	.013
		post	93.82	88.39		86.87	88.88			
	CA4 body	pre	119.84	115.75	.19	109.86	112.08	.13	.030*	.033
		post	119.48	116.58		110.70	109.84			
	dentate gyrus-pre		130.24	126.94	.25	122.44	122.01	.13	.045*	.028
	body	post	129.79	127.61		123.19	120.05			
	molecular layer-body	pre	222.86	218.42	.98	204.53	203.19	.37	.44	.004
		post	222,17	217.83		204.23	201.65			
Right	ROI total	pre	605.54	596.91	.55	572.60	597.62	.05*	.037*	.031
		post	602.35	596.90		581.25	590.37			
	CA3 body	pre	110.30	106.38	.26	105.44	115.61	.03*	.013*	.044
		post	109.02	106.67		107.72	113.49			
	CA4 body	pre	125.14	123.82	.52	118.94	121.05	.08	.047*	.028
		post	124.33	123.80		120.63	119.36			
	dentate gyrus-pr body pc	-pre	133.94	133.59	.34	131.30	131.54	.11	.045*	.029
		post	133.13	133.81		133.11	130.44			
	molecular	pre	236.15	233.12	.80	215.66	228.22	.05*	.144	.015
	layer-body p		235.88	232.62		218.43	225.77			
Bi- latera	ROI total	pre	1173.49	1146.98	.48	1095.70	1126.14	.02	.016*	0.041*
iatera	•	post	1167.62	1147.30		1106.24	1110.78			

 Table S3. Mean pre- and post-intervention volumes for individual subfields making up the LC-targeted

 ROI

*p < 0.05; **p < 0.01; ***p < 0.001, 2-tailed. Condition main effects were statistically tested using one-way ANCOVA on volume at post-intervention including condition (OSC+ vs. OSC-) as between-subject factor, and volume at pre-intervention as a covariate. Condition x age group interaction effects were statistically tested using a two-way ANCOVA (condition x age group) on volume at post-intervention including volume at pre-intervention as a covariate.

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
Group	Variables	В	Std. Error	Beta	- t	Sig.	Lower Bound	Upper Bound
Younger adults	(Constant)	172.947	90.841		1.904	.060	-7.731	353.625
	Age	.705	2.456	.017	.287	.775	-4.180	5.590
	Gender	-2.609	8.039	011	325	.746	-18.598	13.381
	Education	-2.491	3.175	047	785	.435	-8.805	3.824
	Total number of training sessions	.126	.185	.023	.682	.497	243	.495
	mean HR	622	.443	053	-1.405	.164	-1.503	.259
	Log SDNN	-11.513	21.931	041	525	.601	-55.133	32.108
	Log RMSSD	-6.637	21.296	025	312	.756	-48.995	35.720
	Log power within resonance frequency range	175	3.904	002	045	.964	-7.940	7.589
	Hippocampal ROI volume at pre	.966	.034	.963	28.380	<.001***	.898	1.034
Older	(Constant)	69.298	134.333		.516	.609	-202.646	341.242
adults	Age	386	.950	022	406	.687	-2.309	1.537
	Gender	7.848	12.087	.030	.649	.520	-16.620	32.317
	Education	.308	2.644	.006	.116	.908	-5.045	5.661
	Total number of training sessions	473	.356	068	-1.329	.192	-1.194	.248
	mean HR	753	.633	063	-1.190	.242	-2.035	.529
	Log SDNN	-17.303	30.508	079	567	.574	-79.064	44.457
	Log RMSSD	-2.686	29.623	012	091	.928	-62.654	57.283
	log power within resonance frequency range	15.698	4.841	.161	3.243	.002**	5.897	25.498
	Hippocampal ROI volume at pre	1.011	.046	.981	21.834	<.001***	.917	1.105

Table S4. Multiple linear regression analysis using hippocampal ROI volume at post-intervention as dependent variable

*p < 0.05; **p < 0.01; ***p < 0.001. Younger adults: R = .957, R² = .915; Older adults: R = .965, R² = .931

Supplementary References

HeartMath®Institute, 2020. emWavePro.

Lehrer, P., Vaschillo, B., Zucker, T., Graves, J., Katsamanis, M., Aviles, M., Wamboldt, F., 2013. Protocol for heart rate variability biofeedback training. Biofeedback 41(3), 98-109.

Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-Aho, P.O., Karjalainen, P.A., 2014. Kubios HRV--heart rate variability analysis software. Comput Methods Programs Biomed 113(1), 210-220. <u>https://doi.org/10.1016/j.cmpb.2013.07.024</u>