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Abstract 

Background 

As social and economic conditions are key determinants of HIV, the ‘National HIV/AIDS 

Strategy (NHAS)’, in addition to care and treatment metrics, aims to address mental health, 

unemployment, food insecurity, and housing instability, as a strategic plan for the Ending the 

HIV Epidemic initiative. Mechanistic models of HIV play a key role in identifying cost-effective 

intervention strategies, however, social conditions are typically not part of the modeling 

framework. HIV projections are typically simulated by modeling care and sexual behaviors, and 

transmissions as functions of those behaviors. 

Methods 

We developed a methodological framework, using Markov random field model to estimate joint 

probability distributions between social conditions and behaviors, to incorporate in a mechanistic 

model to simulate behaviors as functions of social conditions and HIV transmissions as a 

function of behaviors. As demonstration, we conducted two numerical applications in a national-

level agent-based network model, Progression and Transmission of HIV (PATH 4.0). The first 

modeled care behavior (using viral suppression as proxy) as a function of depression, 

neighborhood, housing, poverty, education, insurance, and employment status. The second 

modeled sexual behaviors (number of partners and condom-use) as functions of employment, 

housing, poverty, and education status, using exchange sex as a mediator. Both simulated HIV 

transmissions and disease progression as functions of behaviors. We conducted what-if 

intervention analyses to estimate the impact of an ideal 100% efficacious intervention strategy.  
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Results 

If we intervene on HIV infected persons with the social needs modeled here, such that their care 

behavior increases to become equal to that among persons who do not have those social needs, 

the overall viral suppression in persons with diagnosed HIV infection increases from 65.5% to 

80% (79% to 83%), resulting in a 10-year cumulative national incidence reduction of 29% (20% 

to 41%). If we address the social needs modeled here among persons who exchange sex, such 

that their sexual behavior becomes equal to that among those who do not exchange sex, we can 

expect a 10-year cumulative national incidence reduction of 6% (2.5% to 14%).  

Conclusions  

We developed a methodological framework for modeling social conditions into intervention 

decision-analytic models, using the limited data to present two demonstrative applications. 

Routinely monitoring quantitative data on associations between social conditions and HIV risk 

behaviors, and efficacy of structural interventions can help develop a comprehensive mechanistic 

model to identify cost-effective intervention combinations and inform public health strategic 

plans.  
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1. BACKGROUND 
 

Despite advances in pharmaceutical interventions for the prevention of human 

immunodeficiency virus (HIV), such as antiretroviral therapy (ART) treatment and pre-exposure 

prophylaxis (PrEP) that can fully prevent transmissions or acquisition [1], [2], HIV continues to 

be a huge disease and economic burden in the United States. The number of people with HIV 

(PWH) was estimated to be 1.2 million in 2019 [3], the number of new infections per year was 

estimated to be about 35,000 in 2019 [3], and the average discounted lifetime HIV-related 

medical cost per person was estimated to be $420,285 [4].  

There is growing evidence that social determinants of health (SDH), i.e., social and economic 

conditions, are key drivers of behaviors that increase risk of HIV infection, e.g., lower adherence 

to care, higher number of partners, higher condomless sex, and higher substance abuse among 

the homeless compared to those stably housed [5]–[8]. Surveillance of the experiences and needs 

of persons with diagnosed HIV (PWDH) estimates that about 44% had a disability (including 

physical, mental, and emotional disabilities), 41% were unemployed, 43% had household 

incomes at or below the federal poverty threshold, and 10% were homeless [9], [10].  

In-line with this evidence, the most recent ‘National HIV/AIDS Strategy (NHAS), Federal 

Implementation Plan for the United States’, 2022-2025, along with continuing to monitor and 

target HIV diagnoses, care, and treatment, newly added targets for quality-of-life indicators, such 

as reduction in unmet needs in mental health services, unemployment, food insecurity, and 

housing [11]. The goal of the NHAS is to reduce new infections by 75% by 2025 and 90% by 

2030 [12]. Alongside biomedical and behavioral interventions, structural interventions are 

among key evidence-based interventions recommended for HIV prevention [13]. Structural 

interventions could include a range of programs based on individual needs, such as 
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comprehensive sex education, universal condom availability, expanded syringe access for drug 

users, health care coverage, subsidized housing and food programs, access to mental healthcare, 

and early childhood academic enrichment programs[14]–[19]. While the costs of these structural 

interventions can be extrapolated from small cohort studies, its impact on HIV burden is 

infeasible to estimate through controlled trials. 

Dynamic mathematical simulation models of HIV projections play a key role in evaluation of 

intervention combinations and inform optimal allocation of intervention resources, including in 

the context of the NHAS[20]–[24]. These models typically estimate HIV projections through 

simulation of care and sexual behaviors. There is growing awareness for the need to incorporate 

SDH into the modeling framework, but thus far, models in this area are limited. Broadly, there 

are two types of SDH-based models, statistical and mechanistic models [25]. Statistical models, 

such as regression, directly fit a model between health outcomes (HIV) as response variable and 

all other metrics including social conditions as independent variables [26], and thus, do not 

consider the behavioral and disease dynamics. Mechanistic models simulate behaviors, such as 

sexual behaviors, e.g., number of partners, and condom-use, and care behaviors, e.g., HIV-

testing, care retention and treatment adherence, to generate the dynamics of transmission and 

disease progression [27]–[30].  

The focus of our work is to first model care and sexual behaviors as functions of social 

conditions, incorporated into mechanistic (dynamic) models to then simulate HIV transmissions 

and progression as functions of behaviors. However, the data to model behaviors as functions of 

social conditions are not directly available in the national context. Data on prevalence of social 

conditions are reported mostly as marginal distributions, e.g., proportions in poverty, or 

homeless, but their joint distributions, e.g., proportion of population in poverty and homeless, for 
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different populations are not available. This is a major data gap, considering the interactions 

between social conditions. Also, data on associations between behaviors and social conditions 

are mostly univariate, e.g., correlation between condom-use and housing stability or between 

number of partners and housing stability, but the multivariate associations, e.g., between 

condom-use, number of partners, housing stability, and poverty, are not available for all 

populations. Current models in the literature either provide a general framework that assume 

parameters are independent or that data are available [25], [27], or have mostly focused on 

specific populations where individual-level data are available for extraction of the joint 

distributions, e.g., through randomized control trials that focus on selected individual-level 

metrics [28], individual-level surveys of a specific population [29], and large longitudinal (~18 

years)  individual-level datasets [30]. On one hand, it may be infeasible or expensive to generate 

such data for all populations, and on the other hand, using one nationally representative dataset 

would ignore the heterogeneity and thus disparities across populations.   

In this work we present a methodological approach for modeling SDH into dynamic mechanistic 

models and demonstrate the significance of such models for national-level HIV analyses. 

Specifically, we present a generalized statistical method using Markov random fields or 

undirected graphical models to infer joint distributions. We then apply the method to two 

numerical examples to model SDH as functions of behaviors in a national-level Progression and 

Transmission of HIV (PATH 4.0)[31] dynamic model, and conduct numerical what-if 

intervention analyses as demonstration of potential national-level analyses. The first numerical 

example focusses on care behavior using HIV viral load suppression (VLS) as a proxy. The 

second numerical example focusses on two sexual behaviors, condom use and number of 

partners, and applied to two sub-populations, heterosexual female and men who have sex with 
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men (MSM). These methods can be easily extrapolated to any number of variables and sub-

populations, while maintaining the national-level context through a national simulation model 

such as PATH 4.0.   

2. METHODS 
 

2.1 Problem description 
 

The general framework of mechanistic models is to simulate HIV transmissions as functions of 

care behaviors (e.g., viral suppression in Fig 1a) and sexual behaviors (e.g., degree, or number of 

partners in Fig 1a). Our objective is to expand this to first model care and sexual behaviors as 

functions of social conditions, such as poverty and homelessness (as seen in Fig 1b). 

 

Fig 1: Schematic overview of model framework. 1a(top) Models typically simulate HIV infection 
as functions of care behaviors (e.g., VLS=> viral suppression from retention-in-care behavior) 
and sexual behaviors (e.g., degree => number of sexual partners). 1b(bottom) Proposed 
approach further simulates behaviors as functions of social conditions (e.g., poverty and 
homelessness). 

 

The data for the marginal distributions of each variable (social conditions or behaviors) are 

typically available in the literature. Directly sampling from these distributions would assume 

independence between variables, which is contrary to the evidence of correlations observed in 

the literature. Examples of correlations related to care and sexual behaviors are presented in Fig 

2 and Fig 3, respectively. Each link/edge in Fig 2 and Fig 3 depict observations of significant 

associations or correlations between the variables they connect, that we quantitatively represent 

through relative risk (RR). For example, as seen in equation for pairwise variables [VLS, 

housing] in Fig 2, RR is the probability of no-VLS (i.e., not in care or treatment) among persons 

who are homeless divided by the probability of no-VLS among persons who are not homeless, a 
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value greater than 1 suggesting correlations between VLS and housing. Several such associations 

are observed in the literature either directly between any two social conditions, or a social 

condition and a behavior, or through intermediary variables (mediators) such as depression in Fig 

2 or exchange sex in Fig 3, that are relevant to include in the model to highlight other healthcare 

or social needs. However, the estimates in the literature, which are primarily observational 

studies, are restricted to pairwise associations, the associations between all variables are not fully 

known and typically challenging to estimate through observational studies alone.  

The problem is to thus estimate the joint associations between all variables. For the problem in 

Fig 2, this will be to estimate the joint probability, Pr(𝑉𝑉𝑉𝑉𝑉𝑉,𝐷𝐷,𝑁𝑁,𝐻𝐻,𝑃𝑃,𝐸𝐸, 𝐼𝐼,𝑊𝑊) where, 

D=depression, N=neighborhood, H=housing, P=poverty, E=education, I=insurance, and 

W=employment, each feature a binary variable taking value of  0 to represent a good status (e.g., 

housed) or 1 to represent a socially disadvantaged status (e.g., homeless). The joint probabilities 

would provide the flexibility to simulate variables of interest, e.g., to first simulate the SDH 

status of an individual by sampling from Pr(𝐷𝐷,𝑁𝑁,𝐻𝐻,𝑃𝑃,𝐸𝐸, 𝐼𝐼,𝑊𝑊) and then simulating retention-in-

care behavior (using VLS as proxy here) as a function of SDH status through use of a conditional 

distribution, estimated as Pr(𝑉𝑉𝑉𝑉𝑉𝑉|𝐷𝐷,𝑁𝑁,𝐻𝐻,𝑃𝑃,𝐸𝐸, 𝐼𝐼,𝑊𝑊) = Pr(𝑉𝑉𝑉𝑉𝑉𝑉,𝐷𝐷,𝑁𝑁,𝐻𝐻,𝑃𝑃,𝐸𝐸, 𝐼𝐼,𝑊𝑊)Pr (𝑉𝑉𝑉𝑉𝑉𝑉).  

Note that, here we are assuming causality between care behavior and social conditions, but not 

between social conditions. Similarly, the problem corresponding to Fig 3 is to estimate the joint 

distribution of all variables, so that, in a simulation model, we can add SDH status by sampling 

from a joint distribution of social conditions, simulate exchange sex as a function of SDH status 

(assuming causality), and simulate number of partners and condom use as functions of exchange 

sex (assuming causality), subsequently simulating HIV transmissions as functions of behaviors.  
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We assume all variables in Fig 2 and Fig 3 are binary except for number of partners which takes 

integer values between 0 and the maximum number of partners.  

Fig 2: (clockwise from top) Illustration of associations between social conditions and care 
behavior, marginal distributions, and relative risk between pairwise variables. Note: all 
variables are binary.   

 

Fig 3: (clockwise from top) Illustration of associations between social conditions and sexual 
behavior, marginal distributions, and relative risk between pairwise variables. Note: all 
variables except number of partners are binary. 
 

2.2 Markov random field (MRF) model  

Problem formulation: The problem can be represented as an undirected graphical model, also 

known as Markov random field model (MRF) [32], with each variable represented by a node in a 

graph and the data associations between variables represented by an edge connecting the nodes. 

This representation will be similar to Fig 2 and Fig 3, except that the edges are undirected, to 

estimate the joints without assuming causality (although in the intervention analyses we will 

simulate behaviors casual to social conditions, but assume no causality between any two social 

conditions). Specifically, the joint probability vector (𝒚𝒚) can be estimated by solving for the 

parameter vector 𝜽𝜽 in the following equation,  

𝑝𝑝(𝒚𝒚|𝜽𝜽) =
1

𝑍𝑍(𝜽𝜽) 𝑒𝑒𝑒𝑒𝑝𝑝 ��𝜽𝜽𝑐𝑐𝑇𝑇𝜙𝜙𝑐𝑐(𝑦𝑦)
𝑐𝑐∈𝐶𝐶

�                                                                                                    (1) 

where, 𝜙𝜙𝑐𝑐(𝑦𝑦) is a feature vector corresponding to each feature 𝑐𝑐 (here, we consider each 

edge/link in the graph as a feature), 𝐶𝐶 is the set of all features, and 𝑍𝑍(𝜽𝜽) is the normalizing 

constant. 

The equation in (1) can be derived using maximum entropy. The objective of a maximum 

entropy model is to pick the distribution 𝑝𝑝(𝒚𝒚) with maximum entropy (−∑ 𝑝𝑝(𝑦𝑦) log 𝑝𝑝(𝑦𝑦)𝑦𝑦 ) (note 
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that it would be the one closest to uniform) subject to the constraints that the moments of the 

distribution match the empirical moments of the specific feature vectors 𝜙𝜙𝑐𝑐(𝑦𝑦),∀𝑐𝑐 ∈ 𝐶𝐶, included 

in the objective function through vector Lagrange multipliers (𝜽𝜽𝑐𝑐 ,∀𝑐𝑐 ∈ 𝐶𝐶). If there is a solution 

which is a distribution (i.e., 𝑝𝑝(𝑦𝑦) ≥ 0, and ∑ 𝑝𝑝(𝑦𝑦)𝑦𝑦 = 1 ) and is the maximal entropy solution, 

then the unique distribution is of the form given in (1).  

As the MRF in (1) belongs to the exponential family, its scaled log-likelihood (in (2) below) is 

concave on 𝜽𝜽 and thus the joint probability can be estimated using gradient descent method, by 

solving for the value of 𝜽𝜽 that provides a zero gradient [32].  

The log-likelihood of (1) can be written as 

ℓ(𝜽𝜽) ≜
1
𝑁𝑁
� log 𝑝𝑝(𝑦𝑦𝑖𝑖|𝜽𝜽)
𝑖𝑖=1:𝑁𝑁

=
1
𝑁𝑁
� ��𝜽𝜽𝑐𝑐𝑇𝑇𝜙𝜙𝑐𝑐(𝑦𝑦𝑖𝑖) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑍𝑍(𝜽𝜽)

𝑐𝑐∈𝐶𝐶

�
𝑖𝑖=1:𝑁𝑁

                                                    (2)    

The gradient of the log-likelihood in (2) can be written as the expected feature vector according 

to the empirical distribution minus the model’s expectation of the feature vector as follows, 

𝑑𝑑ℓ
𝑑𝑑𝜽𝜽𝑐𝑐

= 𝔼𝔼𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒[𝜙𝜙𝑐𝑐(𝑦𝑦)] − 𝔼𝔼𝑝𝑝�.�𝜽𝜽�[𝜙𝜙𝑐𝑐(𝑦𝑦)] =
1
𝑁𝑁
�[𝜙𝜙𝑐𝑐(𝑦𝑦)]
𝑖𝑖

−�𝜙𝜙𝑐𝑐(𝑦𝑦)𝑝𝑝(𝑦𝑦|𝜽𝜽)
𝑦𝑦

                             (3) 

Thus, the joint probability can be estimated by solving for 𝜽𝜽 where the empirical distribution 

(𝔼𝔼𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒[𝜙𝜙𝑐𝑐(𝑦𝑦)]) is equal to the model’s expectation of the feature vector (∑ 𝜙𝜙𝑐𝑐(𝑦𝑦)𝑝𝑝(𝑦𝑦|𝜽𝜽)𝑦𝑦 ). We 

apply gradient descent method to solve for 𝜽𝜽, i.e., by starting with an arbitrary value of 𝜽𝜽, we can 

find its optimal value by iterating through the equation, 
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𝜽𝜽𝑐𝑐 = 𝜽𝜽𝑐𝑐 + 𝛿𝛿
𝑑𝑑𝑙𝑙
𝑑𝑑𝜽𝜽𝑐𝑐

∀𝑐𝑐                                                                                                                                     (4) 

where 𝛿𝛿 is the step-size, until  𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃𝑐𝑐

 converges to zero. Estimation of the two components in (3) are 

discussed under numerical applications I and II, and correspond to the configurations in Fig 2 

and Fig 3, respectively. 

 

2.3 Numerical Application I: Care Behavioral Model  
 

2.3.1 Overview of care behavioral metric and social conditions  
 

We chose viral load suppression (VLS) as a proxy for care behavioral metric. Though the care 

continuum stages for persons diagnosed with HIV infection and linked to care include receipt of 

care, retention-in-care (measured as one or more CD4 count or viral load tests), and VLS (when 

viral load <200 copies/mL) [33], the number of studies evaluating each of these stages separately 

as related to social conditions is limited. The metrics used in the literature to represent each of 

these stages also vary, and include prescribed ART, taking ART, one or more lab tests, or VLS. 

Further, VLS is achieved through consistent-use of ART, and thus, retention-in-care behavior 

leads to viral suppression. Therefore, we assumed VLS as a proxy for overall care behavior, 

using its marginal distribution from the U.S. National HIV Surveillance System[34] (Fig 2). For 

the relative risk metrics between social conditions and care behavior, we gathered data for any of 

the metrics noted above and conducted a sensitivity analyses using the range of values (variables, 

metrics, and data sources are in Fig 2).  

The metrics related to social conditions were also not comprehensive to maintain consistency in 

the variables we used, e.g., as we did not have data for associations between Depression and 
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Housing, we assumed it would be equal to associations between Mental health and Housing. 

Most metrics also had only one study. For metrics with more than one study, we used the median 

value as the basecase and the minimum and maximum values for a sensitivity analysis to 

generate a range in output results. Variables, metrics, and data sources are presented in Fig 2. 

2.3.2 Estimating joint distribution using MRF: care behavioral model 
 

Corresponding to Fig 2, we have eight variables (𝐾𝐾 = 8), one care behavior indicator (VLS), one 

intermediary (depression), and six social conditions, thus 𝑦𝑦 is a vector of dimension 𝐾𝐾 ( 𝑦𝑦 =

[𝑉𝑉𝑉𝑉𝑉𝑉,𝐷𝐷,𝑁𝑁,𝐻𝐻,𝑃𝑃,𝐸𝐸, 𝐼𝐼,𝑊𝑊]). We assume that each edge in Fig 2 is a feature, and thus the model in 

(3) will only contain pairwise features, i.e., 

𝑐𝑐 ∈ 𝐶𝐶 =

{(𝑉𝑉𝑉𝑉𝑉𝑉,𝐷𝐷), (𝑉𝑉𝑉𝑉𝑉𝑉,𝑁𝑁), (𝑉𝑉𝑉𝑉𝑉𝑉,𝐻𝐻), (𝑉𝑉𝑉𝑉𝑉𝑉,𝑃𝑃), (𝑉𝑉𝑉𝑉𝑉𝑉,𝐸𝐸), (𝑉𝑉𝑉𝑉𝑉𝑉, 𝐼𝐼), (𝐸𝐸,𝐻𝐻), (𝑊𝑊,𝐻𝐻), (𝐻𝐻, 𝐼𝐼), (𝐷𝐷,𝐻𝐻)}.  

We assume that all variables are binary, and thus, for each edge, we have a feature vector of size 

22, i.e., 

 𝜙𝜙(𝑐𝑐=(𝑠𝑠,𝑡𝑡))(𝑦𝑦) = [𝕀𝕀(𝑦𝑦𝑠𝑠 = 0,𝑦𝑦𝑡𝑡 = 0), 𝕀𝕀(𝑦𝑦𝑠𝑠 = 0, 𝑦𝑦𝑡𝑡 = 1), 𝕀𝕀(𝑦𝑦𝑠𝑠 = 1,𝑦𝑦𝑡𝑡 = 0), 𝕀𝕀(𝑦𝑦𝑠𝑠 = 1,𝑦𝑦𝑡𝑡 = 1)], (5)        

where, 𝕀𝕀 is an indicator function, i.e., 𝕀𝕀(𝑦𝑦𝑠𝑠 = 0,𝑦𝑦𝑡𝑡 = 0) = �1, 𝑖𝑖𝑖𝑖 𝑦𝑦𝑠𝑠 = 0,𝑦𝑦𝑡𝑡 = 0
0, 𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 . For example, 

𝜙𝜙(𝑐𝑐=(𝑊𝑊,𝐻𝐻))(𝑦𝑦 = [1,0,0,𝐻𝐻 = 0,1,0,1,𝑊𝑊 = 1]) = [0,0,1,0].  

Thus, for any given 𝜽𝜽, the second component in (3), 𝔼𝔼𝑝𝑝�.�𝜽𝜽�[𝜙𝜙𝑐𝑐(𝑦𝑦)], can be calculated for every 

value of 𝑦𝑦 using 𝜙𝜙𝑐𝑐(𝑦𝑦) from (5) and 𝑝𝑝(𝑦𝑦|𝜽𝜽) from (1). The first component in (3), 𝔼𝔼𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒[𝜙𝜙𝑐𝑐(𝑦𝑦)], 

is the number of times that feature appears in the data, and thus, in the context here, it will be 

equivalent to the pairwise joint probabilities, which we estimated using literature data. 
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Specifically, we use the relative risk (RR) values from the literature, which can originate from 

smaller samples, and the marginal distributions corresponding to the population of interest 

(nationally representative in our numerical examples), to calculate the joint probabilities. Below 

is an example taking feature 𝑐𝑐 = (𝑉𝑉1, 𝑉𝑉2). 

From definition, 𝑅𝑅𝑅𝑅𝑆𝑆1𝑆𝑆2 =  𝑒𝑒 = 𝑃𝑃𝑃𝑃(𝑆𝑆1=1,𝑆𝑆2=1)/𝑃𝑃𝑃𝑃(𝑆𝑆2=1)
𝑃𝑃𝑃𝑃(𝑆𝑆1=1,𝑆𝑆2=0)/𝑃𝑃𝑃𝑃(𝑆𝑆2=0)     (6) 

Rewriting, 𝑃𝑃𝑃𝑃(𝑆𝑆1=1,𝑆𝑆2=1)
𝑃𝑃𝑃𝑃(𝑆𝑆1=1,𝑆𝑆2=0) = 𝑒𝑒 𝑃𝑃𝑃𝑃(𝑆𝑆2=1)

𝑃𝑃𝑃𝑃(𝑆𝑆2=0) = 𝑒𝑒𝑚𝑚(say, as marginals are known)                   (7) 

We know that 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1, 𝑉𝑉2 = 1) + 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1, 𝑉𝑉2 = 0) = 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1)                 (8) 

From (6) and (7), 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1, 𝑉𝑉2 = 1) = 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1) − 𝑃𝑃𝑃𝑃(𝑆𝑆1=1,𝑆𝑆2=1)
𝑃𝑃𝑒𝑒

, rewriting, we get, 

 𝔼𝔼𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒�𝜙𝜙𝑐𝑐=(𝑆𝑆1=1,𝑆𝑆2=1)(𝑦𝑦)� = 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1, 𝑉𝑉2 = 1) = 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1) / �1 + 1
𝑃𝑃𝑒𝑒
�  (9) 

As the marginal distributions and relative risk values (Fig 2) are known (i.e., the R.H.S. of (9) 

can be calculated using literature data), we can estimate 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1, 𝑉𝑉2 = 1) from (9), and 

consequently, through simple probability rules, also estimate 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 1, 𝑉𝑉2 = 0), 

𝑃𝑃𝑒𝑒(𝑉𝑉1 = 0, 𝑉𝑉2 = 1), and 𝑃𝑃𝑒𝑒(𝑉𝑉1 = 0, 𝑉𝑉2 = 0), and thus all components corresponding to feature 

𝑐𝑐 = (𝑉𝑉1, 𝑉𝑉2). Note that, though in some cases the literature studies may directly present the 

pairwise joint probabilities (𝑃𝑃𝑒𝑒(𝑉𝑉1, 𝑉𝑉2)), they may be estimated from smaller samples and thus 

may not be representative of the population modeled in the simulation. This method of using the 

relative risk with more representative marginal distributions avoids sample bias, but with the 

caveat that it assumes that the RR observed in small samples are representative of the larger 

population.   
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2.3.3 What-if impact analyses: care behavioral model 
 

Using the joint distributions, we can calculate the joint probabilities of SDH (Pr (𝑉𝑉𝐷𝐷𝐻𝐻)) and 

conditional probabilities Pr (𝑉𝑉𝑉𝑉𝑉𝑉|𝑉𝑉𝐷𝐷𝐻𝐻) for any combination of SDH, which can be used in a 

mechanistic simulation to add SDH status and simulate care behavior as a function of SDH 

status. As demonstration of potential significance of such a simulation model, we conducted the 

following what-if analyses. From literature data, we know that the 𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉 = 1|𝑉𝑉𝐷𝐷𝐻𝐻 = 𝒂𝒂𝑛𝑛) >

 𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉 = 1|𝑉𝑉𝐷𝐷𝐻𝐻 = 𝟎𝟎𝑛𝑛),∀𝒂𝒂𝑛𝑛 ≠ 𝟎𝟎𝑛𝑛, where value of 0 is a good status and 1 is a bad status, 

𝑉𝑉𝐷𝐷𝐻𝐻 is some 𝑛𝑛- combination of social conditions, 𝟎𝟎𝑛𝑛 is a vector of 𝑛𝑛-zeros indicating a good 

status for all 𝑛𝑛- social conditions, and 𝒂𝒂𝑛𝑛 is a binary vector of 𝑛𝑛-values with at least one 1 

indicating at least one socially disadvantaged condition.  We evaluated the impact of 

𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉 = 1|𝑉𝑉𝐷𝐷𝐻𝐻 = 𝒂𝒂𝑛𝑛) →  𝑃𝑃𝑒𝑒( 𝑉𝑉𝑉𝑉𝑉𝑉 = 1|𝑉𝑉𝐷𝐷𝐻𝐻 = 𝟎𝟎𝑛𝑛), i.e., suppose we are able to intervene on 

those people with the social needs, such that their chance of VLS increases to become equal to 

that among those with no social needs, what would be the corresponding impact? To note here 

that transmission rate from persons with VLS is close to zero, and thus, in addition to having 

therapeutic benefits for the HIV infected person, VLS will also reduce incidence (new 

infections). Therefore, we evaluated two metrics of impact, taking all 𝑛𝑛 = 7 social conditions 

from Fig 2. In the first, as a metric for improvement in care among PWDH, we calculated the 

expected maximum VLS level, i.e., 𝑃𝑃𝑒𝑒�(𝑉𝑉𝑉𝑉𝑉𝑉) when setting 𝑃𝑃𝑒𝑒�(𝑉𝑉𝑉𝑉𝑉𝑉 = 1|𝑉𝑉𝐷𝐷𝐻𝐻 = 𝒂𝒂𝑛𝑛) =

 𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉 = 1|𝑉𝑉𝐷𝐷𝐻𝐻 = 𝟎𝟎𝑛𝑛),∀𝒂𝒂𝑛𝑛. In the second, as a metric of population-level impact, we 

estimated the cumulative reduction in new infections over a 10-year period, by simulating two 

scenarios, a baseline scenario using status-quo marginal distributions (𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉)) and an 

intervention scenario using 𝑃𝑃𝑒𝑒�(𝑉𝑉𝑉𝑉𝑉𝑉). These analyses were conducted in the PATH 4.0, which is 

a national simulation model of HIV in the United States and validated to be representative of the 
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HIV epidemic over the period 2006 to 2017 (see brief overview below). We modeled SDH and 

VLS such that the marginal distribution for VLS, for the period 2018 to 2027, was kept at the 

2017 value (𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉)) in the baseline scenario and at the intervention value 𝑃𝑃𝑒𝑒�(𝑉𝑉𝑉𝑉𝑉𝑉) in the 

intervention scenario. We simulated 30 runs and present the mean and range across the runs. 

2.3.4 Overview of PATH 4.0 model 
 

PATH 4.0 (Progression and Transmission of HIV) is a comprehensive simulation model of HIV 

in the United States developed using a new agent-based evolving network modeling (ABENM) 

simulation technique [35]. The main concept of ABENM is to simulate persons infected with HIV 

and their immediate contacts (all sexual partners a person will have over their lifetime) as 

individual agents and all other persons using a compartmental model. An Evolving Contact 

Network Algorithm (ECNA) maintains the network dynamics between the agents and the 

compartment, transitioning persons from the compartment to agents as the disease spreads. 

Considering the low prevalence of HIV in the U.S. (0.4%), a national network model of HIV is 

computationally impractical. ABENM addresses this gap by using a hybrid simulation technique 

while maintaining the network features through ECNA. The model was validated for the period 

2006 to 2017 by calibrating to 2006 data, simulating the epidemic from 2006 to 2017 in monthly-

time steps, and comparing simulated estimates for multiple features, including population-level 

epidemic features and HIV-network features, the latter using molecular clusters, using data from 

surveillance and surveys such as the National HIV Surveillance System (NHSS), the Medical 

Monitoring Project (MMP), the HIV Outpatient Study (HOPS), the National HIV Behavioral 

Surveillance (NHBS), the National Survey for Family Growth (NSFG), and the National Survey 

for Sexual Health and Behavior (NSSHB)[36]–[41]. Details of the model and validation are 

presented elsewhere [31]. Though we restricted this demonstration case study to the national-level, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2023. ; https://doi.org/10.1101/2023.03.01.23286591doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286591
http://creativecommons.org/licenses/by-nc-nd/4.0/


PATH 4.0 provides a suitable national-level framework for modeling social conditions and their 

heterogeneity across populations, while maintaining the overall network dynamics. 

As PATH 4.0 tracks HIV-infected person as agents, we added social conditions to each agent using 

the joint distributions, and modeled VLS conditional on SDH, simulating for the period 2018 to 

2027, maintaining the 2017 marginals (𝑃𝑃𝑒𝑒(𝑉𝑉𝑉𝑉𝑉𝑉)) in the baseline scenario and the intervention 

marginals 𝑃𝑃𝑒𝑒�(𝑉𝑉𝑉𝑉𝑉𝑉) in the intervention scenario. As PATH 4.0 simulates HIV transmissions as a 

function of care behaviors (VLS) and sexual behaviors, we can measure the impact of the 

intervention by the differences in the number of new infections between the two scenarios.  

 

2.4 Numerical Application II: Sexual Behavioral Model  
 

2.4.1 Overview of sexual behavioral metrics and social conditions 
 

We focused the analysis on persons who exchange sex (though we model the full US population 

in PATH 4.0), as it was the main mediator associating sexual behavior with social conditions for 

which data were available (Fig 3). The main data source was the National HIV Behavioral 

Surveillance system [42], a comprehensive surveillance of behavioral risk factors conducted in 

three populations, men who have sex with men (MSM), injecting drug users, and high-risk 

heterosexual. Generally, persons reporting receiving ‘things like money or drugs in exchange for 

sex’ were categorized as persons who exchange sex. For heterosexuals, as data related to 

exchange sex was restricted to persons in low socio-economic neighborhoods [43](numerator in 

relative risk estimations in Fig 3), for the data on exchange sex among persons without the social 

condition (denominator of relative risk), we made a simplifying assumption of using the data 

from MSM[44]. As PATH only models sexual transmission of HIV, we excluded injecting drug 

users. 
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All variables, data on marginals and relative risk, and data sources are presented in Fig 3. The 

relative risk between any two social conditions 𝑋𝑋 and 𝑌𝑌, specifically Poverty and Education, and 

Poverty and Employment in Fig 3, were not directly available in the literature. We derived them 

using census-tract data [45] on the marginals (𝑃𝑃𝑒𝑒(𝑋𝑋),𝑃𝑃𝑒𝑒(𝑌𝑌)), solving for the pairwise joint 

distribution (𝑃𝑃𝑒𝑒(𝑋𝑋,𝑌𝑌)) using Pearson correlation coefficient (𝑒𝑒 = [𝑃𝑃𝑃𝑃(𝑋𝑋,𝑌𝑌)−𝑃𝑃𝑃𝑃(𝑋𝑋)𝑃𝑃𝑃𝑃(𝑌𝑌)]
(𝑆𝑆𝐷𝐷𝑋𝑋 𝑆𝑆𝐷𝐷𝑌𝑌) ; 𝑒𝑒 and 

standard deviation (SD) estimated from the census-tract data), and subsequently using the joint to 

calculate the conditionals in the RR equation in Fig 3. 

We conducted this analysis independent of the care behavioral model in Numerical analyses I. 

This is because, though we modeled behaviors as a function of social conditions, its association 

was only through exchange sex, and therefore, the resulting distributions of social conditions 

among persons with HIV infection would not be fully representative of reality.  

Though our analyses is restricted to a small population, it provides a concrete example for a 

demonstration case study of the proposed methodological framework for modeling social 

conditions as part of disease prediction modeling, and suitable analyses from such a model. 

2.4.2 Estimating joint distribution using MRF: sexual behavioral model 
 

Corresponding to Fig 3, we have seven variables (𝐾𝐾 = 7), two sexual behavioral variables 

(condom use, and number of partners), one intermediary variable (exchange sex), and four social 

conditions, thus 𝑦𝑦 is a vector of dimension 𝐾𝐾. All variables except number of partners are binary, 

and thus the joint distribution between the six variables (exchange sex, condom-use, housing, 

education, employment, and poverty) can be estimated similar to that in care behavior. For 

simulating all variables in PATH, we take a sequential approach as follows, which is an 

approach most suitable for the network context in PATH (however, note that, once we have the 
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joint distributions, there is flexibility in determining the sequence of modeling that is most suited 

to an application).  

 

2.4.3 Parameterization of SDH in PATH 4.0 simulation  

In the PATH 4.0 model, sexual partnership networks follow a scale-network, i.e., the life-time 

number of partners per person (degree 𝐷𝐷) follows a power-law distribution Pr(𝐷𝐷 = 𝑑𝑑) ~𝑑𝑑−𝜆𝜆,  𝜆𝜆 

is the power-law parameter. For every person in the simulation, the model determines degree 

(life-time number of partners) by using a machine learning algorithm that was trained to maintain 

this overall scale-free network structure, and partnerships of each person are activated and 

deactivated over time/age using a set of optimization algorithms[31]. Further, condom-use 

changes as persons age[31]. Thus, to ensure the network and behavioral dynamics are 

maintained, we take a sequential approach to model parameterization of SDH as follows.   

First, assign degree (lifetime partners) using typical PATH 4.0 method, as summarized above.  

Second, assign exchange sex (𝐵𝐵) conditional on degree (𝐷𝐷), using 

𝑃𝑃𝑒𝑒(𝐵𝐵 = 𝑏𝑏|𝐷𝐷 = 𝑑𝑑) =
𝑃𝑃𝑒𝑒(𝑏𝑏,𝑑𝑑)
𝑃𝑃𝑒𝑒(𝑑𝑑) =

𝑃𝑃𝑒𝑒(𝑑𝑑|𝑏𝑏)𝑃𝑃𝑒𝑒(𝑏𝑏)
𝑃𝑃𝑒𝑒(𝑑𝑑)                                                            (10) 

The marginals 𝑃𝑃𝑒𝑒(𝐷𝐷) and 𝑃𝑃𝑒𝑒(𝐵𝐵) are available in the literature (Fig 3). Assuming 

𝑃𝑃𝑒𝑒(𝐷𝐷 = 𝑑𝑑|𝐵𝐵 = 1) and 𝑃𝑃𝑒𝑒(𝐷𝐷 = 𝑑𝑑|𝐵𝐵 = 0) also follow scale-free property with parameters 𝜆𝜆𝐵𝐵=1 

and 𝜆𝜆𝐵𝐵=0, respectively, the conditional distributions were estimated by numerically solving, 

through trial and error, for the values 𝜆𝜆𝐵𝐵=1 and 𝜆𝜆𝐵𝐵=0, that provided best fit to the following,  

 𝔼𝔼𝑒𝑒𝑒𝑒𝑒𝑒�𝐷𝐷�𝐵𝐵 = 1�
𝔼𝔼𝑒𝑒𝑒𝑒𝑒𝑒�𝐷𝐷�𝐵𝐵 = 0� = 𝑅𝑅𝑅𝑅𝐵𝐵𝐷𝐷, and ∑ � Pr

emp
(𝑑𝑑|𝐵𝐵 = 1) Pr(𝐵𝐵 = 1) + Pr

emp
(𝑑𝑑|𝐵𝐵 = 0) Pr(𝐵𝐵 = 0)�𝑑𝑑 = 𝔼𝔼[𝐷𝐷],  (11)  

where, 𝔼𝔼𝑒𝑒𝑚𝑚𝑝𝑝[𝐷𝐷|𝐵𝐵 = 𝑏𝑏] is the empirical expected degree and Pr
emp

(𝑑𝑑|𝐵𝐵 = 𝑏𝑏) the empirical 

conditional probability calculated for a specific  𝜆𝜆𝐵𝐵=𝑏𝑏, 𝑅𝑅𝑅𝑅𝐵𝐵𝐷𝐷 is the literature value for expected 
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degree among persons who exchange sex relative to expected degree among persons who do not 

exchange sex (Fig 3), and 𝔼𝔼[𝐷𝐷] is the expected degree used in the development of PATH 4.0 

model[31].   

Third, assign SDH status (H=housing, P=poverty, W=employment, E=education) using 

Pr(𝐻𝐻,𝑃𝑃,𝑊𝑊,𝐸𝐸| 𝐵𝐵) =
Pr(𝐻𝐻,𝑃𝑃,𝑊𝑊,𝐸𝐸,𝐵𝐵)

Pr(𝐵𝐵) ,                                                                         (12) 

where, Pr(𝐻𝐻,𝑃𝑃,𝑊𝑊,𝐸𝐸,𝐵𝐵) can be estimated using (1) through (4), and Pr(𝐵𝐵) is known from the 

literature (Fig 3).  

Finally, assign condom-use (𝐶𝐶) using,  

Pr(𝐶𝐶|𝐵𝐵,𝑎𝑎𝑙𝑙𝑒𝑒) = 𝑅𝑅𝑅𝑅𝐶𝐶𝐵𝐵 Pr(𝐶𝐶|𝑎𝑎𝑙𝑙𝑒𝑒),                                                                                    (13) 

where, 𝑅𝑅𝑅𝑅𝐶𝐶𝐵𝐵 is the literature value of relative risk of no condom-use among persons who 

exchange sex relative to those who do not (Fig 3), and the Pr(𝐶𝐶|𝑎𝑎𝑙𝑙𝑒𝑒) are the distributions used 

in the PATH model. Note that, limited by data, this method does not model longitudinal changes 

in individual-level behaviors of exchange sex. In the absence of such data, the method noted 

above of modeling lifetime number of partners accounts for the overall differences in life-time 

number of partners between persons who have ‘ever’ exchanged sex sometime during their 

lifetime and those who have ‘never’, and the assumption of power law distribution accounts for 

the differences, in number of times and partners, among those who have ever exchanged sex. The 

caveat being the validity of these assumptions cannot be directly verified, we only conducted an 

overall validation on HIV cases among persons who exchange sex, as discussed in results.   

2.4.4 What-if impact analyses: sexual behavioral model 
 

As per literature data, we know that 𝔼𝔼(𝐷𝐷|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑦𝑦𝑒𝑒𝑒𝑒) > 𝔼𝔼(𝐷𝐷|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙), 

and Pr(𝑐𝑐𝑙𝑙𝑛𝑛𝑑𝑑𝑙𝑙𝑐𝑐 𝑢𝑢𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑦𝑦𝑒𝑒𝑒𝑒) >
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Pr(𝑐𝑐𝑙𝑙𝑛𝑛𝑑𝑑𝑙𝑙𝑐𝑐 𝑢𝑢𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙). We evaluated the impact of 

𝔼𝔼(𝐷𝐷|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑦𝑦𝑒𝑒𝑒𝑒) →  𝔼𝔼(𝐷𝐷|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙), and 

Pr(𝑐𝑐𝑙𝑙𝑛𝑛𝑑𝑑𝑙𝑙𝑐𝑐 𝑢𝑢𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑦𝑦𝑒𝑒𝑒𝑒) → Pr(𝑐𝑐𝑙𝑙𝑛𝑛𝑑𝑑𝑙𝑙𝑐𝑐 𝑢𝑢𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙|𝑒𝑒𝑒𝑒𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑙𝑙𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑙𝑙). 

That is, suppose we are able to address the social needs of persons who exchange sex, such that 

their sexual behavior becomes similar to those who do not exchange sex, what is the 

corresponding impact? We measured impact by estimating reduction in cumulative new 

infections over a 10-year period (2017 to 2028) by simulating two scenarios, a baseline scenario 

that assumed degree and condom-use distributions as in original data, and a second intervention 

scenario that assumed degree and condom-use distributions among persons who exchange sex 

are equal to that among persons who do not exchange sex. We simulated 30 runs and present the 

mean and range across the runs. 

3. RESULTS 
 

3.1 Numerical application I: Care behavioral model 
 

From the estimated joint distribution, presented in Fig 4 as a density function on the number of 

social conditions, about 12% of all people with diagnosed HIV (PWDH) have 0 social 

conditions, ~15% of PWDH with VLS have 0 social conditions, and ~7% of PWDH with no-

VLS have 0 social conditions. That is, we can infer that most PWDH have at least one social 

condition, and PWDH with VLS have fewer social conditions than PWDH without VLS. From 

Fig 4 we can also infer that most PWDH (~63%) have 1 or 2 social conditions, and fewer 

(~25%) have >2 social conditions with proportion having 𝑘𝑘 conditions decreasing as 𝑘𝑘 increases.  
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Fig 4: Probability density function (% of people) for the number of social conditions in the 
population (for the social conditions modeled here -see Fig 2). PWDH: people with diagnosed 
HIV; VLS: viral load suppression.  

 

The relative risk metrics (i.e., the correlations) between all pairwise variables are presented in 

Table 1. The values in shaded cells are the inputs used for the development of the MRF model, 

we verify that the model reproduces the inputs. All other values are an outcome of the MRF 

model. The results highlight the significance of data gaps. For example, the relative risk between 

unemployment and poverty is 1, suggesting that they are independent variables, which is 

contradictory to intuition. To recollect, the principles of MRF model is to find a distribution with 

maximum entropy subject to constraints (features)(here, the shaded values in Table 1). The 

distribution closest to uniform, i.e., assumption of independence between variables, has the 

maximum entropy, and thus, any deviations from independence are a manifest of the applied 

constraints. In the case of Employment and Poverty, an assumption of independence still 

provided a good fit to all constraints (the value in shaded cells) thus resulting in a RR value of 1. 

In some other cases, e.g., Insurance and Depression, independence assumption did not give a 

good fit to all constraints, thus resulting in a value of RR >1. Therefore, more the data, even if 

not direct associations, more accurate the estimations.  
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Table 1: Relative risk (RR)* estimates for all pairwise variables  
       B VLS Depression Neighborhood Housing Poverty Education Insurance Employment 

A Description 
(B=1)* 

No Yes 

Resident of 
census tract 
with ≥18% in 
poverty Homeless 

Below 
federal 
poverty 
level 

No high 
school 
degree 

None 
(public, 
private, or 
other) Unemployed 

VLS - 1.56 1.12 1.65 1.49 1.30 2.52 1.04 
Depression 1.67 - 1.02 1.28 1.08 1.06 1.28 1.02 
Neighborhood 1.15 1.02 - 1.03 1.02 1.01 1.05 1.00 
Housing 2.20 1.37 1.03 - 1.13 1.58 1.60 1.80 
Poverty 1.41 1.06 1.01 1.08 - 1.03 1.18 1.00 
Education 1.41 1.07 1.01 1.51 1.05 - 1.19 1.03 
Insurance 9.66 1.41 1.09 1.67 1.35 1.23 - 1.04 
Employment 1.03 1.01 1.00 1.41 1.00 1.02 1.02 - 

*Relative risk (RR) of A with respect to B= Pr(A=1|B=1)/Pr(A=1|B=0); 0 representing good social status and 1 
representing socially disadvantaged status.  
The shaded cells are the inputs used for the MRF model (Fig 2), we verify that the model outputs replicate values 
used as inputs. All other values are an outcome of the MRF model.  
 
 
The baseline %VLS among PWDH in the United States was about 65.5% (Fig 5). If an 

intervention strategy successfully improves ‘all’ the social needs of people, such that their VLS 

increases to become equal to the VLS among those with no SDH, we can achieve upto 80% 

(79% to 83%) VLS level (Fig 5), the range resulting from the sensitivity analyses using lower 

and upper bound of RR metrics when more than one data source was available (Fig 2). The 

change in %VLS levels if the ‘individual’ social conditions were intervened varied across the 

social conditions (Fig 5), influenced by the proportion of PWDH with the condition (marginals) 

and the relative risk (RR) metrics used in model development (Fig 2). For example, if an 

intervention addresses depression, which was prevalent among 27% of PWDH, we can achieve 

upto 70% VLS level, whereas, if an intervention addresses neighborhood poverty, which was 

prevalent among 38% of PWDH, we can achieve only upto 67% VLS (Fig 5). These results are 

as expected because the corresponding relative risk values used in model development were 1.56 

for no VLS given depression and 1.12 for no VLS given neighborhood (Fig 2). The results also 

highlight the significance of any data gaps. For example, although unemployment was prevalent 

among 41% of PWDH, if an intervention addresses unemployment we can achieve only upto 
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66% VLS level (Fig 5), as the relative risk related to VLS and Employment was only 1.04, an 

output from the MRF model as there was no data to include it as a constraint in the MRF. As 

noted earlier, the distribution closest to independence, subject to constraints, has the maximum 

entropy, and thus the RR between VLS and Employment is the result of indirect constraints 

(between VLS and Housing and between Housing and Employment (Fig 2)).  

If an intervention strategy successfully improves ‘all’ the social needs of people, i.e., we achieve 

80% VLS level (Fig 5), then we can expect a 10-year cumulative incidence reduction of 29% 

(20% to 41%), the average and range is across 30 simulation runs. 

Fig 5: Maximum %VLS level if an intervention strategy successfully improves VLS levels of 
PWDH with the social condition to equal that of PWDH without the social condition; PWDH: 
persons with diagnosed HIV; VLS: HIV viral load suppression. Range denote outcome from 
sensitivity analyses, conducted only for metrics with multiple data sources. 

 

3.2 Numerical analyses II: Sexual behavioral model 
 

As expected, the joint distribution, presented as a density function of the number of social 

conditions in Fig 6, suggests that the proportion of people with 0 social conditions is higher 

among persons who did not engage in exchange sex compared to those who did (Fig 6). While 

about 26% (and 84%) of heterosexual women with exchange sex (and no exchange sex) had 0 

SDH, about 61% (and 81%) of MSM with exchange sex (and no exchange sex) had 0 SDH. 

Though the marginal distributions for exchange sex was assumed the same for women and 

MSM, the differences can be expected from the relative risk values between exchange sex and 

social conditions, used as inputs for the MRF model, which were significantly higher for women 

than MSM (Fig 3).  

Fig 6: Probability density function (% of people) for the number of social conditions in the 
population (for the conditions modeled here see Fig 3), split by exchange sex status. 
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In this numerical example, the model inputs were distributions among the general population and 

were included in the simulation as such, i.e., each person in the general population was assigned 

an SDH status drawing from the joint distribution, and their sexual behaviors were modeled as a 

function of their SDH status. Further, as in typical mechanistic models, HIV transmissions were 

modeled as a function of behaviors. Therefore, the distributions of SDH among HIV infected 

persons are an outcome of the dynamics of the simulation model. Thus, for model validation, we 

compare model estimated results with literature estimates for metrics among PWH, where 

available (Table 2a). To note here that the literature estimates were among all transmission 

groups, including people who inject drugs, however, in the PATH 4.0 model we only simulate 

sexual transmission groups. As the literature study did not present HIV cases by transmission 

group but only exchange sex status, we made a simplifying assumption of excluding the number 

of persons who inject drugs from all numbers (HIV, exchange sex, and no exchange sex), and 

thus the modified literature values underestimate sexually transmitted HIV prevalence. 

Considering these modifications, we verify that the model estimates are close to the literature 

estimates, and though not within the range, are in the expected direction (i.e., as literature values 

for Pr(HIV|ExSex) and Pr(HIV|No ExSex) are an underestimation, they are lower than model 

estimates, and as literature values for Pr(ExSex| HIV) is an overestimation, they are higher than 

model estimates) (Table 2a). 

As expected from transmission dynamics, the prevalence of exchange sex is higher among 

persons with HIV than the overall population (Table 2b), with prevalence at about 9.8% among 

HIV infected women and 8.7% among MSM (which validates well to literature data as noted in 

Table 2a) compared to 7.1% among the general population.  The prevalence of social conditions 

among PWH who exchange sex was higher than among PWH with no exchange sex, as seen by 
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the relative risk values in Table 2b. Among HIV infected women, the relative risk values were 

14.4, 69.6, 7.02, and 1.10, for Employment, Housing, Poverty, and Education, respectively. 

Among HIV infected MSM, the relative risk values were 3.20, 11.61, 2.94, and 1.07, for 

Employment, Housing, Poverty, and Education, respectively. To note here that, as exchange sex 

was the only mediator modeled here to link sexual behavior to social conditions, we can expect 

social conditions among the HIV-infected population to not be representative of reality. Thus, 

these results are presented to only highlight the social needs among persons who exchange sex 

(and not among all HIV infected persons), to serve as demonstration for potential analyses that 

can be conducted by modeling behaviors as functions of social conditions, especially when 

evaluating impact of interventions.  

If an intervention strategy successfully addresses the social needs of persons who exchange sex 

such that the number of partners and condom use among those who exchange sex is similar to 

those who do not, then we can expect a 10-year cumulative national incidence reduction of 6% 

(2.5% to 14%), the average and range across 30 simulation runs.  

Table 2a: Validating PATH model simulation outcomes by comparing to literature estimates.  

Metric 
Literature [44] and 
estimation a,b 

 PATH Model  
(mean and range of 30 simulation runs) 

Heterosexual female   
Pr(HIV| NoExSex) 0.14% 0.19 (0.18 - 0.2) % 
Pr(HIV| ExSex) 0.19% 0.27 (0.23 - 0.32) % 
Pr(ExSex|HIV) 9.55% 9.83 (8.69 - 10.84) % 
Men who have sex with men    
Pr(HIV| NoExSex) 9.62% 10.82 (10.22 - 11.24) % 
Pr(HIV| ExSex) 13.58% 13.78 (13.01 - 14.78) % 
Pr(ExSex| HIV) 9.74% 8.75 (8.22 - 9.27) % 

a The literature presented data for only MSM (men who have sex with men) transmission group. We assumed the 
relative risk (RR) of HIV given exchange sex status will be similar between MSM and heterosexual female 
transmission groups (though their marginals for HIV and exchange sex could be different). Thus, we estimated RR 
using the conditionals from MSM and applied it to the marginals of heterosexual female to estimate pairwise joints 
(using Eq. 6-9) and subsequently, the conditionals presented in the table. 
  
b PATH model only simulates sexual transmissions of HIV, the literature data included injecting drug users, and thus 
we made simplifying estimations by removing all persons who inject drugs from HIV and exchange sex numbers. 
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Thus, the literature values are an underestimation for Pr(HIV|ExSex) and Pr(HIV|No ExSex) and an overestimation 
for Pr(ExSex| HIV). 
 
Table 2b: Social conditions among persons who exchange sex and are HIV-infected in the 
PATH simulation model.  

 
Data inputs 
(data source in 
Fig 2 and 3) 

PATH model results 

Behavior/ 
SDH* 

Pr(SDH=1)  †A= 
Pr(SDH=1|HIV) 

B= 
Pr(SDH=1|ExSex 

and HIV) 

†C= 
Pr(SDH=1|NoExSex 

and HIV) 

RR 
(=B/C) 

Heterosexual female  
Exchange sex 7.1% 9.83% N/A N/A N/A 
Employment 3.4% 4.09% 25.23% 1.78% 14.16 
Housing 0.1% 0.15% 1.34% 0.02% 69.60 
Poverty 10.5% 11.73% 51.76% 7.37% 7.02 
Education 7.8% 7.92% 8.61% 7.84% 1.10 
Men who have sex with men 
Exchange sex 7.1% 8.7% N/A N/A N/A 
Employment 3.4% 3.46% 9.28% 2.90% 3.20 
Housing 0.2% 0.21% 1.26% 0.11% 11.61 
Poverty 10.5% 10.80% 27.15% 9.23% 2.94 
Education 7.8% 7.81% 8.30% 7.76% 1.07 

SDH: social determinant of health. 
 *All variables are binary, value of 1 implies socially disadvantaged status, and 0 implies a good status. 
† Note: As exchange sex was the only mediator modeled here to link sexual behavior to social conditions, we can 
expect social conditions among HIV-infected persons to not be representative of reality. Thus, these numbers should 
only be used for understanding the social needs among persons who exchange sex and not among all HIV infected 
persons. This example serves as demonstration for potential intervention analyses questions and related data needs.  
 

4. DISCUSSION 
 

As social conditions are drivers of behaviors that increase risk of HIV, modeling SDH into 

decision-analytic mechanistic models will help evaluate structural interventions alongside 

pharmaceutical interventions. We present a method for building such a model. We present a 

Markov random field model to estimate joint distributions of social conditions and related 

variables. The joint distributions can be used in any mechanistic model, to add SDH and model 

behaviors as functions of SDH, though the mechanisms of modeling these may vary across 

modeling techniques. For example, compartmental models could use the joint distributions to 
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create compartments of mutually exclusive feature combinations (e.g., degree =2, Housing =no, 

Poverty = yes), whereas agent-based models could use it to model individual-level features.  

We also present an approach to model behaviors as functions of social conditions in mechanistic 

models. In numerical analyses, we applied our method to PATH 4.0, an agent-based network 

simulation model of HIV in the United States, to add social conditions for each agent and 

simulate care and sexual behaviors as functions of their social conditions. As demonstration for 

the potential significance of such a model, we conducted what-if analyses assuming an ideal 

100% efficacious intervention strategy. Our numerical analyses suggests that, for the social 

conditions modeled here, if we are able to intervene on those people with the social needs, such 

that their retention-in-care behavior increases to become equal to that among persons with no 

SDH, the overall viral suppression among PWDH can increase from 65.5% to 80%, resulting in a 

10-year cumulative national incidence reduction of 29% (20% to 41%). Our results also suggest 

that if we address the social needs modeled here among persons who exchange sex, such that 

their sexual behavior becomes equal to that among those who do not exchange sex, we can 

expect a 10-year cumulative national incidence reduction of 6% (2.5% to 14%).  

Our model is subject to limitations. This work is limited to be a demonstration case study of a 

suitable methodology for modeling behaviors as functions of social conditions, and does not 

comprehensively include all social conditions. The joint distribution estimation method fits 

closest to uniform distribution subject to constraints, and thus the estimations are highly reliant 

on the features (social conditions and associations), used in the MRF model. Data on associations 

between variables are limited and conducted on smaller observational studies. To avoid data 

bias, we only used the relative risk metrics from these smaller studies and used marginal 

distributions that are more representative of the full population, but the caveat is that it assumes 
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that the associations in small samples are representative of the full population. To fully account 

for disparities across populations, data should be specific to sub-populations, we only modeled 

heterogeneity by transmission group in this demonstration example, modeling data by race and 

ethnicity could be key features in future work. We assumed causality between behaviors and 

social conditions, i.e., an intervention strategy that successfully intervenes all social needs will 

change behaviors to be equal to those with no social conditions. Though we did not assume 

causality between any two social conditions, we assumed an intervention strategy will 

collectively address all social needs.  For intervention analyses, more specific data on the 

effectiveness of interventions on social conditions and behaviors should be incorporated. 

Validation of such models can be a challenge, we only validated some of the metrics from the 

sexual behavioral model, highlighting consequences of data gaps in other metrics. 

5. CONCLUSIONS 
 

We provide an overall methodological approach for modeling social conditions into mechanistic 

disease prediction and intervention decision-analytic models. While the cost of intervention 

programs can be estimated from small controlled trials, the model will be instrumental in 

estimating its impact on the national disease burden, using the efficacy and costs of structural, 

behavioral, and biomedical interventions from those programs to model changes in social 

conditions and behaviors in the national context. Such a model will serve as a decision-analytic 

tool to evaluate alternative combinations of intervention programs, to subsequently identify 

intervention strategies that are the most cost-effective in reducing overall disease burden, address 

social needs, and reduce health disparities.  
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Fig 1: Schematic overview of model framework. 1a(top) Models typically simulate HIV 
infection as functions of care behaviors (e.g., VLS=> viral suppression from retention-in-care 
behavior) and sexual behaviors (e.g., degree => number of sexual partners). 1b(bottom) 
Proposed approach further simulates behaviors as functions of social conditions (e.g., poverty 
and homelessness). 
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Fig 2: (clockwise from top) Illustration of associations between social conditions and care 
behavior, marginal distributions, and relative risk between pairwise variables. Note: all variables 
are binary.  
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Fig 3: (clockwise from top) Illustration of associations between social conditions and sexual 
behavior, marginal distributions, and relative risk between pairwise variables. Note: all 
variables except number of partners are binary. 
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Fig 4: Probability density function (% of people) for the number of social conditions in the 
population (for the social conditions modeled here -see Fig 2). PWDH: people with diagnosed 
HIV; VLS: viral load suppression  
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Fig 5: Maximum %VLS level if an intervention strategy successfully improves VLS levels of 
PWDH with the social condition to equal that of PWDH without the social condition; PWDH: 
persons with diagnosed HIV; VLS: HIV viral load suppression. Range denote outcome from 
sensitivity analyses, conducted only for metrics with multiple data sources. 
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Fig 6: Probability density function (% of people) for the number of social conditions in the 
population (for the conditions modeled here see Fig 3), split by exchange sex status. 
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