		Age (weeks)									
Lab/Screen	Methods	7	8	9	10	11	12	13	14	15	16
Behaviour	Openfield										
	Acoustic startle response & PPI										
Neurology	Modified SHIRPA, grip strength										
	Rotarod										
Dysmorphology	Anatomical observation										
Energy Metabolism	Indirect calorimetry										
Cardiovascular	Awake ECG / Echo cardiography										
Clinical Chemistry	IpGTT										
Neurology	Auditory brain stem response (ABR)										
Dysmorphology	X-Ray, DEXA										
Еуе	Scheimpflug imaging, Laser-interference-biometry (LIB), Optical coherence tomography (OCT), Virtual drum test										
Clinical Chemistry	Clinical Chemical analysis, hematology										
Immunology	Flow cytometry, plasma (IgE, IL6, TNF, insulin)										
Pathology	Macro & microscopic analysis										

Fig. S1. Phenotyping pipeline used to analyse Dhx9 -/- mice showing category and test performed and mouse age in weeks at testing

DHX9 interactome - https://string-db.org/

	Nuclear localization signal																		
H. sapiens	Y	G	D	G	Р	R	Р	Р	K	м	A	R	Y	D	N	G	s	G	Y
P. troglodytes	Y	G	D	G	Ρ	R	P	Р	ĸ	м	A	R	Y	D	N	G	s	G	Y
M. mulatta	Y	G	D	G	P	R	P	P	ĸ	м	Α	R	Y	D	N	G	s	G	Y
P. hamadryas	Y	G	D	G	Ρ	R	Р	Р	ĸ	м	A	R	Y	D	N	G	s	G	Y
B. taurus	Y	G	D	G	Ρ	R	Ρ	Р	ĸ	м	A	R	Y	D	N	G	S	G	Y
E. caballus	Y	G	D	G	Ρ	R	Р	Р	ĸ	м	A	R	Y	D	N	G	s	G	Y
C. lupus familiaris	Y	G	D	G	Р	R	Ρ	Ρ	ĸ	м	A	R	Y	D	N	G	G	G	Y
M. musculus	Y	G	D	G	Р	R	Ρ	Ρ	ĸ	м	A	R	Y	D	N	G	s	G	Y
R. norvegicus	Y	G	D	G	Р	R	Ρ	Ρ	ĸ	м	A	R	Y	D	N	G	s	G	Y
L. africana	Y	G	D	G	Р	R	Ρ	Ρ	ĸ	м	A	R	Y	D	N	G	s	G	Y
D. novemcinctus	Y	G	D	G	Р	R	Ρ	Ρ	к	м	A	R	Y	D	N	G	s	G	Y
A. carolinensis	Y	G	D	G	Ρ	R	Ρ	Ρ	к	м	A	R	Y	D	N	G	G	G	Y
D. rerio	F	G	D	G	Ρ	R	Р	Р	ĸ	м	A	R	т	D	F	G	G	G	F

Predicted NLSs in query sequence

IVLVDDWIKLQISHEAAACITGLRAAMEALVVEVTKQPAIISQLDPVNER	50
MLNMIRQISRPSAAGINLMIGSTR <mark>YGDGPRPPKMARYDNGSGY</mark> RRGGSSY	100
SGGGYGGGYSSGGYGSGGYGGSANSFRAGYGAGVGGGYRGVSRGGFRGNS	150
GGDYRGPSGGYRGSGGFQRGGGGRGAYGTGYFGQGRGGGGGY	190

Predicted NLSs in query sequence

IVLVDDWIKLQISHEAAACITGLRAAMEALVVEVTKQPAIISQLDPVNER 50 MLNMIRQISRPSAAGINLMIGSTRYGDGPRPPRMARYDNGSGYRRGGSS 100 SGGGYGGGYSSGGYGSGGYGGSANSFRAGYGAGVGGGYRGVSRGGFRGNS 150 GGDYRGPSGGYRGSGGFQRGGGRGAYGTGYFGQGRGGGGGY 190

D) p.(Arg1166Pro)

Predicted NLSs in query sequence

IVLVDDWIKLQISHEAAACITGLRAAMEALVVEVTKQPAIISQLDPVNER 50 MLNMIRQISRPSAAGINLMIGSTRYGDGPRPPKMAPYDNGSGYRRGGSSY 100 SGGGYGGGYSSGGYGSGGYGGSANSFRAGYGAGVGGGYRGVSRGGFRGNS 150 GGDYRGPSGGYRGSGGFQRGGGRGAYGTGYFGQGRGGGG 189

A)

C)

∆ type	∆ score ⑦	pre-mRNA position ⑦
Acceptor Loss	0.02	4 bp
Donor Loss	0.01	50 bp
Acceptor Gain	0.14	18 bp
Donor Gain	0.00	

EGFP

p.(Ala1255Thr) (CMT)

B DAPI DSB

R-loop

p.(Gly411Glu) (mild NDD)

p.(Val473lle) (mild NDD)

p.(Arg761GIn) (mild NDD)

lpGTT results	female		m	ale	linear model	linear model	linear model
	con	mut	con	mut	genotype	sex	genotype:sex
	n=26	n=9	n=19	n=6			
	mean ± sd	mean ± sd	mean ± sd	mean ± sd	p-value	p-value	p-value
Glucose (T=0)	5.35 ± 0.81	5.42 ± 0.56^{a}	6.23 ± 1.04	6.03 ± 1.27	0.822	0.014	0.664
AUC 0-30	295.39 ± 94.35	330.05 ± 74.5 ^a	366.05 ± 51.65	384.82 ± 65.12 ^a	0.302	0.018	0.758
AUC 30-120	417.75 ± 176.08	551.57 ± 208.3ª	724.27 ± 183.29	1050.96 ± 226.25 ^a	< 0.001	< 0.001	0.123

Fig. S8. Loss of Dhx9 in mice causes differences in clinical chemistry indices indicative of altered metabolism and renal function

Fig. S9. Loss of *Dhx9* in mice causes haematological alterations indicative of effects on erythropoiesis and thrombopoiesis

Supplemental Table 1

Assay	Age (weeks)	Number (n)							
		+	-/+	-/-					
		Males	Females	Males	Females				
Open field	8	19	26	6	9				
SHIRPA	9	19	26	6	9				
Grip strength	9	19	26	6	9				
Acoustic startle	10	19	26	6	9				
Indirect calorimetry	11	18	26	6	9				
Glucose tolerance test	13	19	26	6	9				
Auditory brainstem response	14	14	16	4	4				
Clinical chemistry/hematology	16	19	26	6	9				

Table S1. Number of *Dhx9* -/- tested in the assays where relevant differences were detected.

Supplemental Table 2

Variant Type (Patient ID)	Disease Type	Severity	DHX9 location	DSB pattern and level	R-loop pattern and level
WT	-	-	Diffuse nuclear	Scattered, low	Gathered, +
Truncating (9,10,M42-1)	NDD	Mild	Whole cell	Ubiquitous, +	Gathered, +
NLS missense (3,5)	NDD	Severe	Cytoplasm only	Ubiquitous, +	Gathered, +
Missense (1)	NDD	Severe	Diffuse nuclear	Ubiquitous, ++	Ubiquitous, ++
Missense (2,4,8,11)	NDD	Mild	Diffuse nuclear or nucleolar	Ubiquitous, low	Gathered, low
Missense (15,16,17)	СМТ	-	Nucleolar	Ubiquitous, low	Gathered, low

Supplemental Table 3

	Abso			
Transfected expression plasmid	Trial 1	Trial 2	Trail 3	Average
No transfection blank	0.442	0.441	0.441	0.441
EGFP-backbone	0.435	0.342	0.343	0.373
EGFP-DHX9 WT	0.646	0.647	0.66	0.651
DHX9 p.R229*	0.377	0.433	0.417	0.409
DHX9 p.G411E	0.457	0.419	0.466	0.447
DHX9 p.V473I	0.628	0.653	0.634	0.638
DHX9 p.C608G	0.648	0.688	0.656	0.664
DHX9 p.E693Gfs*7	0.438	0.358	0.421	0.406
DHX9 p.R764*	0.41	0.447	0.428	0.428
DHX9 p.R761Q	0.6	0.614	0.593	0.602

Supplemental Text

Limited clinical details were available for three individuals: two within the BHCMG/GREGOR, BAB4646 and M42-1, and a patient from a simplex autism spectrum disorder (ASD) cohort¹⁹. BAB4646 and M42-1 have the only two *DHX9* pLoF variants within the BHCMG database of 12,266 exomes and genomes. BAB4646's phenotype is severe DD/ID and primary immunodeficiency. Proband ES identified two heterozygous pathogenic variants in *TRNT1*(NM_182916.2): c.1246A>G, p.(Lys416Glu) and c.608+1G>T. As *TRNT1* causes autosomal recessive syndrome sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay [MIM: 616084], these variants likely contribute to the individual's DD/ID and immunodeficiency. Further confirmation of this contention was obfuscated by the lack of additional DNA samples from the proband or his parents precluding variant phasing and determination of *de novo* status.

Subject M42-1 was enrolled in a mitochondrial disease cohort and is one of two affected siblings with encephalopathy, stroke-like episodes, and drug-resistant epilepsy. Proband ES failed to identify a candidate variant to explain the patient's mitochondrial disease, and sibling DNA is not available for testing. While *DHX9* pLoF variants are unlikely to completely explain the phenotypes of BAB4646 and M42-1, they may contribute to their neurologic dysfunction via multi-locus pathogenic variation to a blended traits phenotype⁵³.