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Abstract

The effective reproduction number R was widely accepted as a key indicator during the
early stages of the COVID-19 pandemic. In the UK, the R value published on the UK Gov-
ernment Dashboard has been generated as a combined value from an ensemble of fourteen
epidemiological models via a collaborative initiative between academia and government. In
this paper we outline this collaborative modelling approach and illustrate how, by using an
established combination method, a combined R estimate can be generated from an ensemble
of epidemiological models. We show that this R is robust to different model weighting meth-
ods and ensemble size and that using heterogeneous data sources for validation increases its
robustness and reduces the biases and limitations associated with a single source of data. We
discuss how R can be generated from different data sources and is therefore a good summary
indicator of the current dynamics in an epidemic.
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1 Introduction

Since the onset of the coronavirus disease in 2019 (COVID-19) as a pandemic, mathematical mod-
elling has been widely used to generate policy-relevant evidence. Mathematical modelling provides a
framework for simulating the dynamics of the pandemic. When parameterised with, and calibrated
to data, this can be used to generate projections of future epidemic trajectories. Epidemiological
estimates such as the reproduction number R derived from models can be useful tools for epidemic
status tracking.

The reproduction number R is a measure of the infectious potential of a disease and represents
the number of secondary infections that emerge from one infection [26]. At the onset of a new
disease, in a naive, fully susceptible population, the basic reproduction number R0 represents the
number of secondary infections stemming from an initial case. In contrast to R0, R is the reproduc-
tion number at any time during an epidemic - often referred to as the effective reproduction number
Re or temporal reproduction number Rt [5]. It reflects the number of secondary infections generated
from a population consisting of susceptible, exposed and immune individuals, and potential changes
in mixing and the presence of interventions.

The growth rate r represents the rate at which the epidemic is growing during the exponential
phase of epidemic growth. In epidemiological modelling, r and R are related via the generation
time (τ) of the epidemic: the longer the generation time and the higher the epidemic growth rate,
the higher the value of R [5]. Mathematically, this is expressed as

R−1 =

∫ ∞

0

e−rτf(τ)dτ, (1)

where τ is the time since infection, and f(τ) is the probability density function for the time of
infection, or the generation time distribution.

While R is reflective of the current strength of transmission, r is reflective of the transmission
speed [18]. In policy, R has been used as it provides more information about the impact of control
measures compared to r. For example, if an intervention is imposed and R is consequentially
reduced to below the R = 1 threshold, this suggests that the intervention has had an impact on
reducing onward transmission. Additionally, R at the onset i.e. R0 also provides information on the
likely level of herd immunity necessary, (1 − 1

R0
). This suggests that the more people that become

infected by each individual who has the virus, the higher the proportion of the population that
needs to be immune to reach herd immunity. Further details on R and the differing methodologies
for calculating the reproduction number can be found in section 2.1.

In the UK, the Scientific Advisory Group for Emergencies (SAGE), is activated in response
to emergencies and is made up of several sub-groups consisting of experts relating to different
scientific fields [10]. These sub-groups are often called upon in order to provide evidence to the
UK government relating to key policy questions. One of these groups is the Scientific Pandemic
Influenza Group on Modelling - Operational (SPI-M-O). SPI-M-O primarily consists of experts in
infectious diseases modelling.

During the COVID-19 pandemic, SPI-M-O, and from June 2021 the United Kingdom Health
Security Agency (UKHSA) has provided the UK government with weekly estimates of key epidemi-
ological indicators, including the effective reproduction number R [22]. These values were generated
as a combined estimate from a set of epidemiological models maintained and run by members of
SPI-M-O and combined using a random effects meta analysis approach with equal weighting ap-
plied [35], with visualisation implemented using CrystalCast developed by the Defence Science and
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Technology Laboratory (DSTL)[43].
Generating an across-model combined estimate, instead of single model truth, can lead to im-

proved predictive power [48], allows an increased robustness of the outcomes and is a useful tool
for policy makers [40]. Generating a combined estimate from a set of models is not a new concept;
they are widely used across many disciplines; in forecasting the weather [34], hydrology [25], flood
losses [20], in cancer prediction [52] and climate modelling [36]. Within infectious diseases, com-
bined model estimates have been applied to modelling HIV [19], influenza [42] and Ebola [45, 13]
transmission, and recently for outbreak analysis related to COVID-19 in the USA [47] and Europe
[9].

While mathematical models have been used to offer informed advice to the scientific community
and policy makers throughout the COVID-19 pandemic across a number of countries, the use of
modelling has differed. For example, modellers in the United States, in conjunction with the Center
for Disease Control (CDC), published ensemble forecasts using a wide variety of mathematical
models [16, 41]. These models had focused on forecasting new cases, hospitalisations and deaths at
a national and state-level as opposed to estimating R or r specifically. On the other hand, in New
Zealand and Italy modellers advising the government have compared estimates of R obtained from
different models but without producing formal combined estimates [29, 15]. In Norway, multiple
data sources including confirmed cases, proportion of COVID-19 attributable hospital admissions
and a national symptom survey were used to estimate r over the course of the pandemic, but only
one model has been used to estimate R from these sources [38]. Similarly, the Robert Koch Institute
in Germany only uses a single model to estimate R which depends on nowcasting estimates of the
number of new cases [44].

In the UK, since the onset of the pandemic a set of fourteen mathematical models developed,
maintained and applied by the members of SPI-M-O have been used to track epidemic status,
including generating R and r. The R value published on the UK Government Dashboard [27] has
been generated as a combined value from these models. Since early 2021, the United Kingdom
Health Security Agency (UKHSA) Epidemiological Ensemble (Epi-Ensemble) has been working
with academic modelling groups, including SPI-M-O members, and with the CrystalCast team to
run the process of combining epidemic outcomes from these different models to generate a weekly
or fortnightly combined estimates for R.

The value in getting a combined value from across models and datasets is not just in the
averaging of those estimates with weighting, but also in the formation of a community that are
constantly discussing the outcomes, the assumptions, the input data identifying the drivers behind
the differences across models. This is especially important when generating R. While doubling
time and r can be thought of as almost features of the data, requiring very few assumptions, the
move to R requires a set of subjective assumptions. This is why there is a need to have multiple
groups making different assumptions leading to heterogeneous outcomes which can be discussed,
understood and combined. When R can be generated using different data sets, in addition to
different models, this is particularly important.

This paper outlines how a previously established combination method, described in [35], has
been applied in the UK throughout the COVID-19 pandemic. We detail our approach of generating
a consensus value of R from fourteen epidemiological models applied to the English epidemic. We
illustrate the process, show how a combined R estimate has been generated in April 2021 and in
September 2021 and explore the robustness of the combined R value on the size and weighting
of the models’ combination. By comparing the change in R with the change in COVID-19 cases,
hospitalisations and deaths, we also explore whether R has been a good indicator of epidemic status.
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2 Methodology

2.1 Outline of epidemiological models used to produce R values

Generating an R estimate requires a model of some kind with subjective assumptions and infor-
mation from other sources. Fourteen mathematical models have been developed, adapted and used
throughout 2020-2022 to model the COVID-19 epidemic in England and to generate epidemic met-
rics including R. These models fall into three broad groups, as described in [17] and [5]: data-driven
models (DDMs), population based models (PBMs) and agent-based models (ABMs). Table 1 out-
lines these models along with a high-level description of the method used to calculate R, with their
main characteristics and differences described in table 2.

Model Name Description R estimation

Manchester Model
(DetSEIRwithNB)
[39, 11]

A deterministic compartmental ODE model that fits
to hospital admissions, hospital occupancy, ICU occu-
pancy and deaths in hospital. β, the transmission rate,
varies step-wise between change points. Change points,
such as policy or behavioural changes (e.g. schools re-
turning and lockdowns) are defined by the modeller
and are used to represent changes in the epidemic.

R is estimated from the
most recent β

EpiEstim [14, 31,
32]

EpiEstim applies the renewal equation given a time
series of incidence. We use the implementation of Epi-
Estim [14] described in [32] with code available at [31].
We back-calculate from an observation, e.g. cases, to
time of infection, using an assumed delay distribution.

R is calculated using
the renewal equation,
eq. (4).

GenomicSurveillance
[51]

Spatio-temporal hierarchical Bayesian model fitting to
daily new cases and COVID-19 lineage counts.

R is calculated based on
the derivative of cubic-
spline function fitted to
the incidence.

Epidemia [46] Hierarchical semi-mechanistic Bayesian model based
on the renewal equation. It can fit to multiple data
streams at once, or a single data stream. UKHSA Epi-
Ensemble runs two separate versions of the model, one
that fits to weekly admissions, and one that fits to
weekly cases. The admissions version of the model was
developed later in the epidemic in response to changes
in the case ascertainment rate.

R is specified to vary
weekly according to a
random walk and is cal-
culated using the re-
newal equation.

Covasim [33] Stochastic agent-based model calibrated to COVID-19
diagnoses, hospital admissions and deaths related to
COVID-19 and modelling progressive vaccine roll-outs.
It also models social distancing and Test-Trace-Isolate
interventions and incorporates different SARS-CoV-2
variants.

R is calculated by di-
rectly counting the num-
ber of secondary infec-
tions that are caused by
each primary infection.
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University of Liver-
pool Model [37]

Bayesian statistical model that comprises a determin-
istic compartmental transmission model governed by a
system of ODEs and a stochastic observation model.
Fits to deaths, hospital admissions, and symptomatic
report data from NHS 111 online.

R is calculated from
estimates of the daily
number of infections, the
infectious population,
and the mean time for
which individuals are
infectious.

Lancaster Spatial
Stochastic

A Bayesian spatial stochastic compartmental model,
that fits to cases and uses census commuter flow data
to infer mixing between Local Authorities.

R is calculated as the
dominant eigenvalue of
the next generation ma-
trix.

LSHTM EpiNow2
[3, 1]

EpiNow2 uses the renewal equation to estimate R,
where initial infections are estimated based on the ini-
tial number of cases or hospital admissions. The re-
lationship between cases (or hospital admissions) and
infections is obtained from a convolution of the rele-
vant delay distributions (an uncertain incubation pe-
riod and reporting delay). Similarly to Epidemia, ver-
sions fitting to cases and admissions are run.

R is derived using the re-
newal equation.

LSHTM ONS
inc2prev [2]

A Gaussian process model that uses PCR positivity
rates published by the ONS to model incidence by con-
volution with the curve estimating the evolution of the
probability of a positive test since time of infection.

R is derived using the re-
newal equation.

Imperial Stochastic
Compartmental
(sircovid) [6]

Compartmental transmission model described by
stochastic difference equations fitted to deaths, hospi-
tal admissions and prevalence, tested cases in hospital
beds, ICU prevalence and serology data.

R is defined as the max-
imum eigenvalue of the
next generation matrix.

Oxford CSML
Model. Dashboard
on [49]

Hierarchical semi-mechanistic Bayesian model fitted to
cases, similar to Epidemia and as described in [21], but
with a spatio-temporal component.

R is calculated similarly
to Epidemia.

PHE/Cambridge
Model [8, 7]

Deterministic age-structured compartmental model fit-
ted to serology data and uses google mobility data. Dif-
ferent versions of the model have been run throughout
the pandemic that fit to slightly different data streams.
Two versions of the model are presented in fig. 1.
Deaths/ons fits to ONS infection survey data, whereas
regional/age does not. More recently during the pan-
demic, the regional/age model has been replaced with
the admissions/ons model, which has the same model
structure as deaths/ons, but fits to admissions.

R is calculated in
terms of the domi-
nant eigenvalue of the
next-generation matrix.
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OpenABM [28] Stochastic agent-based model calibrated to hospital ad-
missions, ICU bed occupancy, deaths and vaccinations.
Similarly to Covasim, it also explicitly models social
mixing, Test-Trace-Isolate interventions as well as dif-
ferent SARS-CoV-2 variants and progressive vaccina-
tion.

R is calculated similarly
as in Covasim by directly
counting the number of
secondary infections that
are caused by each pri-
mary infection.

Warwick Model [30] A deterministic age-structured compartmental ODE
model fitted to hospital and ICU admissions, and
COVID-19 positivity rate data.

R is calculated from the
next generation matrix.

Edinburgh WSS
Model [4]

The WSS (Weight-Shift-Scale) model fits to case data
to derive R but accounts for systematic reporting er-
rors (e.g. false positives and negatives and under-
reporting). Furthermore, case counts are weighted,
scaled and shifted to account for the change in the size
in future compartments, the delay between infection
and case reporting, and to account for seasonality.

The estimated R is as-
sumed to be the com-
bination of the true R
plus a stochastic term
and is calculated from
the rate of change in re-
ported cases, scaled by
the time lag between in-
fection and the time of
case report.

Table 1: Outline of the epidemiological models used to generate R outcomes for the English COVID-
19 epidemic. We list the names of the models, as well as their main modelling characteristics and
the data to which they are calibrated against.

While these models can be broadly stratified into these three structure-based groups, each model
within the group has distinctive characteristics. For example, EpiEstim follows the methodology
as described in [14], and therefore share the limitation that they assume a consistent relationship
between infections and cases. The estimated R is robust when the ascertainment rate is roughly
constant. While GenSur shares this same limitation, Epidemia and OxfordCSML do not make
this assumption [21]. Furthermore, renewal-equation based models tend to be semi-mechanistic
i.e. assuming that the effects of interventions are assumed to be absorbed into the data to which
they fit. In contrast, fully mechanistic models such as the SEIR population-based and the agent-
based models, explicitly model the effects of interventions such as Test-Trace-Isolate strategies and
imposing and removing of social distancing measures.

In epidemiological models, the structure of the model determines the method to calculate R
and depends on the assumptions and data sets used to parameterise and validate the model. For
example, individual-based models count exactly the number of secondary infections at any stage of
the epidemic and hence explicitly estimate R.

In the classic compartmental Susceptible-Exposed-Infected-Recovered (SEIR) model, R0 =
β ∗ c/γ where β is the transmission probability, c is the number of contacts c and 1/γ is the
infectiousness period (average time that an individual is infectious for). R is typically calculated as
the largest eigenvalue of the next generation matrix (NGM). The NGM can be expressed as FV −1,
where F represents infection rates, and V recovery rates. The exact representation of F and V
vary dependant on the structure of the model [12]. Though generally,
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dxi

dt
= Fi(x) − Vi(x), Vi(x) = V −

i (x) − V +
i (x), (2)

where xi is the number of infected individuals in the ith infected compartment at time t, Fi(x)
is the rate at which individuals in compartment i are infected, where V −

i (x) and V +
i (x) represent

the rate at which individuals leave and enter the ith compartment respectively through means other
than infection. Expressing F and V as below, where m is the number of compartments, we can
derive the NGM:

F (x) = (F1(x), ·Fm(x)) , V (x) = (V1(x), ·, Vm(x)) . (3)

We can express the relationship between the reproduction number, the expected incidence, and
previous incidence rates with the renewal equation:

R(t) =
E(I(t))∫ inf

0
f(τ)I(t− τ)dτ

(4)

where It is number of infections as time t, and E[] denotes the expected value.
A selection of models in the ensemble are formulated based on eq. (1), these are typically models

of the data-driven type. Where the generation time is described by a gamma distribution, with
shape a and rate b, R can be expressed in terms of the growth rate r as:

R =
(r + b)a

ba
, (5)

Another key difference between the models in the ensemble is the data to which they fit. The
models are broadly split into three categories based on the data they primarily use to inform their
estimates: case-based models, admissions-based models, and models that fit to both case data and
hospital data. For the purposes of this study, models that fit to survey data are categorised as
case-based models as they are focused on detecting incidence of the disease, though there will be
differing delays associated with models that fit to cases and models that fit to survey data. There
are drawbacks and advantages associated with fitting to either cases or admissions. Case data is
highly sensitive to ascertainment biases. The scale of these biases have varied greatly over time.
Therefore, models that fit to case counts or positivity must be interpreted in the context of testing
behaviours and policies at the time. However, admissions data is not free from bias either. The
likelihood of being admitted to hospital varies greatly by age. Hence, without age-stratification in
the model, it is likely that community transmission is under-estimated among younger age groups.
Furthermore, the delay between being infected with COVID-19 and being admitted to hospital is
on average far greater than that between infection and receiving a positive case. This presents
difficulties when trying to produce timely estimates of community transmission. A summary of the
data to which each model fits is described in table 2.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.27.23286501doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.27.23286501
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model Name Model Type Data Type Is the model
run either by
the UKHSA
or a Devolved
Administration
department?

Manchester Model PBM Hospital data Yes
EpiEstim DDM Case data Yes
GenomicSurveillance DDM Case data Yes
Epidemia DDM UKHSA run two versions, one

fitting to cases, one to admis-
sions data.

Yes

Covasim ABM The UKHSA version fits to a
mix of data.

Yes

University of Liver-
pool Model

PBM Hospital data Yes

Lancaster Spatial
Stochastic

PBM Case data No

LSHTM EpiNow2 DDM Two versions are run: one fit-
ting to cases and one to ad-
missions

Yes

LSHTM ONS
inc2prev

DDM Fits to ONS positivity, which
is treated as case data

Yes

Imperial Model PBM A mix of data No
Oxford CSML
Model

DDM Case data Yes

PHE/Cam PBM A mix of data Yes
OpenABM ABM Hospital data Yes
Warwick Model PBM A mix of data No
Edinburgh WSS
Model

PBM Cases No

Table 2: Table detailing the UKHSA/SPI-M-O models split by model type and the data to which
they fit

2.2 Combining model estimates to generate a consensus R

To generate combined R estimates from the fourteen models, we use the statistical model developed
as a collaboration between DSTL, University of Southampton and University of Liverpool with the
underlying methodology described in [35]. We present a high-level outline of the method below.
Each of the epidemiological models described in table 1 and calibrated to the data as outlined in
table 2, has generated 5th, 25th, 50th, 75th and 95th percentile estimates for R. Using these,
a mean and a standard deviation for each model’s R estimate was generated. The mean (yi) is
initially estimated as the median (or 50th quantile), and the standard deviation is calculated as
follows:
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si =
max (|qi(95) − qi(50)|, |qi(50) − qi(5)|)

z95
, (6)

Where qi(x) represented the xth quantile of the ith model, and z95 is the z-score for the 90%
confidence interval (CI) of the standard normal distribution. Where model estimates are highly
skewed, a skewness correction calculation was applied to provide alternative estimates for the mean
and standard error (see [35] for further details). Otherwise, the distribution of the model estimates
for R are assumed to be symmetric.

These estimates are then combined using a random effects model allowing to account for the
differences in the model’s structure and not assuming that models share a common effect size. The
random effects statistical model is described by:

yi = µ + µi + ϵi, µi ∼ N (0, τ2), ϵi ∼ N (0, vi), (7)

where the estimated mean for model i is denoted by yi and standard error denoted by si =
√
vi.

The model was fitted to provide estimates for µ and τ which are the mean and standard deviation of
the true effect size respectively. τ2, the between model variance, was estimated using the restricted
maximum likelihood method, and the confidence intervals of the mean true overall effect size are
estimated using the standard Wald-type method. The models were equally weighted (see next
section for more details) and a range of R rounded out to one decimal place, by using the lower
and upper bounds respectively - to give a measure of uncertainty with acceptable confidence was
used. Further details of other methods used for calculating the between group errors and CIs are
provided in [50].

2.3 Sensitivity analysis

Two sensitivity analyses explored whether the combined R was impacted by variable weighting of
the models within the ensemble and the size of the ensemble.

2.3.1 Exploring the impact of model weighting on the combined R

Firstly we explored the impact of the choice of model weighting on the consensus R. The combined
estimate y is calculated from the true effect size of each model yi. The true effect size can therefore
be weighted. The simplest method, is that of equal weighting; and one that has been used to
generate the published consensus R over 2020-2022. In this method, each model is assumed to have
an equal contribution to the combined estimate under the assumption that all models are equally
valid.

Another common alternative method of weighting, is that of inverse-variance weighting. There-
fore, models with a high variance, i.e. those that are less certain, are penalised more than certain
models. However, individual models have different methods of representing uncertainty, and a
model that is more certain is not necessarily more likely to be accurate. Therefore this method is
not applicable here.

An alternative method of model weighting is to group models by either their structure, or by the
data to which they fit. For example, models that may have a different structure but use the same
data form a sub-group as described in table 2. We explored the impact of this on the consensus R
value by dividing the ensemble into sub-groups, so each sub-group represents a homogeneous set of
models either according to structure or to the data to which they fit. Models within each sub-group
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are equally weighted, and then the contributions from the sub-groups are equally weighted to give
the overall combined estimate. This forms two purposes: firstly, a single data-stream or model
structure will not have a larger weighting in the final combination, meaning that the combination
is ‘data-agnostic’ or ‘model-agnostic’ and models such as EpiEstim, with a larger representation
in the ensemble, do not bias the final estimates; secondly, it allows us to compare the difference
in trends between admissions and case data and therefore learn about the epidemic dynamics by
inspection. Similarly as for the equal weighting models method, a consensus R value was derived
with this alternative, variable - weighting method as a range for April and September 2021. We
present the results as rounded to two decimal places. However, the range is published to only one
decimal place to avoid presenting a false sense of precision. The range is rounded out, as opposed
to rounding to the nearest decimal place, as to increase the uncertainty instead of possibly reducing
it.

2.3.2 Exploring the impact of ensemble size on the combined R

The models included within the ensemble varied throughout the pandemic; as new models were de-
veloped and introduced, some were phased out and others were updated in response to the changing
epidemic. This could hypothetically result in inconsistent estimates through time. Furthermore,
as the UKHSA moves from a ‘response’ to a ‘business-as-usual’ phase there is a need to reduce the
resource dedicated to modelling COVID-19.

We investigate the implications of reducing the size of the ensemble on Nowcasts during the
period January 2022 - May 2022. UKHSA models are labelled in table 2. We re-calculate the
combined estimate from a reduced ensemble of models run internally in UKHSA and using equal
weighting, and compare this to the published consensus R number in England.

2.4 R as an epidemic indicator

The R timeseries is a transform of the epidemic metrics such as cases incidence or hospitalisations.
Hence we expect it would be statistically correlated to the epidemic metrics, but quantifying the
degree of correlation with different metrics is interesting.

Here we explore the correlation between the consensus R as published on the UK government
COVID-19 dashboard and the key public data sources relating to the COVID-19 pandemic; namely,
cases, admissions and deaths. We calculate the Pearson’s correlation coefficient of the published R
number against the weekly rate of change of cases, admissions and deaths over the August 2021 -
June 2022 period.

We note that it is important to differentiate between the published R number and the actual R
number. Modellers provide R estimates for two weeks prior to combination. COVID-19 data has
clear weekly seasonality due to reporting patterns. In order to adjust for weekly seasonality, each
source of data is transformed to a centered weekly moving average. For each date that an R number
is published, the slope of the data is calculated over a centered weekly window. We use the same
length and position of windows over which to perform the analysis in order to ensure consistency,
otherwise additional artificial lag would be introduced into the analysis. The R number is published
as a range.

In order to simplify the correlation coefficient calculation, the correlation is calculated against
the mid-point of the range. The correlation between the weekly rate of change in cases, admissions
or deaths and the published R might have an inherent lag given the delays in the publication of R,
or due to delays between cases, deaths and admissions. In order to investigate that, we examined
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the correlation between R and the rate of change assuming various delays. This was done by
shifting backwards the data window we used to calculate the weekly rate of change by 0 - 29 days
and observing how the Pearson correlation coefficient and the associated p-values change with an
increasing lag.

The R number represents a rate in change, and therefore we expect it to be linearly correlated
with the rate of change of cases, admissions and deaths. Therefore, the Pearson’s correlation
coefficient is an appropriate choice of correlation.

3 Results

3.1 Generating a consensus R range in April and September 2021 using
different weighting methods

Whisker plots of the 90th confidence intervals of R for each model are plotted alongside the resulting
combinations from the different methods, and shown in fig. 1. The numerical values for the 90%
confidence intervals for each weighting method are given in table 3.

Using the equal weighting method, and combining the R outcomes from the fourteen epidemi-
ological models (7 SEIR -type, 2 agent-based models and 5 data-driven models) we generated
combined R estimates of [0.81, 0.93] in April 2021 and [0.91, 1.07] in September 2021. These rep-
resent the 90% confidence interval that was published on the UK Government dashboard at the
time.

Using different weighting for the combination of models produces very similar combined R values
at the two snapshots in time we studied: in April 2021 and in September 2021. Weighting by data
resulted in R combination of [0.82, 0.93] and [0.86, 1.04] for the April 2021 and September 2021
estimates respectively. Weighting by model structure resulted in a combination of [0.8, 0.94] and
[0.9, 1.07] for the April 2021 and the September 2021 estimates respectively.

Weighting methodology April 6, 2021 September 14, 2021

Equal weighting [0.81, 0.93] [0.91, 1.07]
Weighting by data [0.82, 0.93] [0.86, 1.04]

Weighting by model [0.80, 0.94] [0.90, 1.07]
Equal weighting of case models [0.81, 0.90] [0.98, 1.15]

Equal weighting of hospital models [0.78, 1.02] [0.80, 0.93]
Equal weighting of mixed models [0.74, 1.00] [0.72, 1.12]

Table 3: 90% confidence intervals for combined R estimates using different weighting methods.

3.2 The effect of ensemble size on the combined estimate

Figure 2 compares what the un-rounded combined R number would be if the size of the ensemble
of models was reduced only to include models run internally within UKHSA and mentioned in
section 2.3.2. Our results show that the two combined R value time series are almost identical,
particularly when rounding out to the nearest decimal place.
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(a) April 21, 2021

(b) September 29, 2021

Figure 1: Error bars of the reproduction number R for the models included in the model ensemble
on April 21, 2021 and September 29, 2021. The width of the error bar for each model represents the
90% confidence interval. To account for reporting delays and the time it takes to run the models,
the R values that are reported are estimates for April 6, 2021 and September 14, 2021.
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Figure 2: The combined R number in the period December 2021 - May 2022 for the published and
reduced ensemble of models for England.
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3.3 The combined R is a good epidemic indicator

We can visually inspect the relationship between cases, admissions and deaths with R in the top
panels of fig. 3. Note that the R number is plotted against the day it was produced, not the day for
which estimate was taken. This analysis shows that positive or negative R values (shown in red and
blue respectively) do not necessarily occur when the number of cases and admissions is increasing
or decreasing, suggesting there is a delay between the published R and these metrics.

The bottom panels of fig. 3 show the correlation between the timeseries of R with weekly change
rate of cases, hospital admissions and deaths. The correlations have been calculated using different
lags (0 to 29 days) between the published R number and the open source COVID-19 data. In
each case, the left panels corresponds to the Pearson’s correlation coefficient and the right panel
corresponds to the corresponding p-value.

Our results suggest that there is a maximum and positive correlation between the published R
number and the rate of change of data at varying lags. The maximum correlation is approximately
0.9 for cases and admissions and 0.8 for deaths and occurs at lags of 17, 14 and 2 days respectively.
The correlation at each of these maxima is also found to be statistical significant. This means that
we would expect that once the published R number is high, it is likely that cases were increasing
roughly 17 days prior, hospitalisations roughly 14 days prior and deaths roughly 2 days prior. This
lag is expected since the published R represents a two weeks prior estimated R. The actual R would
instead lead case data once the delay for infections to present as cases and the generation time are
taken into account.

4 Summary and Conclusion

This study outlined a collaborative approach to generate the combined R value for England using
a previously established combination method [35] and R estimates from fourteen separate epidemi-
ological models. The combined R value was used to track the epidemic status over the COVID-19
epidemic in England, and was produced by SPI-M-O in 2020, and by the epidemiological ensemble
group within UKHSA since early 2021.

In this paper we describe the fourteen epidemiological models (7 SEIR-type, 2 agent-based
models and 5 data-driven models) used to generate individual R values in England, highlighting
their key structural characteristics and the data they use, as well as the method to individually
derive an R value. We also outline the methodology developed in [35] of combining the individual
R values to generate a combined consensus R value and illustrate this by generating the published
R values of [0.81, 0.93] on April 21, 2021 and [0.91, 1.07] on September 29, 2021.

We showed that the combined R is robust to different weighting of the combining models’ values.
Weighting by data and weighting by model structure resulted in very similar combined R estimates.
While for the generated value on April 21, 2021 the ensemble had homogeneous R values across the
models, the individual values from September 29, 2021 had notable heterogeneity.

April 21, 2021 and September 29, 2021 are very different epidemic points in time. April 21, 2021
followed the third national lockdown in England imposed to control the transmission of the alpha
variant [24]. Incidence and prevalence within the population were low and large scale vaccination
against COVID-19 had only started to be rolled out, with roughly half the population having
received a first dose, and only 8% having received a second dose. Against this mostly homogeneous
immunity, susceptibility and vaccine backdrop, the assumptions within the models would have been
similar, producing similar R values across models.
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(a) Lag between new cases and the published R

(b) Lag between new admissions and the published R
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(c) Lag between new deaths and the published R

Figure 3: Figures comparing the published R number to data published on the public government
COVID-19 dashboard. The top panel of each sub-figures superimposes the time series of the weekly
moving average of the dashboard data on top of the published R number for England. Where the
shading is red, the most recent published R number was greater than 1. Where it is blue, the most
recent published R number was less than 1. The bottom two panels plot the Pearson correlation
coefficient and the associated p-value against the lag in days for the published R number against
the dashboard data.
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In September 2021, the immunity, susceptibility and vaccination levels were very different. There
was a backdrop of population immunity from either vaccination or previous infection, with a large
proportion of the population aged 12 and over either having received two doses of the vaccines or
having been infected by the large Delta epidemic wave over the summer 2021. The COVID-19 case
rate remained high with schools just returning, and this period preceded the arrival of the Omicron
variant.

Different models would have made different assumptions on the impact of the large Delta wave
on population immunity, and would have incorporated different assumptions around vaccination
and social mixing associated with returning to school. All of these assumptions would impact
individual R values, illustrated by the varying R values across models at this time.

Furthermore, different models fit to different data and this can generate different estimates.
For example, the two LSHTM EpiNow2 models, one that fits to cases, and the second that fits to
admissions, have vastly different R estimates. This difference is also reflected in the combinations
from models that fit to cases (reporting a range of [0.98, 1.15]) and from models that fit to hospital
data (reporting a range of [0.8, 0.93]). If we were only to use models that fit to cases, this would
imply that the epidemic was increasing. However, models that fit to hospital data imply that
the epidemic was decreasing. Models that fit to both, report a central estimate in between the
two, albeit with larger uncertainty. Models that try to fit to multiple data streams tend to be
more complex, mechanistic, or hierarchical, and hence more difficult to calibrate. Therefore, it is
important that the ensemble features models that fit to a range of different data sources.

Reducing the size of the model ensemble, to include only models run internally within UKHSA,
made negligible difference. We note that the ensemble of models on April 21, 2021 and September
29, 2021 are not identical, and the model ensemble has been changing over time. New models were
introduced to the ensemble throughout the epidemic, models were omitted from or not submitted
to the ensemble due to technical issues, such as calibration error or computer outage. Furthermore,
in periods of change, such as the introduction of a new variant, some models had required extensive
development work before re-inclusion into the ensemble. Exploring these aspects and whether
having the same combination of models - or deriving an optimal combination - is important, but
this is beyond the scope of this work, and will be explored further in future.

Finally, we have shown that the published R is an indicator of epidemic trends and a proxy
for epidemic status as it is correlated with recorded epidemic outcomes, albeit with a delay of 17,
14 and 2 days with the rate of change in COVID-19 cases, hospital admissions and deaths. This
delay is expected as it includes the two weeks between the date of the actual R estimate, and the
published R.

Throughout the pandemic, R has been used to inform policy advisors, politicians and the general
public of the current epidemic status. Our results suggest that this is justifiable as, once taking into
account the lag, R is correlated with the key COVID-19 data streams (cases, hospitalisations and
deaths). From a public health and health service capacity planning perspective, admissions and
deaths are often the data streams of most interest. However, hospital admissions typically effect the
elderly or more vulnerable, cases throughout the pandemic have more often been recorded among
younger populations. Therefore, throughout the pandemic, the number of cases have also been used
as an indicator of extra strain on the health service and the wider economy.

Bearing in mind these delays between R and the other epidemic outcomes and to mitigate
uncertainty associated with nowcasting, since March 2021, the R value from each model was taken
on a single day in time 2 weeks before the day on which models were combined. Incorporating these
delays in R is important as not all models are always able to report estimates up to the day that
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they are run as they do not possess the ability to forecast. For example, the simplest model, an
application of EpiEstim, uses a delay distribution between infection and the observation to which
it is fit, to back-calculate and infer the incidence time series. The R number is then estimated
directly from the back-calculated time series for incidence. Therefore, the model is only able to
provide estimates lagged to the order of the length of the delay distribution. Even where models
are able to estimate current R numbers, due to the delay between infection and observation, the
infections occurring today correspond to data that will be observed in the future, and hence, are in
essence, projections. Prior to March 2021, SPI-M-O combined the most recent R numbers for each
model, which may be estimates for different dates. SPI-M-O found that there was little difference
in the combined estimates produced by using estimates from two weeks prior [23].

While combining multiple models, particularly in epidemic modelling, has proven to be very
useful during the COVID-19 epidemic, there are lessons from this that should be considered in
future.

It should be ensured that confidence intervals calculated by each of the models, represent the
same sources of uncertainty. Do they capture the underlying uncertainty present in the data, the
parametric uncertainty or the structural uncertainty? The forecast hub at the CDC treats models
primarily as black boxes, though model details are published and models are assessed for accuracy,
and there is not explicit treatment of the resulting uncertainty. For future pandemics, there should
be a clear definition of uncertainty and what it should represent.

The combination method used to generate a consensus R is insensitive to the performance
of individual models. Whereas for forecasts, model performance can be calculated by comparing
model estimates with observed data, the R number is a latent variable and therefore is not observed.
We rely on the expertise of modellers to ensure that models fit well to the data and make sound
assumptions. In the future, developing an unbiased scoring method for individual models would
help in ensuring the robustness and reliability of the individual models.

Finally, running an ensemble of models is resource intensive and relies on a significant amount
of external expertise. If models are not to be treated as black boxes specialist expertise of academic
groups continues to be required.

4.1 Summary

In this paper we have described the collaborative approach between academia and government to
generate a combined R value in England from an ensemble of epidemiological models. An ensemble
made up of models of different structures, that make different assumptions and fit to different data
has clear benefits. It differs from a single model approach, and can avoid some of the complexities
associated with trying to form a consensus view of the epidemic with a single model. No single
model can perfectly encapsulate all the dynamics in an epidemic. The more data streams that a
model fits to, and the more interventions it models, the more difficult it can be to fit the model. By
using multiple models, uncertainty stemming from different sources can be captured. We show that
the combined R is robust to different model weighting methods and ensemble size. We also show
that the combined published R is correlated with the rate of change in COVID-19 cases, hospital
admissions and deaths, albeit with a delay that is reflecting using R value from two weeks earlier.
Our findings suggest R can be good indicator of future epidemic trends and justify its use as a
proxy for epidemic status throughout the COVID-19 epidemic in England.
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