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Abstract 17 
Genome-wide association studies (GWAS) have linked hundreds of loci to cardiac diseases. 18 

However, in most loci the causal variants and their target genes remain unknown. We developed 19 

a combined experimental and analytical approach that integrates single cell epigenomics with 20 

GWAS to prioritize risk variants and genes. We profiled accessible chromatin in single cells 21 

obtained from human hearts and leveraged the data to study genetics of Atrial Fibrillation (AF), 22 

the most common cardiac arrhythmia. Enrichment analysis of AF risk variants using cell-type-23 

resolved open chromatin regions (OCRs) implicated cardiomyocytes as the main mediator of AF 24 

risk. We then performed statistical fine-mapping, leveraging the information in OCRs, and 25 

identified putative causal variants in 122 AF-associated loci. Taking advantage of the fine-26 

mapping results, our novel statistical procedure for gene discovery prioritized 46 high-confidence 27 

risk genes, highlighting transcription factors and signal transduction pathways important for heart 28 

development. In summary, our analysis provides a comprehensive map of AF risk variants and 29 

genes, and a general framework to integrate single-cell genomics with genetic studies of complex 30 

traits. 31 

 32 

Introduction 33 

 34 

Cardiac diseases are a leading cause of mortality across the world1,2. GWAS of cardiac traits have 35 

uncovered a large number of associations, including more than 100 loci linked to atrial fibrillation 36 

(AF)3–7. However, in most loci the disease-driving causal variants remain unknown. Given that 37 
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most trait-associated variants are located in non-coding regions8, researchers often use regulatory 38 

and epigenomic datasets to annotate possible effects of variants, and to prioritize putative causal 39 

variants8–10. Existing datasets, however, were often collected from bulk tissue samples that 40 

represent complex mixtures of cell types11,12, while disease-causing variants often act in specific 41 

cell types. Thus, lack of cell type-resolved epigenomic data in disease-related tissues limits our 42 

ability of variant annotation and prioritization. Another challenge of post-GWAS analysis is that 43 

long-range gene regulation is common, making it difficult to link non-coding variants with their 44 

target genes.  45 

    Despite these challenges, researchers have made attempts to identify putative risk variants and 46 

genes underlying the AF genetics. One study used epigenomic and gene expression data in the 47 

human heart to nominate putative risk genes in 104 AF-associated loci. This study, however, did 48 

not use rigorous statistical analysis to fine-map causal variants and instead used relatively lenient 49 

cutoffs and an ad hoc scoring scheme to rank putative target genes13. This study nominated nearly 50 

300 genes in these loci, many of which are likely not causal genes. Another study used STARR-51 

seq to map regulatory regions and variants to nominate risk variants in 12 AF-associated loci14. 52 

But the majority of AF-associated loci were not investigated in the study. A more recent study 53 

collected single-cell RNA-seq and ATAC-seq data in the human heart, and performed fine-54 

mapping in AF-associated loci15. The study identified 38 putative risk variants in heart CREs. 55 

Nevertheless, few nominated variants reach high confidence and in most loci the risk genes remain 56 

unknown.  57 

    To address these challenges in the context of heart diseases, we developed an integrated 58 

framework that unifies advances in single cell epigenomics, computational fine-mapping and a 59 

novel procedure for risk gene discovery. Specifically, we performed single-cell chromatin 60 

accessibility profiling to map CREs across major cell types in the heart. Our statistical fine-61 

mapping method utilizes the CRE maps to infer disease-relevant cell types and takes advantage of 62 

such information to identify putative causal variants. Our novel gene-mapping approach then 63 

aggregates information of all fine-mapped SNPs to predict the risk genes, considering multiple 64 

sources of information such as distance and chromatin loops between enhancers and promoters. 65 

Application of this framework to AF revealed a number of putative risk variants and genes, 66 

highlighting biological processes important to the genetics of AF.  67 
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    An unexpected finding from our study is that the majority of risk variants of AF we discovered 68 

did not colocalize with heart eQTLs. Taking advantage of our cell-type resolved epigenomic data, 69 

we found that this was largely due to the lack of power of bulk eQTL studies to identify regulatory 70 

variants with cell-type specific effects. This finding thus sheds light on the common strategy of 71 

annotating GWAS results using eQTLs.  72 

 73 

Results 74 

Overview of the experimental and computational approach. Our approach combines single-75 

cell genomics with novel computational procedures to study genetics of cardiac traits (Fig. 1). 76 

Using single nucleus RNA-sequencing16–18 (snRNA-seq) and single cell ATAC-seq (scATAC-77 

seq)19,20, we obtained transcriptome and open chromatin regions (OCRs) across all major cell types 78 

in the adult human heart (Fig. 1, step 1). These OCR profiles allow us to discover cell types 79 

enriched with the genetic risks of traits of interest. To identify specific causal variants in trait-80 

associated loci, we performed Bayesian statistical fine-mapping. Fine-mapping is a technique that 81 

aims to identify one or few causal variants that explain all the associations in a locus. It avoids the 82 

use of arbitrary LD cutoffs in selecting candidate variants and is able to quantify the uncertainty 83 

of each nominated variant. Recent fine-mapping techniques are also able to incorporate functional 84 

information of variants, such as regulatory activities in trait-related cell types9,21,22. Because of 85 

these benefits, fine-mapping techniques have been successfully applied to many common traits 86 

such as Type 2 Diabetes23, Schizophrenia24 and autoimmune disorders25. Our fine-mapping 87 

method takes advantage of the cell-type-resolved chromatin data to favor variants located in OCRs 88 

of enriched cell types (Fig. 1, step 2). After fine-mapping, the candidate SNPs and their associated 89 

cell-type information allow us to assign the cell type(s) through which the causal variants are likely 90 

to act.  91 

    Finally, we developed a procedure to infer causal genes at each locus (Fig. 1, step 3), addressing 92 

some common challenges. In “gene association tests” researchers test if the set of SNPs near a 93 

gene collectively show disease association26,27. These types of methods, however, cannot 94 

distinguish between multiple genes close to disease-associated variants. Alternatively, researchers 95 

may perform fine-mapping first, then link the high-confidence SNPs to target genes using 96 

additional information. However, fine-mapping alone rarely leads to a single, or even a few, high 97 

confidence SNPs at associated loci 23, therefore this approach also has limited utility. In contrast, 98 
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our procedure aggregates information of all fine-mapped variants in a locus to nominate risk genes. 99 

To see its benefit, suppose fine-mapping in a locus implicates 10 putative causal variants without 100 

any single one reaching high confidence; however, if all 10 SNPs likely target the same gene, we 101 

can be confident of the causal gene. We developed a statistical procedure to implement this idea, 102 

and estimated a score, called gene PIP (Posterior Inclusion Probability), for each gene. Under 103 

certain assumptions, we showed that the gene PIP estimates the probability of a gene being causal. 104 

The details are described below (Fig. 5a) and in Methods. 105 

 106 

Single-cell transcriptome and chromatin accessibility profiling reveals multiple cell types in 107 

the human heart. We performed snRNA-seq and scATAC-seq using the Chromium platform 108 

(10x Genomics) (Fig. 1, step 1). The heart samples were obtained from the left and right ventricles 109 

(LV and RV), the interventricular septum, and the apex of three adult male donors (Supplementary 110 

Table 1). After quality control, we retained data of 49,359 cells in snRNA-seq and 26,714 cells in 111 

scATAC-seq, respectively (Extended Data Fig. 1 and 2).  112 

We characterized cell populations with clustering analysis in both snRNA-seq and scATAC-seq 113 

datasets. From snRNA-seq28, we identified eight major cell types based on marker genes and 114 

comparison to published single-cell heart atlas data17 (Fig. 2a, left, Extended Data Fig. 3a), with 115 

~70% of cells from cardiomyocytes (CMs), fibroblasts, and endothelial cells. Clustering based on 116 

scATAC-seq data29 revealed similar cell populations (Fig. 2a, right). We computationally 117 

transferred cluster labels from snRNA-seq onto scATAC-seq clusters28 (Methods) and 118 

unambiguously identified matching cell types (Extended Data Fig. 3b, c). Indeed, expression and 119 

chromatin accessibility near marker genes showed high cell-type specificity (Fig. 2b, c). Across 120 

the eight clusters, gene scores inferred from scATAC-seq, a metric that summarizes the chromatin 121 

accessibility near a gene29 (Methods), were highly correlated with transcript levels in the matched 122 

clusters (Extended Data Fig. 3d). We also found good agreement between cell types identified in 123 

our scATAC-seq data and a recent study (Hocker et al.15), the only differences in annotation 124 

between these two studies was that we did not detect atrial cardiomyocytes, owing to our use of 125 

ventricular samples, and that we detected separate pericytes and smooth muscle clusters (Fig. 2a), 126 

whereas Hocker et al. annotated a single large cluster as “smooth muscle”. These results supported 127 

our cell-type assignments in both modalities. 128 

 129 
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Analysis of scATAC-seq data identifies cell-type-specific regulatory elements and their 130 

regulators. We pooled cells of the same cell type and identified OCRs separately in each cell type. 131 

Combining samples of the same cell type (Extended Data Fig. 4a, b), we detected 45,000-150,000 132 

OCRs per cell type (Extended Data Fig. 4c) yielding a union set of 352,904 OCRs. K-means 133 

clustering of these regions based on their accessibility suggested that most OCRs are active in 134 

specific cell types (Fig. 3a). Using differential accessibility (DA) analysis, we identified 173,782 135 

(49%) OCRs with cell-type-specific accessibility (Methods). We divided the remaining 179,122 136 

(51%) OCRs into three categories based on their detection across cell types: shared in 2-3 cell 137 

types, shared in >=4 cell types (denoted as Shared 2-3 and Shared 4), and remaining ones, denoted 138 

as “non-DA OCRs”, which mostly comprise peaks with low read counts (Methods). In agreement 139 

with previous observations, shared OCRs were enriched in promoter regions30 (Fig. 3b, c). 140 

    We compared our OCRs to regulatory regions identified in multiple tissues in ENCODE12. As 141 

expected, a large fraction of OCRs from major heart cell types (e.g., CMs, endothelial, fibroblasts) 142 

overlapped with DNase Hypersensitive sites (DHS) from the ventricles (Fig. 3d, top, Extended 143 

Data Fig. 6). In contrast, the proportions of OCRs from rare cell types (e.g., myeloid) overlapping 144 

with bulk DHS were significantly smaller, suggesting that scATAC-seq is more sensitive and 145 

detects more regulatory elements specific to rare cell types compared to bulk DHS (Fig. 3d, top, 146 

Extended Data Fig. 5d). This can be seen in several cell-type-specific OCRs near marker genes of 147 

rare cell types, which were largely undetected in the pseudo-bulk sample (Extended Data Fig. 4). 148 

Additionally, 60-80% of OCRs from major cell types overlapped with H3K27ac regions from LV 149 

and RV, suggesting enhancer activities (Fig. 3d, bottom, Extended Data Fig. 6). Together, these 150 

results showed that scATAC-seq identified cell-type-specific regulatory elements. We also 151 

compared cell-type-specific OCRs identified in our study to peaks identified by an earlier single-152 

cell study in heart15 and found that OCRs showed good agreement across studies (Extended Data 153 

Fig. 7). Importantly, more than 75% of OCRs detected in our CMs were also detected in ventricular 154 

CMs by Hocker et al. (Extended Data Fig. 7). 155 

    Chromatin accessibility is largely controlled by lineage-specific transcription factors (TFs)31. 156 

To identify these TFs, we assessed the enrichment of TF motifs in OCRs specific to each cell type 157 

and identified 260 significantly enriched motifs (Methods). Because TFs of the same family may 158 

share similar motifs, we performed additional analysis to infer the exact TFs driving the 159 

enrichment, assuming that for these TFs, their motif enrichment should correlate with gene 160 
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expression across cells. To test this, we correlated motif accessibility scores of TFs calculated by 161 

chromVar32 with their accessibility-derived gene scores, a proxy for gene expression29 (Methods). 162 

This analysis yielded 76 TFs with enriched motifs and correlation > 0.5 (Fig. 3e, Supplementary 163 

Table 2). Many of these TFs are cell type-specific (Fig. 3e) and include known CM regulators, 164 

such as TBX5, GATA4, and MEF2A33 (Fig. 3f). These results provided a compendium of putative 165 

transcriptional regulators across major cell types in the human heart.  166 

 167 

Open chromatin regions in CMs are enriched with risk variants of heart diseases and inform 168 

statistical fine-mapping. Using our cell-type-resolved OCRs, we assessed the contributions of 169 

different cell types to genetics of heart-related traits34. Risk variants of AF were almost exclusively 170 

enriched (>10-fold) in OCRs from CMs (Fig. 4a). Similar findings were reported in an earlier 171 

study15. Interestingly, the variants associated with the PR interval showed a similar enrichment 172 

pattern, suggesting a genomic link between PR interval and AF risk for future investigation35 (Fig. 173 

4a). In contrast, risk variants of cardiovascular traits and diseases, and blood pressure, were 174 

enriched across multiple cell types (Fig. 4a). As control, non-cardiovascular traits showed little or 175 

no enrichment in heart cell types (Fig. 4a). We also checked the enrichment of genetic risk of AF 176 

at open chromatin regions at individual cells, using the method SCAVENGE36. This analysis 177 

confirms that the vast majority of cells enriched with AF risk are CMs (Extended Data Figure 8). 178 

Together, these results suggest distinct cell type origins of different heart-related traits, 179 

highlighting CMs as the main cell type underlying AF.  180 

    This observation motivated us to take advantage of the epigenomic data to statistically fine-map 181 

causal variants in 122 approximately independent AF-associated loci37. We first used TORUS21 to 182 

estimate how putative risk variants are enriched in multiple functional annotations, including 183 

protein-coding regions, conserved sequences, and OCRs in CMs (Extended Data Fig. 9a, 184 

Methods)21. This information was used to set prior probabilities of variants being causal. We then 185 

performed fine-mapping analysis of all AF-associated loci with SuSiE38. Compared to fine-186 

mapping that treats all variants equally (uniform prior), this procedure increased the number of 187 

high-confidence risk variants. In total, we identified 68 variants whose probabilities of being causal 188 

variants, denoted as Posterior Inclusion Probabilities (PIP), are 0.5 or higher, compared with 44 at 189 

PIP >= 0.5 under the uniform prior (Fig. 4bc, Supplementary Table 3, Extended Data Fig. 9bc). 190 
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Across 122 loci, our procedure narrowed down putative causal variants to 5 or fewer SNPs in 51 191 

loci (Fig. 4d).  192 

    We highlighted the advantage of our functionally informed fine-mapping with some examples. 193 

In the locus containing HCN4, several SNPs are in high LD with similar GWAS association 194 

statistics (Fig. 4e, top). Our procedure identified a single SNP, rs7172038, as the most likely causal 195 

variant (PIP = 0.99) in the locus (Fig. 4e, middle). This SNP is inside a CM-specific OCR, and 196 

H3K27ac region in the heart. Interestingly, the Activity-by-contact (ABC) method 39 predicted a 197 

loop between the SNP and the HCN4 gene. HCN4 is an ion channel and has been implicated in 198 

the genetics of AF14. In another example, we nominated a likely causal variant (PIP = 0.96) among 199 

several high LD variants in the locus containing GATA4 (Extended Data Fig. 9d), an important 200 

TF for AF40.  201 

    A recent study nominated putative causal variants in 12 AF-associated loci by detecting 202 

regulatory variants using STARR-seq14. We compared these variants with our fine-mapped 203 

variants (Supplementary Table 4). Among the 9 loci where fine-mapping identifies one variant at 204 

PIP > 0.5, the fine-mapped variants agree with allele-specific variants from STARR-seq in two 205 

loci. In the remaining cases, the disagreement is driven by two sources. Most of the allele-specific 206 

variants from STARR-seq have much lower GWAS association than fine-mapped variants, 207 

suggesting that statistically they are unlikely to be causal variants (see examples in Extended Data 208 

Fig. 10). Also STARR-seq tested variant functions in vitro, and a few of allelic variants have no 209 

regulatory annotations in vivo (Supplementary Table 4). These results together added to the 210 

emerging picture that in a trait-associated locus, multiple variants may show regulatory effects in 211 

vitro41. But to identify true causal variants, we believe one should consider both regulatory 212 

information and the strength of GWAS evidence. 213 

     The fine-mapping results inform how the risk variants are partitioned into various functional 214 

categories, such as exons and OCRs in different cell types. The sum of PIPs of all SNPs assigned 215 

to a category can be interpreted as the expected number of causal variants in that category. We 216 

found that >50% of causal signals are from OCRs and 30% of signals from CM-specific OCRs, 217 

highlighting the key role of CMs in AF (Fig. 4f). As expected, exons and UTRs explain only 3% 218 

of causal signals.  219 

    The same PIP summation approach can also be applied to each locus, with the PIP sum of a 220 

functional category, e.g., OCRs or exons, now interpreted as the probability that the causal variant 221 
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in that locus falls into that category. Using this approach, we estimate that at more than half of all 222 

loci, causal variants have >50% probability to localize to OCRs (Fig. 4g). Further partitioning of 223 

OCRs into cell-type-level categories (Fig. 3b), we identified 37 loci where the causal signals 224 

almost entirely (>90%) come from CM-OCRs (Fig. 4h). With the only exceptions of two loci, CM 225 

OCRs explain the causal signals in most of the loci, based on OCR annotations (Fig. 4h, 226 

Supplementary Table 5). Together these results highlighted that our approach can identify cell type 227 

contexts of individual loci.   228 

     229 

Fine-mapped variants are supported by regulatory annotations and experimental validation. 230 

We characterized the regulatory functions of 68 specific variants at PIP >= 0.5. The majority 231 

(42/68) were located in CM-OCRs (Fig. 4i, Supplementary Table 3). 60% (41/68) of all variants 232 

and 86% (36/42) of variants in CM-OCRs overlapped H3K27ac marks in the heart, suggesting 233 

enhancer activities (Fig. 4i). 40% of variants (27/68) overlapped with fetal DHS12, suggesting that 234 

these variants may act across fetal and adult stages (Fig. 4i). Additionally, 22% of variants were 235 

linked to promoters through chromatin loops in Promoter-capture HiC (PC-HiC) from iPSC 236 

derived CMs42 (Fig. 4i). Using mouse ChIP-seq datasets of three key cardiac TFs (GATA4, TBX5, 237 

NKX2-5)33, we found that five candidate variants are located in human orthologous regions of TF 238 

binding sites, representing 4-fold enrichment over expectation by chance (Extended Data Fig. 9e). 239 

We also found that 22% (15/68) SNPs alter binding motifs (Fig. 4i) of one of the 76 TFs we 240 

identified as likely transcriptional regulators in heart cell types (Fig. 3e). Together, these results 241 

supported regulatory functions of many fine-mapped variants.  242 

    We experimentally tested six non-exonic variants with PIP > 0.95 that were located inside CM-243 

OCRs and overlapped with putative enhancers marked by H3K27ac or H3K4me1/3 (Fig. 4j, 244 

Supplementary Table 6). Four out of six variant-containing OCRs induced reporter gene 245 

expression in mouse cardiac cells (HL-1 cell line)43,44 (Extended Data Fig. 11a, Methods), but not  246 

in a fibroblast line (3T3), suggesting cell-type-specific activity of the four OCRs (Extended Data 247 

Fig. 11b). Three out of these four variants showed allelic changes of reporter activities in cardiac 248 

cells, for at least one alternative allele (Fig. 4j). The most striking effect was observed for 249 

rs7172038. Two alternative alleles of this SNP (A and G) strongly reduced activation. The 250 

enhancer containing this SNP interacts with the promoter of HCN4 located about 5 kb away, 251 

according to Activity-by-Contact (ABC) score39 (Supplementary Table 3). HCN4 is a well-known 252 
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AF risk gene and is physiologically implicated in cardiac rhythm control45. Consistent with these 253 

results, deletion of a syntenic 20 kb region in mice containing this enhancer significantly reduced 254 

the expression of HCN414. Notably, in two out of three SNPs with allelic effects, the use of 255 

functional information in fine-mapping significantly boosted their PIPs to >= 0.95 (PIP = 0.40 for 256 

rs7172038 and 0.41 for rs1152591 under the uniform prior). These experimental results supported 257 

regulatory functions of our high confidence variants.  258 

    In principle, we expect regulatory variants to affect transcript levels of target genes. Using GTEx 259 

eQTL data from the left ventricle (LV), we found that only 31% (21/68) variants are eQTLs 260 

(Supplementary Table 7). And only in four cases, the eQTLs showed plausible evidence of 261 

colocalization (PP4 > 0.5 using coloc46) with the AF risk (Supplementary Table 7). The small 262 

overlap of fine-mapped variants with heart eQTLs suggests a limitation of bulk eQTL data to 263 

identify regulatory variants, an issue we will address in more detail below.  264 

 265 

A novel computational procedure utilizes fine-mapping results to identify AF risk genes. 266 

Despite our fine-mapping efforts, there remained considerable uncertainty of causal variants in 267 

most loci (Fig. 4d). Even if the causal variants are known, assigning target genes can be difficult 268 

due to long-range regulation of enhancers47. We developed a novel procedure, called Mapgen, to 269 

address these problems (Fig. 5a, top): (1) For every putative causal SNP, we assign a weight to 270 

each nearby gene, considering multiple ways the SNP may affect a gene (see below). The weight 271 

of a gene can be viewed as the probability that the SNP affects that gene. (2) For each gene, we 272 

then aggregate the causal evidence of all SNPs likely targeting this gene, expressed as the weighted 273 

sum of the PIPs of all these SNPs. To ensure that the causal evidence of a variant is not counted 274 

multiple times when it targets multiple genes, we normalize the SNP-to-gene weights in this 275 

calculation. The resulting “gene PIP” approximates the probability of a gene being causal 276 

(Methods). Similar to variant-level fine-mapping, we also define a “credible gene set”, the set of 277 

genes that capture the causal signal at a locus with high probability (Methods).   278 

    The weights of SNP-gene pairs reflect the strength of biological evidence linking SNPs to genes 279 

(Fig. 5a, bottom). For a SNP in an exon or in a regulatory region linked to a particular gene, we 280 

assign a weight of 1 to that gene. When a SNP cannot be linked to any gene in these ways, its 281 

target genes are assigned using a distance weighted function so that nearby genes receive higher 282 

weights (Methods).    283 
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    We identified 46 genes with gene PIP >= 0.8, and 87 with gene PIP >= 0.5 (Fig. 5b, 284 

Supplementary Table 8, and Table 1 for top prioritized genes). At each locus, we obtained credible 285 

gene sets that captured at least 80% of the causal signal. These credible gene sets contained a single 286 

gene in 42 out of 122 blocks, and two genes in 34 blocks (Fig. 5c, Supplementary Table 9). The 287 

genes at PIP >= 0.8 included many known AF risk genes such as TFs involved in cardiac 288 

development and atrial rhythm control (e.g. TBX540 and PITX248), ion channels (e.g. KCNN350), 289 

and genes involved in muscle contraction (e.g. TTN).  290 

    We note that a key benefit of Mapgen is that even in the absence of high-confidence causal 291 

variants, it may still identify putative risk genes.  In 14 out of 46 genes at PIP >= 0.8, the SNP 292 

level PIPs were diffused, i.e., no single SNP reached PIP >= 0.5 (Supplementary Table 8). As an 293 

example, GJA5, a known AF risk gene51, was supported by seven SNPs (highest PIP = 0.22), five 294 

of which were linked to GJA5 by PC-HiC loops. This led to the gene PIP of 0.80 for GJA5 (Fig. 295 

5d, Supplementary Table 3). NKX2-5, a well known transcription factor important for heart 296 

development52, was supported by four SNPs (highest PIP = 0.37), all likely targeting NKX2-5. 297 

This led to a gene level PIP = 0.99 (Extended Data Fig. 12, Supplementary Table 3). These 298 

examples highlighted the advantage of aggregating information from all putative causal variants. 299 

    We benchmarked the performance of Mapgen to nominate risk genes against alternative 300 

methods. Given the absence of a comprehensive list of known AF risk genes, we used, as a proxy, 301 

a set of Gene Ontology (GO) terms previously linked to AF5. A gene annotated with one or more 302 

of these terms would be considered as a “true” gene in our evaluation, and otherwise a “false” 303 

gene. We considered several methods: nearest gene to GWAS lead SNPs (nearest), Activity-by-304 

contact (ABC) score linking enhancers to promoters (ABC-max), a gene association test method 305 

(MAGMA), and heart eQTLs linking variants to genes. Additionally, we included a recent study 306 

that nominated risk genes in AF-associated loci based on functional genomic data in heart (denoted 307 

as van Ouwerkerk13). We found that all these alternative methods, except ABC, have precision 308 

below or near 50% (Fig. 5e). ABC score has a precision at 60%, but its sensitivity is low, detecting 309 

only a few genes. Mapgen, at the threshold of gene PIP > 0.8, reaches a precision of 76%, while 310 

detecting nearly 50 genes. These results thus demonstrated the advantages of Mapgen for risk gene 311 

discovery. 312 

    We next examined specific loci in detail to gain insights of the weaknesses of existing methods, 313 

and how Mapgen addresses them. We focused on the three commonly used methods, nearest gene 314 
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method, the use of chromatin interaction data, and eQTL.  Among the 46 genes at PIP >= 0.8, eight 315 

(17%) were not the nearest genes, by distance to TSS, to the top GWAS SNPs. Some of these 316 

genes have been implicated in AF and related phenotypes, including KCNN3, TTN and HCN4. 317 

Most of the other genes have plausible functions such as CALU53, SSPN, and PKP2 318 

(Supplementary Table 11). Most of the nearest genes in these loci, in contrast, showed limited or 319 

no functional relevance (Supplementary Table 11). As an example, in the locus containing CALU, 320 

the nearest gene of the top SNP, rs55985730 (PIP 0.91) is OPN1SW, an opsin gene with function 321 

in color vision, but no clear relevance to AF. This SNP is looped to a distal gene CALU in PC-322 

HiC data (Fig. 5f), allowing Mapgen to identify CALU as the likely risk gene. CALU is a calcium-323 

binding protein and involved in alleviation of endoplasmic reticulum (ER) stress in 324 

cardiomyocytes54. ER stress has a critical role in the pathophysiology of AF55. These results 325 

suggest that by using chromatin loop information, Mapgen is able to identify distal risk genes.  326 

    We also considered the use of chromatin conformation in resolving target genes of high PIP 327 

SNPs. We found that while chromatin looping data were useful, as shown in the CALU example 328 

above, using such information alone may miss many potential risk genes. Among 68 SNPs at 329 

PIP >= 0.5, only five showed chromatin interactions with promoters based on ABC scores39, and 330 

18 if we included both ABC and PC-HiC data. Additionally, it is common to observe multiple 331 

chromatin loops at a single SNP. Among the 18 SNPs with chromatin interactions, 50% (9/18) 332 

contact more than one promoter (Supplementary Table 3), highlighting the uncertainty of target 333 

genes from chromatin looping data.  334 

    Use of expression QTLs is another common strategy for linking SNPs to genes. However, as 335 

reported above, few fine-mapped variants colocalized with eQTLs. Even if a GWAS SNP is also 336 

an eQTL, it may not identify the correct target gene. For example, in the TTN locus, the top SNP 337 

(rs3731746) is an eQTL of FKBP7, but the true risk gene is very likely TTN56,57. 338 

    Altogether, these results demonstrated the improved ability of Mapgen to nominate plausible 339 

candidate genes compared to alternative approaches linking SNPs to genes.    340 

 341 

Putative AF risk genes are supported by multiple lines of evidence. We evaluated our candidate 342 

genes using multiple sources of data. Consistent with enrichment of AF variants in CM-OCRs, 343 

candidate genes (PIP >= 0.8) tended to have higher expression in CMs, compared with other genes 344 

in the AF-associated loci (Fig. 6a).  Among 46 loci with PIP proportion >= 50% in cardiomyocyte 345 
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OCR, the likely target genes (gene PIP >= 0.5) were highly enriched (nearly 10-fold) in 346 

cardiomyocyte differentially expressed genes (Extended Data Fig. 13a). Additionally, high PIP 347 

genes were enriched in AF-related Mendelian disorders (Supplementary Table 12) (Fig. 6b). We 348 

also compared our genes with those prioritized by earlier work that used additional functional data 349 

such as AF-related gene ontology and heart gene expression5,13. While such functional data was 350 

not used in our analysis, the genes at PIP >= 0.8 scored on average substantially higher in two 351 

earlier studies than low PIP genes (Extended Data Fig. 13b), and 32 of them (71%) were supported 352 

by at least one study (Supplementary Table 8).  353 

    We next assessed the functions of candidate genes using Gene Ontology (GO) and gene 354 

networks58. GO analysis showed enrichment of Biological Processes related to heart development 355 

and cardiac function, and of Molecular Functions such as ion channels, hormone binding and 356 

protein tyrosine kinase (Fig. 6c, Supplementary Table 13). For network analysis, we used the 357 

STRING gene network built with genes at a relaxed PIP threshold of 0.5 (87 genes) to increase the 358 

number of interactions. This analysis highlighted some well-known processes in AF, such as ion 359 

channels, and structure components of heart muscle (Fig. 6d). A prominent subnetwork consisted 360 

of key TFs, including GATA4, TBX5, NKX2-5 and HAND2, implicated previously in AF genetics 361 

and/or heart development40,59–61 (Fig. 6d). Two other TFs in the network, PITX2 and ZFHX3, are 362 

also well-known AF genes40. Combined with the fact that putative causal variants were enriched 363 

in binding sites of TBX5, NKX2-5 and GATA4 (Fig. 4i, Extended Data Fig. 9e), these results 364 

suggested that perturbation of transcriptional regulatory networks consisting of TFs and their 365 

targets, plays a critical role in the genetics of AF. Additionally, the interaction network highlighted 366 

signal transduction pathways, including MAPK signaling and Ephrin signaling (Fig. 6d). Both 367 

processes are important in heart development62–65. Indeed, 19 out of 87 genes at PIP >= 0.5 were 368 

annotated by the GO term “regulation of intracellular signal transduction” (FDR < 0.02) 369 

(Supplementary Table 14).  370 

    Finally, we found additional literature support for the candidate genes. 39 out of 46 (85%) genes 371 

at PIP >= 0.8 have reported roles in cardiac processes and/or diseases from literature 372 

(Supplementary Table 10). The subset of genes at PIP >= 0.95 with literature support, as well as 373 

their supporting SNPs, were shown in Table 1. The majority of these genes have not been 374 

established as AF risk genes through functional studies, representing novel yet biologically 375 

plausible risk genes.  376 
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 377 

Cell-type-specific epigenomes reveal insights to lack of colocalization of GWAS signals to 378 

heart eQTLs.  While a large fraction of fine-mapped AF SNPs fell inside CM-specific OCRs (Fig. 379 

4f), most of them did not colocalize with heart eQTLs (Supplementary Table 7). This result adds 380 

to the growing evidence that eQTLs may explain a relatively small percent of GWAS signals of 381 

complex traits66,67. It is unclear, however, why this is the case68. We took advantage of our cell-382 

type resolved transcriptomic and epigenomic data to investigate this issue. We hypothesized that 383 

the heart eQTLs missed a large fraction of regulatory variants specific to CMs, thus were depleted 384 

of AF risk variants. To assess this hypothesis, we focused on 1,216 heart (LV) eQTLs from GTEx 385 

where the causal variants (known as eQTNs) were fine-mapped with high confidence (PIP >= 0.8) 386 

(Supplementary Table 15).  387 

 388 

Given that the heart eQTL study was performed on bulk tissues, the cell types where these eQTLs 389 

act are unknown. We used eQTL information in other tissues to infer whether the eQTLs are likely 390 

CM-specific. Our reasoning is that eQTLs that were found across many tissues are likely to be 391 

functional in cell types shared across tissues, thus not specific to CMs.  We found that the majority 392 

of eQTLs were highly shared, i.e., found in >30 tissues in GTEx (Fig. 7a). Less than 10% of heart 393 

eQTLs were found in 5 or fewer tissues. These results thus suggest that the detected heart eQTLs 394 

are highly biased towards variants with effects in cell types shared across tissues.  395 

 396 

This finding thus confirms our hypothesis that the detected heart eQTLs are generally not specific 397 

to CMs, even though CMs constitute a relatively large fraction of heart cells (20-30%, Fig. 2a). To 398 

understand these results, we divided the heart eQTLs into different categories based on the location 399 

of the eQTNs, including exons, UTRs, introns, OCRs in specific cell types, and OCRs shared with 400 

varying numbers of cell types. We analyzed the tissue-sharing pattern of each category separately. 401 

The overall sharing pattern of all eQTLs would depend on the sharing pattern of each category, 402 

and the percent of eQTLs in each category (see Methods). This analysis would thus allow us to 403 

understand what drives the high degree of observed eQTL sharing across tissues.   404 

 405 

As expected, eQTLs falling into OCRs shared in multiple cell types were extensively shared across 406 

tissues (Fig. 7b). On the other hand, eQTLs in cell-type-specific OCRs showed variable levels of 407 
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sharing. Fibroblast-eQTLs (eQTLs in fibroblast-specific OCRs) and myeloid-eQTLs were highly 408 

shared (median 31 and 43 tissues, respectively), but most CM-eQTLs were found in <10 tissues 409 

(Fig. 7b). We believed this variability reflected different degrees of cell type sharing between the 410 

heart and other tissues. To test this, we compared heart eQTLs with those from the brain and whole 411 

blood. As expected, heart eQTLs from immune cell OCRs had the highest sharing with whole 412 

blood, while eQTLs of all heart cell types have low sharing with the brain (Fig. 7c). Together, 413 

these results highlighted considerable variability of tissue sharing patterns of heart eQTLs, 414 

depending on their likely cell-type origins.  415 

 416 

We next assessed the proportions of heart eQTLs in functional categories, focusing on eQTLs in 417 

OCRs, whose cell type origins could be inferred. A large proportion of those eQTLs were from 418 

OCRs shared in multiple cell types, with eQTLs in CM-specific OCRs only explain <10% of heart 419 

eQTLs (Fig. 7d). Given that different categories of OCRs have different genome sizes, we 420 

compared the proportions of eQTLs in each category with random expectation (Methods). While 421 

eQTLs in OCRs from single cell types showed 2-9 fold enrichment, those shared with 4 or more 422 

cell types showed 26-fold enrichment (Fig. 7d). Indeed, the enrichment is highly correlated with 423 

the number of cell types in which an OCR is detected (Fig. 7e). We thus concluded that discovered 424 

eQTLs are biased towards those with broad effects across multiple cell types.  425 

 426 

Altogether, our results suggest that eQTLs that are likely CM-specific are under-represented in the 427 

data, constituting <10% of all heart eQTLs. Most of the remaining eQTLs have effects across 428 

multiple cell types; or have effects in cell types shared across other tissues. As a result, the overall 429 

level of tissue sharing of heart eQTLs is very high. Given that AF risk variants are specifically 430 

enriched in CM-specific OCRs (Fig. 4a), the depletion of CM-specific eQTLs explains why heart 431 

eQTL data fail to explain most GWAS signals.   432 

 433 

We reason that this depletion of cell-type-specific regulatory variants in eQTLs can be explained 434 

by the nature of bulk eQTL studies. When the effect of an eQTL on a gene is limited to a single 435 

cell type, but the gene is expressed in other cell types, the effect of the variant on the bulk gene 436 

expression would be diluted, leading to lower power of detecting this eQTL. This argument was 437 

supported by the observation that gene expression was less cell-type-specific than accessibility of 438 
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regulatory elements. In heart eQTLs localized to CM-specific OCRs, the expression of 439 

corresponding genes in CMs were only modestly higher than their expression in other cell types 440 

(Extended Data Fig. 14a).  We performed simulations to investigate the power loss in detecting 441 

cell-type-specific eQTLs. When the cell type of interest is 20% of the bulk tissue, we estimate that 442 

the power of detecting eQTL specific in this cell type is only about 8-40% of the power of detecting 443 

eQTLs with shared effects across cell types (Supplementary Notes, Extended Data Fig. 14b). This 444 

analysis demonstrated that the low power of detecting cell-type specific eQTLs is a key limitation 445 

of bulk eQTL studies.  446 

 447 

Discussion 448 

While GWAS have been successful in a range of complex traits, the causal variants,  their target 449 

genes, and their mechanisms in disease-related cell types have been elucidated in few cases47. In 450 

this work, we established a cell-type-resolved atlas of chromatin accessibility and transcription of 451 

the human heart to study the genetics of heart-related traits, focusing on AF3–5. We statistically 452 

fine-mapped AF-associated loci, and experimentally validated some of the candidate variants. 453 

Using a novel computational procedure, we identified 46 high confidence genes, implicating key 454 

biological processes, in particular TFs and signaling pathways important for heart development. 455 

Motivated by our observation that the putative AF variants often were not colocalized with eQTLs, 456 

we investigated how heart eQTLs are shared across tissue types. Our analysis suggests that eQTLs 457 

with cell-type-specific effects are under-detected and that this is likely a factor explaining both 458 

high tissue-sharing of eQTLs and the lack of eQTLs in GWAS variants.  459 

Compared with several recent studies that aimed to identify risk variants and genes in AF13,15, 460 

our study has a few key advantages. Hocker et al. intersected fine-mapped variants with cell-type-461 

resolved OCRs to nominate putative regulatory variants. Their work and related studies69 462 

demonstrated the utility of single cell ATAC-seq data for interpretation of non-coding variants 463 

from GWAS. Our work extends these studies by using a computational procedure that leverages 464 

the strong enrichment of genetic signals in CM-specific OCRs to fine-map causal variants, 465 

identifying 68 high confidence SNPs at PIP > 0.5, including 42 in CM OCRs, compared to five 466 

nominated by Hocker et al.15 (Fig. 4b). Our gene-mapping procedure effectively leverages fine-467 

mapping results and multiple sources of information linking SNPs to putative targets. This avoids 468 

the bias of previous work that only considers one metric, e.g., distance, to link SNPs to genes, and 469 
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increases the sensitivity of detecting risk genes. As a result, we found high confidence genes 470 

(PIP >= 0.8) in more than 1/3 of known AF-associated loci.    471 

Our set of 46 candidate genes shed light on the genetics of AF. Earlier linkage studies implicated 472 

ion channels and structural proteins, as well as a few TFs70. Our results confirmed these earlier 473 

findings and showed an even larger role of regulatory genes, including TFs and signaling proteins. 474 

In total, we identified 13 TFs with PIP >= 0.8 (Supplementary Table 10), and 18 at PIP >= 0.5. 475 

These included known AF genes, TBX5 (PIP 0.99), NKX2-5 (0.99), PITX2 (0.99), ZFHX3 (0.85) 476 

and GATA4 (0.57), as well as TFs with roles in heart development such as HAND2 (0.87), ZEB2 477 

(0.98), and PRRX1 (0.72). Our results also highlighted signal transduction pathways, including 478 

MAPK signaling62, Ephrin signaling63–65 (Fig. 6d), G-protein coupled receptor signaling71, Wnt 479 

signaling72 (Supplementary Table 13) and FGF signaling73,74 (FGF9, PIP = 0.94 and FGF5 PIP = 480 

0.53), all previously implicated in heart development. 481 

Despite the advances described above, our study has a few limitations. Our experimental data 482 

were limited to four anatomical locations of the ventricles, while some AF risk variants might act 483 

through atrial-specific CMs. However, it is worth noting that a recent study, using scRNA-seq 484 

based cellular atlas of the heart including all anatomic locations, found that AF candidate genes 485 

were strongly enriched in ventricular CMs17. Additionally, our fine-mapping leveraged the almost 486 

exclusive enrichment in CM-specific OCRs (Fig. 4a), and thus may miss variants acting on the AF 487 

risk through other cell types. This possibility is suggested by a small number of candidate variants 488 

showing accessibility specific to fibroblasts (Fig. 4h), known contributors to AF etiology75. 489 

Finally, some disease variants potentially act transiently during development and might be missed 490 

using adult heart samples.  491 

In conclusion, by combining novel experimental and computational approaches, our study 492 

identified a number of risk variants and genes and revealed key insights of the genetics of AF. 493 

These data provide a rich resource for future functional studies. Importantly, our analytic 494 

framework, including the software for fine-mapping and risk gene identification, may provide a 495 

general model for the study of other complex phenotypes.  496 

 497 

Methods 498 

 499 
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Data collection. Nuclei isolation from adult heart tissue. Heart tissue samples were obtained from 500 

National Disease Research Interchange (NDRI) and were stored at -80ºC and kept on dry ice 501 

whenever outside of the freezer. We included samples from 4 regions (left and right ventricles, 502 

interventricular septum, apex) from 3 male individuals (Supplementary Table 1). Aliquots of each 503 

heart sample were prepared from frozen heart tissue using a tissue pulverizer, which was cooled 504 

prior to pulverization for 20 minutes over dry ice. Aliquots assayed in this study ranged from 86.7 505 

mg to 141.6 mg. Prior to library preparation, we purified nuclei using fluorescence-activated cell 506 

sorting (FACS) to remove debris and minimize contamination from ambient RNA.  507 

Single nuclei isolation was performed on the heart tissue aliquots as described in Litvinukova 508 

et al. 202017, with some modifications. Single heart aliquots were kept on dry ice until being 509 

transferred into a precooled 2 mL dounce homogenizer (Sigma) with 2 mL homogenization buffer 510 

(250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris-HCl, 1 mM dithiothreitol (DTT), 1x 511 

protease inhibitor, 0.4 U/µl, RNaseIn, 0.2 U/µl SUPERaseIn, 0.1% Triton X-100 in nuclease-free 512 

water). Samples were dounced 25 times with pestle A (loose) and 15 times with pestle B (tight), 513 

filtered through a 40-µm cell strainer, and centrifuged (500g, 5 minutes, 4ºC). Supernatant was 514 

discarded and the nuclei pellet was suspended in nuclei resuspension buffer (1x PBS, 1% BSA, 515 

0.2 U/µL RnaseIn) and stained with NucBlue Live ReadyProbes Reagents (ThermoFisher). 516 

Hoechst-positive nuclei were enriched using fluorescence-activated cell sorting (FACS) on the 517 

FACSAria (BD Biosciences), obtaining between 172,500 and 350,000 nuclei while targeting a 518 

maximum of 350,000. Nuclei were sorted into 0.75 ml of resuspension buffer. Flow-sorted nuclei 519 

were counted in a C-Chip Disposable Hemocytometer, Neubauer Improved (INCYTO) before 520 

commencing with library preparation. 521 

 522 

snRNA-seq library preparation and sequencing. A portion of the sorted nuclei suspension was 523 

removed and brought to a concentration of between 700 and 1,200 nuclei per microliter. An 524 

appropriate number of nuclei were loaded on the Chromium controller (10X genomics) in order to 525 

target between 6,000-8,000 nuclei, according to V3 of the manufacturer’s instructions for the 526 

Chromium Next GEM Single Cell 3ʹ Reagent Kits (10X Genomics)76. 3’ gene expression libraries 527 

were amplified with 15 cycles during sample index PCR. QC was performed on 3’ gene expression 528 

cDNA and final libraries using a Qubit Fluorometer (ThermoFisher) and an Agilent 2100 529 
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Bioanalyzer (Agilent). Libraries were sequenced on the NovaSeq 6000 (Illumina) or the NextSeq 530 

500 (Illumina) at the University of Chicago’s Genomics Facility using paired-end sequencing. 531 

 532 

scATAC-seq library preparation and sequencing. scATAC-seq libraries were prepared according 533 

to v1 of the manufacturer’s guidelines for the Chromium Next GEM Single Cell ATAC Reagent 534 

Kits (10X Genomics), with the modification that we started from nuclei that were isolated as 535 

described above. Between 9,300 and 25,000 nuclei were tagmented using Transposition Mix (10X 536 

Genomics) at 37°C for 1 h and loaded on the Chromium controller. We targeted between 6,000 537 

and 10,000 nuclei for library preparation. QC was performed on final ATAC-seq libraries using a 538 

Qubit Fluorometer and an Agilent 2100 Bioanalyzer. Libraries were sequenced on the 539 

NovaSeq6000 or the NextSeq500 at the University of Chicago’s Genomics Facility using paired-540 

end sequencing. 541 

 542 

Single-cell genomic data analysis. snRNA-seq pre-processing. FastQ files from 12 sequencing 543 

experiments were individually processed using an in-house scRNA-seq pipeline dropRunner77. 544 

Briefly, dropRunner utilizes FastQC78,79 to obtain quality control metrics followed by fast and 545 

efficient alignment to human reference genome hg38 using STARsolo 2.6.180 in GeneFull 546 

mode with other parameters set to default. STARsolo performs alignment and quantification of 547 

gene expression in one package. We quantified expression at the gene level using Gencode v29 548 

gene annotations81 utilizing both intronic and exonic reads to improve clustering and downstream 549 

analyses of the snRNA-seq data. We extracted the raw gene-by-barcode expression matrices output 550 

by STARsolo for downstream analyses. We used Seurat 3.2.182 in R to analyze the snRNA-551 

seq data. We combined all 12 expression matrices into a single Seurat object together with the 552 

corresponding metadata such as donor and anatomical region. To filter low-quality nuclei, we 553 

removed barcodes that contained less than 1000 UMI. We also used DoubletFinder 2.0.383 554 

with pN = 0.015 and pK = 0.005 to account for doublets, which works by generating in-555 

silico doublets and performs clustering to identify nuclei that fall in the neighborhood of the 556 

generated doublets. After quality control, we retained a total of 49,359 nuclei.  557 

 558 

scATAC-seq pre-processing. FastQ files from 12 sequencing experiments were individually 559 

processed using 10x Genomics CellRanger-atac 1.2.084. We used the command 560 
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cellranger-atac count to align the fastq files to human reference genome hg38, followed by 561 

marking and removing duplicate reads, and producing a fragment file containing the mapped 562 

location of each unique fragment in each nucleus. We used ArchR 0.9.529 to further pre-process 563 

the data and perform downstream analyses of the scATAC-seq data. Using ArchR, we converted 564 

the fragments file into a tile matrix, which is a bin-by-barcode Tn5 insertion count matrix, using a 565 

bin-size of 500 bp. We also generated a gene score count matrix using the “model 42” from ArchR, 566 

which aggregates Tn5 insertion signals from the entire gene body, scales signals with bi-directional 567 

exponential decays from the TSS (extended upstream by 5 kb) and the transcription termination 568 

site, and accounts for neighboring gene boundaries. Gene annotations were obtained from 569 

Gencode v29. To filter low quality nuclei, we kept nuclei with at least 5,000 unique fragments 570 

and a TSS enrichment score of 6. We also used ArchR’s doublet removal approach with default 571 

parameters, which is based on in-silico doublet generation. We removed nuclei with a doublet 572 

enrichment score greater than 1. After quality control, we retained a total of 26,714 nuclei.  573 

 574 

Cell-type identification from snRNA-seq and scATAC-seq. We performed normalization, 575 

dimensionality reduction, and unsupervised clustering on snRNA-seq and scATAC-seq data in 576 

order to identify cell-types. For snRNA-seq, we used Seurat’s workflow which begins with 577 

converting counts to log2 TP10k values using the NormalizeData function. Next, we found the 578 

top 2000 variable genes using FindVariableGenes and used these genes as input features for 579 

Principal Component Analysis (PCA). We computed the top 30 principal components (PCs) for 580 

each cell and used these for downstream analyses. We observed batch effects due to different 581 

donors, and corrected this batch effect. This was done using the RunHarmony function from the 582 

Harmony 1.085 package with default parameters to regress out the donor variable from the PCs. 583 

Next, we used the FindClusters in Seurat with a resolution of 0.2 on the harmony-corrected 584 

PCs to define clusters. We also computed the corresponding UMAP to visualize the harmony-585 

corrected PCs in two dimensions. We used previously established cell-type markers in order to 586 

map clusters to cell types17,18. 587 

We performed cell-type mapping for scATAC-seq using the ArchR package. We performed 588 

dimensionality reduction on the tile matrix using the top 20,000 bins in terms of count across all 589 

cells. We used the function addIterativeLSI with 2 iterations in order to perform latent 590 

semantic indexing (LSI) on the scATAC-seq tile matrix and retained the top 50 LSI vectors. 591 
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Similar to snRNA-seq, we observed batch effects across different donors, and removed this effect 592 

using the RunHarmony function. We used addClusters with resolution = 0.2 in order to 593 

cluster nuclei based on the harmony-corrected LSI vectors. addUMAP with min.dist = 0.4 was 594 

used to compute a 2-dimensional representation of the harmony-corrected LSI vectors. We 595 

visualized gene activity scores, as defined in ArchR, using the same marker genes as in snRNA-596 

seq to assign clusters to cell-types.  597 

 598 

Defining and classifying open chromatin regions. Insertion read counts were aggregated across 599 

all cells in each cell-type to form a cell-type pseudo-bulk and peak calling was performed on 600 

pseudo-bulk data of each cell-type. Using the function addReproduciblePeakSet in ArchR in 601 

conjunction with MACS286, a union set of 352,900 peaks were called in total across all cell-types 602 

at FDR < 0.1. This set of peaks, called union set, were used for all downstream analyses.  603 

In order to discover cell-type specific regulatory elements, a single-cell insertion count matrix 604 

was created using the function addPeakMatrix in ArchR. Cells were grouped into their 605 

respective cell-types and differential accessibility (DA) analysis was performed in a one-vs-all 606 

fashion, i.e., one cell type vs. all other ones. To perform DA, we used getMarkerFeatures in 607 

ArchR with default parameters, which uses the Wilcoxon rank-sum test on the log-normalized 608 

insertion count matrix. To control for technical variation, cells from the cell-type group and the 609 

group of remaining cell types are matched in terms of TSS enrichment and number of fragments. 610 

Using FDR < 10% and log2 fold-change > 1, we found about 47% of the union set to be cell-type 611 

specific.  612 

For OCRs that were not differentially accessible, we reasoned that these are more likely to be 613 

shared. To further stratify these OCRs into different classes, based on sharing among different cell 614 

types, we used a simple quantile-based method. First, we aggregated the ATAC-seq counts across 615 

all cells within each cell-type for each non-DA peak and normalized the counts by the total sum 616 

of counts in each cell-type. Next, we binarized the peaks within each cell-type based on whether 617 

they are in the top 25% or not in terms of their normalized counts. In this way, we identify the top 618 

25% accessible peaks in each cell-type. Finally, we count how many times a peak is 1, or highly 619 

accessible, across cell-types. Through this strategy, we defined three disjoint sets: shared in 2-3 620 

cell types, shared in 4+ cell types and the remaining peaks denoted as “non-DA”. The last category 621 
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corresponds to peaks that are only highly accessible (top 25%) in one cell type but are not found 622 

to be differentially accessible based on our criteria above.  623 

 624 

Comparing snRNA-seq and scATAC-seq. We calculated correlation scores of gene expressions 625 

from snRNA-seq and gene activities from scATAC-seq in the following manner: First, we selected 626 

genes that were up-regulated in each cell type according to differential expression analysis of 627 

snRNA-seq data. Approximately 3000 genes were identified in this manner. For each gene, the 628 

ATAC-seq gene scores and RNA-seq transcript counts, respectively, were aggregated across all 629 

cells in each cell-type cluster, followed by a log transformation. We then used the log-transformed 630 

pseudo-bulk gene scores and normalized expression levels to calculate Pearson correlation 631 

between gene scores and expression across cell types.  632 

 633 

Comparing the cell labels in our study with Litviňuková’s et al. Label transfer was performed 634 

using Seurat to compare the labels in our study with Litviňuková’s et al. 17. The processed scRNA-635 

seq data from Litviňuková et al. were downloaded from 636 

https://www.heartcellatlas.org/#DataSources. LoadH5Seurat	 from Seurat R 637 

package was used to convert the h5ad format into a Seraut object. Next, anchors were identified 638 

using the FindIntegrationAnchors	function and used as reference, which takes the earlier 639 

Seurat object as input. Then, we predicted the labels of our cells with the TransferData function, 640 

which used the anchors and our scRNA-seq data (also a Seurat object) as inputs and returned the 641 

predicted labels for each cell in our dataset. We summarized the number of matched cells with a 642 

heatmap, showing the proportion of matched cells in each cluster.  643 

 644 

Comparing the OCRs in our study with Hocker et al. We compared the OCRs from our dataset 645 

with Hocker et al.15 using peak sets called on individual cell type clusters. Cell-type level peaks 646 

identified by Hocker et al. were obtained from their CARE portal 647 

(http://cepigenomics.org/CARE_portal/Cell_Type_Diversity.html). We only 648 

included their peak set from ventricular CMs to match our cell types. For each cell type, we 649 

computed a simple overlap between peaks from both datasets using GenomicRanges 650 

findOverlaps87 in R. Overlaps for each cell type were represented as Venn diagrams generated 651 

with the eulerr R package. 652 
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 653 

Identifying putative TFs regulating chromatin accessibility. We used a set of 870 human motif 654 

sequence instances from CisBP88. These motif annotations were added onto the ArchR object 655 

using the addMotifAnnotations function. Next, enrichment analysis was performed for each 656 

motif in each cell-type-specific set of peaks, using the peakAnnoEnrichment function in ArchR. 657 

The function uses the hypergeometric test to assess the enrichment of the number of times a motif 658 

overlaps with a given set of peaks, compared to random expectation. After correcting for multiple 659 

testing within each cell-type, we used FDR < 1% to ascertain a set of motifs and their enrichment.  660 

    Motif enrichment analysis may find multiple TFs with similar motifs. To reduce the redundancy 661 

and identify true TFs that drive gene regulation, we correlated the motif accessibility with gene 662 

score activity of each TF, expecting that for true TFs, their expression levels should be positively 663 

correlated with accessibility of their motifs across cells. We obtained motif accessibility scores 664 

from chromVAR32 (using the addDeviationsMatrix function in ArchR) for each TF across all 665 

cells. We obtained the corresponding TF gene activity scores using the “model 42” by ArchR (see 666 

“scATAC-seq pre-processing”). These single-cell-level motif accessibility scores and gene scores, 667 

however, are noisy given the sparsity of data at individual cells. We thus used a strategy similar to 668 

Cicero89, by aggregating cells into “metacells” based on similarity using a k-nearest neighbor 669 

approach. Specifically, we found the k nearest neighbors to each cell using the LSI vectors of the 670 

single-cell ATAC-seq data. We only retained sets of metacells that shared a maximum of 25% of 671 

constituting cells. Metacells that shared more than 25% of cells were removed at random. Using k 672 

= 100, we created about 200 non-redundant meta-cells based on these criteria and averaged the 673 

motif accessibility scores and gene scores across cells within each meta-cell. We then computed 674 

Pearson’s correlation between the gene scores and the motif accessibility scores across meta-cell. 675 

We selected all TFs with a Pearson’s correlation greater than 0.5.   676 

 677 

SCAVENGE analysis. SCAVENGE36 was used to calculate for each cell a trait relevance score 678 

(TRS) for Atrial fibrillation.  SCAVENGE was run under default settings, with ATAC-seq peak 679 

matrix and fine-mapping results (under the uniform prior) as inputs.  680 

 681 

Testing enrichment of GWAS risk variants in functional annotations. We obtained 682 

harmonized GWAS summary statistics for cardiovascular and some non-cardiovascular traits from 683 
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the IEU OpenGWAS project. We removed SNPs with missing values, SNPs on non-autosomal 684 

chromosomes, and indels. Utilizing approximately independent Linkage Disequilibrium (LD) 685 

blocks generated by ldetect37, we assigned each SNP to one of 1700 LD blocks.  686 

    We used TORUS34 to estimate the genome-wide enrichment of risk variants of GWAS traits in 687 

various functional annotations, including cell-type specific OCRs obtained from DA testing, and 688 

some generic annotations including coding, retrieved from UCSC Genome Browser database, and 689 

conserved sequences from Lindblad-Toh, K. et al. 201190. We ran TORUS on each annotation, 690 

one at a time, to get the marginal enrichment reported in Fig. 4a. P-values for enrichment were 691 

estimated from the 95% confidence intervals returned by TORUS and were adjusted for multiple 692 

testing across all traits/cell-types using the Benjamini-Hochberg approach. 693 

 694 

Fine-mapping causal variants in AF-associated loci. We start with a general description of 695 

statistical fine-mapping analysis. We assume the trait of interest, 𝑌, is related to the genotypes of 696 

all variants in a locus by a linear model. Let 𝑋! be the genotype of the 𝑗-th variant, we have: 𝑌 =697 

∑ 𝑋! 	𝛽!! 	+ 𝜖, where 𝛽! is the effect size of the 𝑗-th variant. Because causal variants in a locus are 698 

generally “sparse”, it is often assumed that most 𝛽!’s would be zero.  It is easy to see that, under 699 

this model, even if a single variant has 𝛽! ≠ 0, other variants in LD with this variant would appear 700 

associated with the trait in the standard single-variant association analysis.  But in the joint 701 

regression model here, once we choose the correct causal variant(s), conditioned on them, the non-702 

causal variants in LD would no longer be associated with the trait. The goal of fine-mapping is 703 

then to select as few variants with 𝛽! ≠ 0 as possible to explain all associations in the locus. This 704 

“variable selection” step is often accomplished using a Bayesian spike-and-slab prior, which 705 

assumes that 𝛽! follows a mixture distribution of point mass at 0, and a normal distribution. The 706 

mixture proportion of the point mass is typically very large (close to 1), ensuring that at most a 707 

few variants would have non-zero effects. Inference of this model is computationally difficult. We 708 

used SuSiE in our analysis 38. SuSiE uses an efficient variational Bayes procedure, and generally 709 

outperforms other fine-mapping tools. The main output of SuSiE is the posterior probability that 710 

𝛽! ≠ 0, denoted as Posterior Inclusion Probability (PIP).  711 

 712 
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To run SuSiE on our GWAS summary statistics, we first partitioned the genotype into LD blocks 713 

using LDetect37,38. Then, we ran the susie_rss() function on each LD block. The input of this 714 

function includes GWAS z-scores and the LD matrix for the SNPs in a block. The GWAS 715 

summary statistics were available publicly. For the LD matrix, we used out-of-sample genotype 716 

information from 1000 Genome Project91. We ran SuSiE with L = 1, which allows a single causal 717 

signal for each LD block and is robust to mismatching LD patterns. We fine-mapped a total of 122 718 

LD blocks in the AF GWAS, each containing at least 1 SNP at genome-wide significance (P < 5 719 

x 10-8).  720 

 721 

To incorporate functional information of variants in fine-mapping, we allowed SNPs to have 722 

different prior probabilities in SuSiE. Specifically, each SNP has a different prior distribution of 723 

𝛽!, with the prior probability that 𝛽! ≠ 0, denoted as 𝜋!, dependent on the functional information 724 

of that SNP. These prior probabilities are estimated using TORUS21. Briefly, TORUS assumes that  725 

𝜋! is related to the annotations of the SNP through a logistic regression model. These annotations 726 

may include, for example, whether a SNP is located in an OCR in CMs, or in an evolutionarily 727 

conserved region. The parameter of an annotation in the model encodes the extent to which causal 728 

variants are enriched in this annotation. TORUS uses the entire GWAS data of all variants in the 729 

genome to estimate these parameters. We included the following annotations in TORUS: CM 730 

specific OCRs, CM shared OCRs, CM non-DA OCRs, non-CM OCRs, UCSC conserved, coding, 731 

or finemapped eQTLs.  732 

 733 
Annotating putative AF causal variants with additional functional data. Fetal DHS and heart 734 

H3K27ac data were obtained from ENCODE. PC-HiC interactions were obtained from an earlier 735 

study conducted in iPSC derived CMs42. Only interactions found in at least 2 out of 3 replicates 736 

were included. Motif analysis was performed using R motifbreak package92 . Only “strong” 737 

effects on motif scores, according to the package, were considered.  738 

 739 

Assessing regulatory effects of candidate variants by Luciferase assay. Candidate regulatory 740 

elements were designed from CM-specific accessibility in hg38 and synthesized by IDT, with 741 

either the reference allele or SNP allele(s). Sequence was verified and then cloned into the 742 

pGL4.23 enhancer luciferase response vector with a minimal promoter. HL-1 cardiomyocytes 743 
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were co-transfected with luciferase response vector and a pRL control using Lipofectamine 3000, 744 

cultured for 48 hr after transfection, then lysed and assayed using the Dual-Luciferase Reporter 745 

Assay system (Promega). For each construct reporter gene activity was assayed in 5 replicates.  746 

 747 

Gene mapping procedure with Mapgen. We used the posterior inclusion probabilities (PIPs) 748 

generated by SuSiE to calculate a gene-level PIP, reflecting the probability that a gene is a risk 749 

gene. We assume there is a single causal gene per disease associated locus. Let Zg be an indicator 750 

variable describing whether gene g is causal (Zg = 1) or not (Zg = 0) for the trait. Assuming a single 751 

causal SNP per locus, the probability that the gene is causal, which is denoted as “gene PIP”, can 752 

be then related to the probabilities of SNPs being causal variants: 753 

𝑃(𝑍" = 1|	𝐷) 	= 	4 𝑃(𝑍" = 1|𝛾# = 1)𝑃(𝛾# = 1|𝐷),
#

 754 

where 𝛾#	is the indicator variable for whether SNP i is causal or not, and D is the GWAS summary 755 

statistics. The term 𝑃(𝑍" = 1|𝛾# = 1) is the probability that g is the causal gene if the causal SNP 756 

is SNP i, and the term 𝑃(𝛾# = 1|𝐷) is simply the PIP of SNP i, or PIPi. So the gene PIP of a gene 757 

is a weighted sum of PIPs of all SNPs, weighted by how much that gene is supported by each SNP 758 

(see below). Since the PIPs of all SNPs in a block sum to 1, the gene PIP has an upper-bound of 759 

1. In the rare cases where a gene spans two nearby blocks - e.g. when a gene has large introns, the 760 

gene PIP may exceed 1, which can be interpreted as the expected number of causal variants 761 

targeting the gene g.  762 

    To calculate the term 𝑃(𝑍" = 1|𝛾# = 1), we consider the location of the SNP i with relation to 763 

the gene g, as well as functional genomic data linking SNP i with gene g. These data were used to 764 

assign the weights, denoted as 𝑤#", between SNP i and gene g, reflecting how likely the SNP i 765 

affects gene g. For example, if a SNP is inside an exon of a gene, then the SNP-gene will have 766 

weight 1. We note that 𝑤#" and 𝑃(𝑍" = 1|𝛾# = 1)	have different semantics: it is possible that a 767 

SNP affects multiple genes with weights all equal to 1, but there is only a single causal gene 768 

supported by any SNP. In other words, for a causal SNP i, the conditional probabilities 𝑃(𝑍" =769 

1|𝛾# = 1)		should sum to 1 across all nearby genes g. So we need to normalize 𝑤#" with: 770 

𝑃(𝛾# = 1) = 	
𝑤#"

∑ 𝑤#""
	771 

	772 
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To assign the weight terms, 𝑤#", we follow these four steps capturing several scenarios where a 773 

SNP may affect a gene: 1) If a SNP is in an exon or active promoter (promoter overlapping with 774 

OCR) of a gene, we assign the SNP to that gene with weight 𝑤#" = 1. 2) If a SNP can be linked 775 

to a gene’s promoter via “enhancer loops”, we assign the linked gene with weight 𝑤#" = 1. Here, 776 

"enhancer loops" are defined based on Activity-By-Contact (ABC) scores (constructed from heart 777 

ventricle data with ABC scores >= 0.015)39 and promoter-capture HiC data (from iPSC-CMs)42. 778 

Considering the fact that Hi-C and PC-HiC may miss contacts between close regions due to 779 

technical reasons, we also consider a SNP in OCR within 20 kb of an active promoter as an 780 

“enhancer loop”. 3) If a SNP is in a UTR but not in OCRs, suggesting that the SNP likely regulates 781 

the containing gene through RNA processing mechanisms, e.g. RNA stability or alternative 782 

polyadenylation, we will assign the SNP to the UTR-containing gene with weight 𝑤#" = 1.  4) If 783 

a SNP is not linked to any gene via the criteria above, we use a distance-based weighting to assign 784 

it to all genes within 1Mb. The weights follow an exponential decay function as below, where 785 

𝑑#"is the SNP-gene distance: 786 

𝑤#" = 𝑒%&!"/(	⨉*+# .  787 

The parameter of this weight function, 50 kb, was chosen based on the fact that most enhancers, 788 

estimated to be 84% using CRISPR deletion experiments93, are located within 100 kb of the target 789 

promoters. Using a weight of 50 kb here would lead to 87% of weights within 100 kb, with a 790 

simple area-under-curve calculation of the weight function above.  791 

    At any locus, having PIPs for all the genes in the locus allows us to define the “credible gene 792 

set” of the locus, much like the use of the term for SNPs38. Simply speaking, the credible set at the 793 

80% level means the minimum set of genes in the locus whose sum of PIPs is greater than or equal 794 

to 80%. One complication is that some of the genes in the locus may span another nearby locus, 795 

as described above. In this case, while the final reported gene PIP is computed from both loci, we 796 

only use the PIP of the gene from the locus of interest to define the credible gene set of that locus.   797 

 798 

Benchmarking performance of different methods for risk gene identification. We compared 799 

the accuracy of Mapgen (gene PIP >= 0.8), and several other commonly used methods that 800 

nominate risk genes from GWAS (see below). Given that we do not have a gold standard list of 801 

known AF genes, we used a set of Gene Ontology (GO) terms that have been associated with AF 802 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2023. ; https://doi.org/10.1101/2022.02.02.22270312doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22270312
http://creativecommons.org/licenses/by-nc-nd/4.0/


genetics (using DEPICT method) from an earlier study (Nielsen et al.5, Supplementary Table 7). 803 

We used FDR < 5% and required three or more genes in a gene set, to select 173 GO terms. We 804 

call a candidate gene “plausible”, if the gene is annotated with any of those GO terms. Then we 805 

compared the precision of the methods, calculated as the number of plausible genes divided by the 806 

total number of nominated genes.  807 

 808 

We included the following methods in the comparison: (1) Nearest gene to the top GWAS SNP 809 

(based on distance to gene TSS). (2) eQTL, linking gene to the top GWAS SNP in each locus using 810 

GTEx eQTL from the left ventricle (LV). (3) Activity-by-Contact (ABC) scores, linking promoters 811 

with enhancers based on chromatin-looping data. Following Nasser et al 39,  we used the ABC-812 

max approach, linking each top SNP to the gene with the maximum ABC score. (4) Multi-marker 813 

Analysis of GenoMic Annotation (MAGMA), gene association test method27. We ran MAGMA 814 

gene analysis and identified genes with Bonferroni adjusted p-value < 0.05. (5) In addition to the 815 

above methods, we also included the nominated genes (gene score >= 11) from van Ouwerkerk et 816 

al.13.  817 

 818 

Gene interaction network analysis. We used the STRING database (STRING 11.5)94 to 819 

construct gene network. The analysis was done using Cytoscape 3.8.295. The input genes are 820 

those at PIP >= 0.5 from our gene-mapping analysis. To create the gene network (Fig. 5h), we use 821 

all default settings except that we use the recommended threshold for high-confidence interactions 822 

(0.700) for interaction scores. Singletons, i.e., genes not having any interactions with other ones, 823 

were not shown from the output network. We also used STRING to run functional enrichment 824 

analysis based on sources including Gene Ontology96,97, Reactome Pathways98 and KEGG99.  825 

 826 

eQTL tissue sharing analysis. We started with the rationale of our eQTL tissue sharing analysis. 827 

For simplicity, consider eQTLs found in one tissue (heart in our case), and we study the sharing 828 

of these eQTLs in a second tissue. Let p denote the probability of eQTLs in the first tissue being 829 

shared in the second tissue. Assuming we have several functional categories of eQTLs, e.g. 830 

regulatory elements specific in a cell type, or shared across cell types, we can then break down p 831 

into several categories with the simple relation: 832 

𝑝	 = ∑ 𝑝,𝑤,, 	, 833 
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where c denotes a category, pc is the probability of tissue sharing in eQTLs from category c, and 834 

wc is the proportion of eQTLs in category c. We hypothesize that different eQTLs categories have 835 

distinct molecular mechanisms of modulating transcript levels, and thus different tissue sharing 836 

patterns. This simple analysis thus suggests that both wc and pc are important for our understanding 837 

of tissue sharing. For instance, some categories may have a highly tissue-specific pattern (low pc), 838 

but may constitute a small proportion of all eQTLs (low wc), thus these categories would have 839 

limited contribution to the overall level of tissue sharing among eQTLs.  840 

 841 

Summary statistics of GTEx heart eQTLs. Summary statistics of eQTLs from the left ventricle 842 

were obtained from the GTEX v8 release100. We also obtained fine-mapping results using DAP-843 

G21. The variants with posterior inclusion probability (PIP) greater than 0.8 were kept for 844 

downstream analyses. We refer to these putative causal variants as eQTLs henceforth. The total 845 

number of eQTL-gene pairs that passed the threshold is 1,216. Tissue sharing data on the same 846 

eQTLs were also obtained from GTEx100. These data provide information of whether these heart 847 

eQTLs are also associated with gene expression in the other tissues in GTEx.  848 

 849 

Defining functional categories of heart eQTLs. eQTLs were intersected with genomic features. To 850 

obtain a set of disjoint genomic features, we used a combination of the union peak set and generic 851 

annotations. For generic annotations, the longest transcript was chosen for each gene body, and its 852 

corresponding exons, UTRs, and introns were obtained for all protein coding genes. We partitioned 853 

the union peak set into cell-type-specific categories based on the differential accessibility (DA) 854 

analysis, as well as the shared categories defined using the quantile approach, as described earlier. 855 

We note that DA analysis does not guarantee disjoint sets of features. Indeed, we find that cell 856 

types such as lymphoid and myeloid share about 6% of their DA peaks, while CMs share at most 857 

1% with the other cell-types. To make these cell-type DA sets disjoint, we moved any DA peaks 858 

that occurred in multiple cell types from DA analysis, to the “Shared 2-3” and “Shared 4+” 859 

categories (see “Defining and classifying OCRs”) depending on the number of cell types in which 860 

it occurred. A small percentage of peaks (< 1%) were affected by this step. The eQTLs in OCRs 861 

that overlap with exons or UTRs, or eQTLs in non-DA OCRs, are ambiguous to assign, so they 862 

were filtered from our analysis. The eQTLs in intronic OCRs were assigned based on the OCR 863 
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categories. Those eQTLs not intersecting with any functional category were designated in an 864 

“unassigned” category.  865 

 866 

Estimating extent of tissue sharing in different categories of heart eQTLs. GTEx has performed 867 

eQTL mapping jointly across all tissues. Using these results, we call a SNP an eQTL in a given 868 

tissue, if it passes the local false sign rate (LFSR) threshold of 1%. For any eQTL, we can thus 869 

determine the number of tissues where it is active.   870 

 871 

Estimating eQTL enrichment in functional categories. All the fine-mapped heart eQTLs are 872 

assigned to our set of categories. The proportion of eQTLs in each category is then compared with 873 

the expected proportion by chance to obtain enrichment reported in Fig. 6d and 6e. We used 874 

SNPsnap101 to create a set of random control SNPs that match our eQTLs in LD and minor allele 875 

frequency. The LD data is obtained from the European population genotypes from 1000 Genomes. 876 

We generated 1000 random SNPs which is roughly how many high-confidence eQTLs were used. 877 

The proportion of random SNPs in each category is then used as our estimated proportion by 878 

chance.  879 

 880 
Data availability 881 
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 888 
 889 
 890 
Acknowledgements: 891 
This work was funded by National Institutes of Health (NIH) grants, R01MH110531 and 892 
R01HG010773 (to X.H.), R01HL163523 (to X.H., S.P., and I.P.M.), and R21 AI144417-02 (to 893 
O.B). This project has been made possible in part by grant number CZF2019-002431 from the 894 
Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. 895 
This work was completed in part with resources provided by the University of Chicago Research 896 
Computing Center. We thank Xuanyao Liu for helpful comments on the manuscript.  897 
  898 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2023. ; https://doi.org/10.1101/2022.02.02.22270312doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22270312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 899 
Main figures: 900 
 901 

 902 

 903 
Fig. 1 | Overview of our experimental and computational framework. Left: SnRNA-seq and 904 
scATAC-seq profiling to cluster cells and obtain open chromatin regions (OCRs) in each cell type. 905 
Middle: Using OCRs and GWAS summary statistics to assess variant enrichment in cell-type-906 
resolved OCRs. The enrichment results then provide prior for Bayesian statistical fine-mapping. 907 
The resulting Posterior Inclusion Probabilities (PIPs) represent the probabilities of variants being 908 
causal. The likely cell types through which the causal signals at each locus act can be identified by 909 
considering cell type information of likely causal variants. We may not always be able to identify 910 
a single cell type per locus, so we assign probabilities to cell types. Right: Computational gene-911 
mapping using PIPs from SNP fine-mapping and SNP-to-gene links to obtain gene level PIPs. 912 
Note that the PIP of a SNP is partitioned into nearby genes in a weighted fashion, with more likely 913 
target genes receiving higher weights (as indicated by thicker arrows). Prioritized genes can be 914 
further assessed through external evidence such as gene networks and expression.  915 
 916 
 917 
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 918 
Fig. 2 | Mapping cell types in the human heart. a, UMAP projection of individual cells from 919 
snRNA-seq and scATAC-seq colored by cell types. Stacked barplots on the right represent the 920 
proportions of cell-types from each of the three donors. b, UCSC genome browser track plots of 921 
chromatin accessibility at selected marker genes across cell types. The bottom part shows the gene 922 
track (RefSeq annotation). Shown are two marker genes, TNNT2: cardiomyocyte marker; DCN: 923 
fibroblast marker. c, Stacked violin plots of marker gene expression (log-normalized expression 924 
values) in each cell type.  925 
  926 
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 927 
Fig. 3 | Discovery of OCRs and transcriptional regulators in the human heart. a, Row-928 
normalized accessibility of OCRs across all cell types. b, Number of cell-type-specific and shared 929 
OCRs and their genomic distributions. c, Density plot of the log10 distance to nearest gene for all 930 
cell-type-specific and shared OCRs. Colors of the lines for cell-type-specific OCRs follow the 931 
same convention as in Figure 2a. Gray and black lines represent shared 2-3 and shared 4 OCRs. d, 932 
Proportions of cell-type specific OCRs that overlap with DHS (upper panel). Bar graph (lower 933 
panel) shows the proportions of cell-type specific OCRs that overlap with H3K27ac regions (LV 934 
= left ventricle, RV = right ventricle). Smooth muscle cells and neuronal cells are not shown due 935 
to the small numbers of peaks in these cell types.  e, Enrichment of TF motifs in the OCRs specific 936 
to each cell type. Shown are 76 TFs with FDR < 1% from motif enrichment analysis in at least one 937 
cell-type, and correlation between motif enrichment and gene activity > 0.5. f, Gene scores (from 938 
ArchR) and motif accessibility scores calculated with chromVar in OCRs for MEF2A (top) and 939 
TBX5 (bottom) across all cells. Abbreviations for cell-types: CM = Cardiomyocyte, S.M = Smooth 940 
Muscle, Peri = Pericyte, Endo = Endothelial, Fibro = Fibroblast, Neuro = Neuronal, Mye = 941 
Myeloid, Lymph = Lymphoid.  942 
 943 
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 944 
Fig. 4 | Statistical fine-mapping of loci associated with the AF risk. a, log2 fold enrichment 945 
(from the tool TORUS) of risk variants of various traits in cell-type-specific OCRs. b, 946 
Comparison of AF fine-mapping results under the informative prior using OCRs (Y-axis) vs. the 947 
results under the uniform prior (X-axis). Each dot is a SNP, and color represents the annotation 948 
of SNPs. Dashed line has a slope of 1. c, Summary of PIPs of variants. d, Summary of credible 949 
set sizes from fine-mapping of AF. e, Trackplot at the HCN4 locus and the finemapped variant 950 
rs7172038 (PIP = 0.99). The top two tracks represent the -log10 p-value of SNPs from AF GWAS 951 
(with color representing LD with the lead SNP) and their PIPs from SNP-level fine-mapping. 952 
Middle three tracks represent cell-type aggregated ATAC-seq signals (CM: red, endothelial: 953 
green; fibroblast: purple), followed by heart H3K27ac and fetal DHS peak calls. The bottom 954 
track represents ABC scores from the heart ventricle. Abbreviations for cell-types: CM = 955 
Cardiomyocyte, Endo = Endothelial, Fibro = Fibroblast. f, Proportions of summed PIPs in 956 
disjoint functional annotation categories among all the loci. g, Proportion of summed PIPs in 957 
disjoint functional annotation categories at each individual locus. h, Proportion of summed PIPs 958 
into cell type-specific OCRs at each individual locus, for loci with summed PIPs in OCR >= 959 
0.25. Highlighted are two loci with high proportions in non-CM cells: fibroblast, lymphoid 960 
specific OCRs. i, Chromatin accessibility and additional functional genomic annotations of all 961 
SNPs with PIP >= 50%. j, Reporter activities in cardiac cells (HL-1)  of regions containing 962 
selected SNPs, with both reference and alternative alleles. Data are from 5 replicates for each 963 
construct. P-values were calculated using a paired two-sided t-test. 964 
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 965 
Fig. 5 | Mapping putative risk genes of AF. a. Schematic demonstrating the calculation of gene-966 
level PIPs. g1 and g2 represent genes, and s1, s2 represent SNPs. Vertical bars show the PIPs of the 967 
SNPs from fine-mapping. Dashed arrows show the linking of SNPs to genes. ws,g represents the 968 
weight of a gene (g) with respect to a SNP (S). The PIP of a gene is the weighted sum of PIPs of 969 
SNPs that are linked to that gene.  The weight of a SNP-gene pair is set according to the locations 970 
of the SNP relative to the gene. See Methods for details. b, Manhattan plot of gene PIPs. Genes at 971 
PIP >= 0.8 at labeled. c, Summary of the sizes of 80% credible gene sets from gene mapping. d, 972 
GJA5 locus: similar to Fig. 4e, except that the links here represent interactions identified from 973 
promoter-capture HiC data in iPSC-derived CMs. Vertical bars show the locations of the four fine-974 
mapped SNPs supporting GJA5 as the risk gene in this locus. The red links in the PC-HiC track 975 
show interactions linked to these four fine-mapped SNPs. e, The performance of Mapgen and other 976 
methods in nominating AF risk genes. Precision is measured as the proportion of likely risk genes, 977 
those annotated with AF-related GO terms, in the set of nominated genes by each method. See 978 
Methods for the details of each method. f, CALU locus, tracks shown are similar to the panel d. 979 
The vertical bar shows the location of the top fine-mapped SNP. Abbreviations for cell-types: CM 980 
= Cardiomyocyte, Endo = Endothelial, Fibro = Fibroblast.  981 
 982 
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 983 
 984 

 985 
 986 
Fig. 6 | Functional support of putative AF risk genes. a, Log-normalized CM expression of 987 
genes at PIP >= 80% vs. other genes from the AF loci. b, Percentage of Mendelian disease genes 988 
from OMIM in each gene PIP bin. c, Top 5 Biological Processes (BP) and Molecular Functions 989 
(MF) GO terms from gene-set enrichment analysis of the 46 genes with PIP >= 80%. d, Gene 990 
interaction network of candidate AF genes (PIP >= 0.5) using STRING. Only genes with 991 
interactions are shown. Interactions are defined using a confidence threshold of 0.7 by STRING. 992 
Node sizes represent gene PIPs. Colors of genes indicate their shared molecular functions.  993 
  994 
  995 
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 996 

 997 

Fig. 7 | Tissue-sharing patterns of heart (LV) eQTLs from GTEx. a, Number of tissues where 998 
LV-eQTLs are detected at local false sign rate (LFSR) < 1%. b, Violin plot showing the number 999 
of tissues in which a specific eQTL is detected. Each row represents a different class of eQTLs, 1000 
assigned based on their overlap with OCRs categories and other genomic locations. Unassigned: 1001 
eQTLs that cannot be assigned to any functional class. c, Proportion of LV-eQTLs located in 1002 
OCRs of selected cell types (Cardiomyocytes, Endothelial cells, Fibroblast, and Immune cells) 1003 
that were also detected as eQTLs in a second tissue. d, Proportion of LV-eQTLs (n = 1216) in 1004 
each functional class. For comparison, the proportions of random SNPs in all the classes are also 1005 
shown. The numbers near the bars represent the fold enrichment in heart eQTLs compared to 1006 
random SNPs. e, Enrichment of GTEx heart eQTLs in OCRs vary with the number of cell types 1007 
where the OCRs are active. Lower panel shows the proportion of eQTLs (light blue) and control 1008 
SNPs (dark blue, chosen to match eQTLs in LD and MAF) overlapping OCRs. The OCRs are 1009 
divided into 4 categories, based on the degree of sharing across cell types in heart: 1= not shared, 1010 
4+= shared in >=4 cell types. The upper panel shows the enrichment of eQTLs in each OCR 1011 
class compared to expectation based on control SNPs. Abbreviations for cell-types: CM = 1012 
Cardiomyocyte, S.M = Smooth Muscle, Peri = Pericyte, Endo = Endothelial, Fibro = Fibroblast, 1013 
Neuro = Neuronal, Mye = Myeloid, Lymph = Lymphoid.  1014 
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 1015 
Table 1 | Top prioritized genes (gene PIP >= 0.95).  1016 
 1017 
 1018 

Gene Gene 
PIP 

Supporting 
SNPs 
  

SNP PIP Link 
Method* 

OMIM CM- 
specific 
expression 

Known 
AF risk 
gene 

Reference 

SYNPO2L 1.113 rs60632610 0.971 
 

exon   ✔ [20215401, 
33768119] 

HCN4 1.095 rs7172038 0.989 ABC ✔  ✔ [29987112] 

ASAH1 1.061 rs7508 1 exon  ✔  [32015399] 

ATXN1 1.000 rs59430691 0.809 PC-HiC    [21475249, 
22306179] 

ERBB4 1.000 rs6738011 0.12 
 

distance  ✔  [19632177] 

KCNN2 1.000 rs337705 
rs337708 

0.528 
0.113 

distance 
distance 

  ✔ [19139040] 

RPL3L 1.000 rs140185678 
  

1 
  

exon    [32870709, 
32514796] 

TUBA8 1.000 rs464901 
rs361834 

0.886 
0.114 

nearby OCR 
nearby OCR 

   [31398994] 

EPHA3 0.999 rs35124509 
rs6771054 
rs2117137 

0.345 
0.1720.117 

exons 
distance 
distance 

   [17046737] 

THRB 0.999 rs73041705 
rs73032363 
rs9841040 
rs1865712 

0.177 
0.139 
0.130 
0.119 

distance 
distance 
distance 
distance 

 ✔  [28740583] 

ETV1 0.998 rs55734480 
rs12154315 
rs12112152 

0.403 
0.338 
0.218 

distance 
distance 
distance 

  ✔ [27775552, 
29930145] 

BEND5 0.997 rs11590635 0.973 distance     

PITX2 0.997 rs1906615 
rs7689774 

0.798 
0.15 

distance 
distance 

  ✔ [28217939, 
29367545, 
32309338] 

TBX5 0.997 rs7312625 
rs883079 
rs7955405 

0.511 
0.194 
0.126 

distance 
exon 
PC-HiC 

 ✔ ✔ [28057264] 
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PKP2 0.992 rs12809354 
rs2045172  

0.771 
0.211  

PC-HiC 
PC-HiC 

 ✔  [28740174] 

CAMK2D 0.991 rs11938486 
rs17446418 

0.649 
0.17 

distance 
PC-HiC 

 ✔ ✔ [24030498] 

NKX2-5 0.989 rs6882776 
rs6891790 
rs2277923 
rs10071514 

0.37 
0.318 
0.157 
0.133 

active 
promoter 
ABC/nearby 
OCR 
exon 
ABC/nearby 
OCR 

✔   [26805889] 

GYPC 
 

0.985 
 

rs28387148 
rs28387129 
rs28387153 
rs28387149 

0.191 
0.153 
0.144 
0.103 

distance 
nearby OCR 
distance 
distance 

    

LRIG1 0.982 rs34080181 
rs900171 
rs12633819 

0.329 
0.119 
0.106 

distance 
exon 
distance 

   [23558895, 
19632177] 

ZEB2 0.979 rs10496971 0.896 distance    [33398012] 

NR3C1 0.975 rs72804738 0.208 distance    [23595884] 

MYO18B 0.974 
 

rs133902 
rs133885 

0.685 
0.185 

distance 
exon 

 ✔  [27858739] 

DPF3 
 

0.972 
 

rs3814866 
rs3814864 

0.744 
0.176 

active 
promoter 
active 
promoter 

 ✔  ✔ [26582913, 
30240284]  

WIPF1 0.971 rs35215597 0.874 Nearby 
OCR 

    

 1019 
 1020 
* In the Supporting SNPs column, only SNPs that contribute a fractional PIP (SNP PIP multiplied by the weight of 1021 
the SNP to that gene) of 0.1 or more are shown. EFNA5 (gene PIP =1) is not included because it does not have any 1022 
SNPs with fractional PIP >= 0.1. 1023 
* Nearby OCR is defined as OCR within 20 kb of active promoter of the gene. 1024 
* Reference column shows the PMIDs of the relevant papers supporting the connections of the genes to AF or heart 1025 
physiology. 1026 
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