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SUPPLEMENTARY METHODS 
 
1. Model structure and equations 
We created an age-stratified compartmental differential equation model of tuberculosis in India, including dimensions 
for age, tuberculosis natural history, vaccination, and access-to-care. The age and access-to-care structures are 
identical to those included in Clark et al.1 Minor modifications from the Clark et al. natural history structure are 
described below. The vaccination structure is in section 4.3. 
 
1.1 Natural history model structure 
A natural history structure with eight compartments in Figure S1.1 was created by adapting features of previous 
models and has been described previously.1 The latency structure in this model demonstrates a progressive loss of 
ability to reactivate, with the reactivation rate in the Latent-Fast compartment greater than in Latent-Slow and greater 
still than in Latent-Zero, where we assume the rate of reactivation is 0. We do not explicitly have a self-clearance 
compartment. We assume that those in Latent-Fast can only fast progress to subclinical disease or continue to remain 
latent and transition to Latent-Slow. There is no direct transition between Latent-Fast and Latent-Zero.  

 

 
 

Figure S1.1 Tuberculosis natural history model structure 
 
Abbreviations: UN = Uninfected-Naive; LF = Latent-Fast; LS = Latent-Slow; L0 = Latent-Zero, DS = Subclinical 
Disease; DC = Clinical Disease; T = On-Treatment; R = Recovered. Subscript j represents parameters that vary by 
age, and subscript k represents parameters that vary over time. 
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1.2 Natural history model equations 
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2.  Natural history 
 
2.1 Natural history parameter values and data sources 
 
Parameters used in the natural history model structure are provided in Table S2.1 below, along with their definitions, sources, and information on whether the 
parameter is fixed or varied (as well as whether they are varied by age or time) during calibration. Further details about how the age varying parameters are 
implemented are provided in section 2.2, and further details on parameters related to treatment are provided in section 2.3. The parameter ranges provided for the 
tuberculosis natural history parameters are priors fitted during calibration in a Bayesian analysis. We assume that all values within the prior range are equally likely. 
The prior ranges were pre-specified based on literature review and were reviewed as new data became available. 
 
 
Table S2.1 India national model parameter values and sources 
 

Description Units Symbol Prior Fixed or Varying 
During Calibration Age Varying Time Varying Source 

Births and deaths (excluding on-treatment mortality) 

Birth rate Per year  
United Nations World Population 

Prospects population estimates and 
projections 

Fixed No Yes 2 

Background mortality 
rate Per year  

Calculated in the model from United 
Nations population estimates and 

projections 
Fixed Yes, age specific mortality rates 

from demographic dataset Yes 2 

Mortality rate for 
clinical tuberculosis 

disease 

Per person 
per year  (0–0.178) Varying Yes, value for children is 

greater than value for adults No 3 

Mortality rate post-
tuberculosis disease 

Per person 
per year   Fixed relationship Yes because  varies Yes because  

varies 
4 

      Natural History 

Force of infection Per year  Fitted Fixed Equation Yes, age specific contact rates5 No Calculated 

Probability of 
transmission per 

infectious contact 
-  (0–0.0068) Varying No No Assumed 
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Fraction of total 
tuberculosis that is 

extrapulmonary 
-  0.222 Fixed No No 6,7  

Infectiousness of 
subclinical relative to 
clinical tuberculosis 

-  0.83  Fixed No No 8 

Rate of fast progression 
to disease, by age 

Per person per 
year  (0.0696–0.111) Varying Yes; Retain if value for children 

 is less than value for adults. No 9 

Rate from LF to LS Per person per 
year  0.5 Fixed No No Defined 

Rate of reactivation 
from LS, by age 

Per person 
per year  (0.000135–0.00113)  Varying Yes; Retain if value for children 

is less than value for adults. No 9 

Rate from LS to L0 Per person 
per year  (0.0254–0.0467) Fixed No No 9 

Rate of progression 
from DS to DC 

Per person per 
year  (0–12)  Varying No No Assumed 

Rate of natural cure 
from DC and DS 

Per person per 
year  (0.10–0.25) Varying No No 10,11 

Rate of relapse from R, 
by age 

Per person per 
year  (0.0001–0.07) Varying Yes; Retain if value for children 

is less than value for adults. No 12–14 

        Protection Parameters 

Protection from 
reinfection 

 LS, LF, L0, R 
-  (0.60–0.85) Varying No No 10,11,15–17 

Access-to-care  
parameter -  (0–1) Varying No No Assumed 
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2.2 Operationalising age varying parameters  
 
We assume that aspects of tuberculosis natural history and mortality vary by age. This is implemented by stratifying certain natural history parameters by age and 
applying age-specific prior ranges and relative constraints during calibration.18 The following table describes the method used to operationalise the age varying 
differences in parameters between adults, defined as all ages greater than and equal to 15, and children, defined as all ages less than 15. For the rate per year of 
reactivation, relapse, and fast progression to tuberculosis disease, we assume that the rate for children is less than that for adults. For mortality rates, we assume 
the opposite: the rate for children is higher than that for adults. 
 

Table S2.2 How age varying parameters are operationalized 
 

Parameter Range Age Varying Description Age Scaling Parameter 
Adults  
( ) 

Children  
( ) 

 
Rate per year of fast 

progression 
 

Retain if value for children is less 
than value for adults 

Sample   
from  

Sample  from 
 

 

 
Rate per year of reactivation  

Retain if value for children is less 
than value for adults 

Sample   
from  

Sample  from 
   

 
Rate per year of relapse  

Retain if value for children is less 
than value for adults 

Sample   
from  

Sample  from  
  

 
Clinical TB mortality rate 

per year 
 

Retain if value for children is 
greater than value for adults 

Sample   
from   

Sample   from  
 

 
On-treatment mortality rate 

per year 
 

Retain if value for children is 
greater than value for adults 

Sample   
from   

Sample  from 
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2.3 Treatment initiation and outcomes 
 
Steps for calculating treatment initiation, treatment completion, non-completion, and mortality rates are described in 
the Supplementary Material for Clark et. al.1 We assume the SFR is the ratio between treatment completions to the 
sum of treatment completions and non-completions. In India, . The data used to calculate the on-
treatment outcomes was obtained from the WHO. However, as the private sector accounts for a substantial portion of 
treatments in India, and not all of the treatments conducted in the private sector are reported, we make adjustments to 
the on-treatment completion and non-completion fractions from Table S2.3 as described below and in Table S2.4. 
 
 
Table S2.3      Calculating treatment outcome parameter values for adults and children 
  

Parameter Adults Children 

 
On-treatment mortality fraction  Sample  from  

 
On-treatment completion fraction   

 
On-treatment non-completion fraction   

 
 
We assume that the total number of treatments is composed of the treatments that are reported and the treatments that 
are not reported. We assume that the on-treatment mortality fraction is the same in the public and private sector, but 
want to adjust the treatment completion and non-completion rates to account for differences between those reported 
and those not reported as in Table S2.4. 
 
 
Table S2.4 Calculation of treatment outcomes for India by year 
 

Description Symbol 
 

≤2012 2013 2014 2015 2016 2017 2018 2019 ≥2020 

Fraction of total 
treatments reported  0.60 0.63 0.68 0.67 0.73 0.77 0.80 0.83 0.87 

On-treatment 
mortality rate  

 
 

Sample  from  , then   

On-treatment 
completion rate    

On-treatment non-
completion rate    

 
 
We assume that 60% of the total treatment occurs in the public sector and the remaining 40% occurs in the private 
sector. We assume that all treatments not reported are from the private sector, that the treatment completion rate in the 
private sector is 40%, and that there is no reporting bias (in that they were equally likely to not report treatment 
completions or non-completions or deaths). Before 2012, only the treatment conducted in the public sector was 
reported, but since then, treatment in the private sector has begun to be reported.19  
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3. Model simulation and calibration 
 
3.1     Model simulation 
 
We specified a system of ordinary differential equations defining the derivatives with respect to time of a set of state 
variables, to simulate the country-specific tuberculosis epidemic between 1900 and 2050. We initialised the simulation 
by distributing the population between the eight tuberculosis natural history states using a fitted parameter representing 
the proportion of the population uninfected at the start of the simulation. For each year of the simulation (1900–2050), 
our models are designed to exactly match the age and country-specific UN population estimates and projections. Forty 
percent of the population was assigned to the low access-to-care stratum and the remaining sixty percent of the 
population was assigned to the high access-to-care stratum.   
 
 
3.2     Model calibration 
  
For this India modelling analysis, we followed the same modelling approach as in Clark et al.1  
 
Broadly, this was as follows: 

1.  Construct a mechanistic model 
2.  Calibrate the model by identifying areas of the input parameter space where the output of the mechanistic 

model was consistent with the historical epidemiologic data 
3.  Use the calibrated model to simulate and predict future tuberculosis epidemiology and model new 

vaccines 
 

In the context of this analysis, step 1 was achieved by creating the compartment differential equation model as 
specified in Section 1. For step 2, we independently calibrated a model by identifying areas of the parameter space 
that made the output of the model match the corresponding calibration targets (Table S3.1 below). Further details on 
the sources for the calibration targets and any additional modifications are in the subsequent sections. 
 
The model was fitted to the calibration targets using history matching with emulation, a method that allows us to 
explore high-dimensional parameter spaces efficiently and robustly.20–23 History matching progresses as a series of 
iterations, called waves, where implausible areas of the parameter space, i.e., areas that are unable to give a match 
between the model output (e.g., the predicted incidence rate by the model) and the empirical data (e.g., the incidence 
rate calibration target from the WHO data), are found and discarded. In order to identify implausible parameter sets, 
emulators, which are statistical approximations of model outputs that are built using a modest number of model runs, 
are used. Emulators provide an estimate of the value of the model at any parameter set of interest, with the advantage 
that they are orders of magnitude faster than the model. 
  
History matching with emulation, implemented through the hmer package in R,24,25 considerably reduced the size of 
the parameter space to investigate. Rejection sampling was then performed on the reduced space to identify at least 
1000 parameter sets that matched all targets.  
  
If we were unable to find at least 1000 fully fitted parameter sets using history matching with emulation, we 
subsequently used an Approximate Bayesian Computation using Markov Chain Monte Carlo method (ABC-MCMC). 
ABC-MCMC was conducted using the easyABC package in R, modified by the Sebastian Funk, Gwenan Knight, and 
the Tuberculosis Modelling group at LSHTM for adaptive sampling and to accept seeded parameter values.26,27 We 
used parameter sets with the maximum number of targets fitted using history matching with emulation as starting 
seeds for multiple MCMC chains per country, with the ABC-MCMC algorithm continuously adapting using the last 
1000 points, a burn in of 1000 samples, and the noise factor set to 0.0001. 
  
Once we had obtained 1000 parameter sets that produced output consistent with the calibration targets, we used those 
parameter sets with the mechanistic model to simulate the future (step 3) for each country. 
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Table S3.1 India national model calibration targets 
 

Calibration Targets Year Age (years) Estimate Lower Upper 

Tuberculosis incidence rate 
(per 100,000 population/year) 

200028 All 289 149 473 

202028 

All 188 129 257 

0-14 91 56 126 

≥15 224 138 310 

202529 All 212 145 293 

Tuberculosis mortality rate 
(per 100,000 population/year) 

20006 All 67 57 79 

20206 All 37 34 40 

202529 All 36 33 39 

Tuberculosis case notification rate 
(per 100,000 population/year) 

20002,7 All 177 142 212 

20202,7 

All 136 109 163 

0-14 33 26 40 

≥15 173 138 208 

Active tuberculosis prevalence  
(per 100,000 population) 

201530,31 All 315 210 529 

202132 All 312 218 406 

202132 ≥15 394 276 512 

Tuberculosis infection  
prevalence proportion 202132 All 0.314 0.114 0.514 

Access-to-care tuberculosis  
prevalence ratio 202033 All 0.427 0.327 0.527 

Subclinical tuberculosis  
prevalence ratio 202034 All 0.504 0.361 0.797 

Proportion of incident tuberculosis  
cases having previously been treated 2020 All 0.191 0.139 0.241 

 
 
3.3 Incorporating the COVID-19 pandemic 
 
It will be a number of years before the full implications of disruptions to tuberculosis prevention and care during the 
COVID-19 pandemic are realised. The WHO provided estimates for the impact on the tuberculosis incidence and 
mortality rates between 2020–2025 relative to January 2020, shown in Figure S3.2. 29  
 
In order to ensure that the model is appropriately representing the future trends in incidence and mortality, we 
calibrated to the projected incidence and mortality for 2025, which is estimated as a 10% increase in both mortality 
and incidence in 2025 compared to January 2020. To implement this, we calculated a 10% increase to the incidence 
and mortality rates estimated by the WHO in 2019, shown in Table S3.2, and calibrated to both for 2025.    
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A–Impact on tuberculosis incidence rate 

 

B–Impact on tuberculosis mortality rate 

 
Figure S3.2 The estimated impact of the COVID-19 pandemic on the (A) tuberculosis incidence and (B) 

mortality rates from the WHO Global Tuberculosis Report 202129 
 
 
Table S3.2 Incidence and mortality rate targets for all ages for 2025 
 

Year Incidence rate  
(per 100,000) 

Mortality rate  
(per 100,000) 

2019  193  
(126–260) 

33  
(30–35) 

2025  
(10% increase from 2019) 

212  
(145–293) 

36 
(33–39) 
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3.4 Modifications to calibration targets 
 
3.4.1 Tuberculosis prevalence targets 
 
i. Adjusting the 2015 target bounds 
We obtained an estimate for the tuberculosis prevalence in 2015 from “Estimating tuberculosis incidence from primary 
survey data: a mathematical modelling approach” by Pandey et al 2017.30 In it, they estimate the prevalence of smear-
positive cases across all ages in India, as well as the proportion of cases that are smear-positive. The mean and 95% 
confidence intervals for the estimates of these are 159.38 (122.9–196.59) and 0.63 (0.43–0.93) respectively.30 Cited 
sources within the paper suggest that these quantities have been modelled as lognormal (smear-positive prevalence) 
and beta (smear-positive proportion) distributed.30 The total prevalence, therefore, can be determined as 
 

 
 
If we assume that the mean estimate for the proportion of cases that are smear-positive is accurate, then we simply 
quotient the smear-positive bounds by this value (0.63). This gives 
 

 
 
Since we have confidence intervals and a knowledge of the underlying distributions, we can attempt to determine the 
hyperparameters of the distributions. Once we have these, we can sample repeatedly from the quotient of the two 
distributions to get an estimate for its confidence interval. We sample from the numerator’s distribution, sample from 
the denominator’s distribution, and quotient them to represent a sample from the (unknown) prevalence distribution. 
Given enough samples, we can obtain a reasonable estimate of the confidence interval. Since the lognormal distribution 
has a closed-form, we can simply solve for the hyperparameters. 
  

 
 
The beta-distribution is less straightforward, but we can use maximum likelihood estimation to find feasible parameter 
values. Doing so gives  
 

 
 
Then we perform monte-carlo sampling to generate a representative sample from our quotient distribution, from which 
we obtain a 95% confidence interval.  
 

 
 
 
ii.  Adjusting for extrapulmonary tuberculosis 
In our model we are representing everyone with tuberculosis, which includes both pulmonary (PTB) and 
extrapulmonary tuberculosis (EPTB). EPTB is not infectious but is included in the WHO estimates of yearly incidence 
and mortality rates. The 2021 prevalence estimates from the National Tuberculosis Prevalence Survey did not adjust 
for EPTB in the estimate provided for adults, and neither did the 2015 study which estimated the tuberculosis 
prevalence from subnational surveys. Therefore, we want to adjust the PTB prevalence estimates and range by the 
amount of EPTB in order to estimate the total TB prevalence. To estimate the proportion of EPTB, we used the average 
of the proportion of incident extrapulmonary tuberculosis cases from 2013–2020 (Table S3.3).  
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Table S3.3 Number of incident tuberculosis cases by year in India 
 

Year New EPTB  
 cases Relapse EPTB cases Total incident 

EPTB cases Total incident cases Proportion incident 
EPTB cases  

2013 226,557 – 226,557 1,243,905 0.18 

2014 275,502 – 275,502 1,609,547 0.17 

2015 298,831 – 298,831 1,667,136 0.18 

2016 281,162 – 281,162 1,763,876 0.16 

2017 276,786 3,067 279,853 1,649,694 0.17 

2018 380,904 5,622 386,526 1,908,683 0.20 

2019 476051 3,862 479,913 2,162,323 0.22 

2020 471,000 4,034 475,034 1,629,301 0.29 

 
Abbreviations: EPTB = extrapulmonary tuberculosis 
 
From the National tuberculosis prevalence survey India 2019–2021, the prevalence of microbiologically confirmed 
pulmonary tuberculosis among population aged ≥ 15 years in India was estimated at 316 (290–342) [This adjusted 
prevalence was estimated using a robust standard errors model with imputation and inverse probability weighting].32 
Averaging the proportion of incident EPTB cases column in Table S3.3 and dividing the estimates and bounds on the 
pulmonary tuberculosis prevalence estimates by (1- average of proportion of incident EPTB cases) we obtain the 
following as the estimates of the tuberculosis prevalence per 100,000 population: 
 

 
 

  
 
 
iii. Adjusting the 2021 target bounds 
The National Tuberculosis Prevalence Survey India 2019–2021 reports estimates for the prevalence of all forms of 
tuberculosis among all age groups in India (312.0 [286.0–337.0] per 100,000 population) and the prevalence of 
microbiologically confirmed pulmonary tuberculosis among adults aged ≥ 15 years in India (316.0 [290.0–342.0] per 
100,000 population). As described in the previous section, we adjusted the estimate of the prevalence of pulmonary 
tuberculosis in adults for EPTB, giving a revised estimate for the prevalence of all forms of tuberculosis disease in 
adults of 393.6 (361.2–426.0). We subsequently increased the upper and lower bounds on the all age and adult targets 
by 30%, leading to estimates of 312.0 (218.4–405.6) and 393.6 (275.5–511.7) respectively. Rationale for adjusting 
the bounds on the targets is described below. 
 
Rationale 1: Impact of the Covid-19 pandemic 
 Some state groups started and completed the survey before the COVID-19 pandemic, others during, others after the 
major pandemic waves had completed.32 Depending on the impact of COVID-19 measures on tuberculosis, this could 
bias the estimates of the region either up or down, and bias the overall estimate of the tuberculosis prevalence for 
India, particularly as Delhi (the region with the highest estimated tuberculosis prevalence) started and completed the 
survey before the pandemic.32 
 
Rationale 2: Differences between planned surveyed clusters and actual surveyed clusters 
The National Tuberculosis Prevalence Survey India 2019–2021 compares the number of pulmonary tuberculosis cases 
notified at the state group level in 2019, 2020 and 2021 between those clusters who were surveyed and those who 
were not surveyed.32 Although no statistically significant differences were observed between the surveyed and not-
surveyed clusters, there are qualitative differences between the number of notifications of pulmonary tuberculosis 
between groups, where non-surveyed clusters consistently have a lower number of notifications.32  
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3.4.2 Tuberculosis infection prevalence 
 
i.  Adjusting the 2021 target bounds 
The National Tuberculosis Prevalence Survey India 2019–2021 reports an estimate for the prevalence of tuberculosis 
infection in India among adults of 0.314 (0.272–0.353). We adjusted the bounds to give a revised estimate of 0.314 
(0.114–0.514), with rationale described below. 
 
Rationale 1: Oversampling from Gujarat with no adjustment 
Of the 55 clusters where IGRA testing was done, 31 were in Gujarat and 24 were in the remaining 19 state groups. 
Gujarat had the lowest estimated tuberculosis prevalence per 100,000 population.32 If we assume that prevalence of 
tuberculosis infection is correlated with prevalence of tuberculosis disease, then we would anticipate that the 
tuberculosis infection prevalence estimates from Gujarat would be commensurately low. As more than half of the 
clusters were from Gujarat, and there is no indication of adjustment for oversampling from this region, it is possible 
that the reported country-level tuberculosis infection prevalence is an underestimate. If our assumption that prevalence 
of infection correlates with prevalence of disease was incorrect, the tuberculosis infection prevalence estimates may 
actually be overestimated. As such, we have adjusted the bounds to account for oversampling with no adjustment, but 
retained the central estimate, resulting in a calibration target of 0.314 (0.114–0.514).  
 
 
3.4.3 Tuberculosis case notifications 
 
i.  Adjusting to account for the private sector contribution to reported case notifications 
Treatment in India can occur in the public or private sector. While this varies by state, it is estimated that 60% of 
treatment is performed in the public sector, and the remaining 40% in the private sector. According to the WHO Global 
TB Report 2019, reported case notifications only included notifications from the public sector before 2013.19 From 
2013-2020, reported case notifications began to include the private sector (Figure S3.4). By 2020, approximately 31% 
of the total reported notifications were from the private sector.19  
 

 
Figure S3.4  Contribution of the private sector to reported case notifications from WHO Global TB 

Report 202129 
 
The model represents case notifications as the number of tuberculosis treatment initiations. We want to calibrate the 
model to the true number of treatment initiations, as this is what the model will represent. Therefore, this involves 
adjusting the WHO reported case notifications to reflect underreporting from the private sector. To do this, we must 
calculate the fraction of total cases notifications (treatment initiations) that are reported, while accounting for both the 
private and public sector. 
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Using the percent contribution of the private sector to the reported treatments, and the assumption that all treatments 
occurring in the public sector are reported, we can calculate the fraction of total notifications that are actually reported. 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

    
 
Note: This calculation is valid for  
 
 
We want to calculate  
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Using the derived equation, we can calculate the fraction of total notifications reported from 2013–2020 (Table 
S3.4). 
 
 
Table S3.4 The fraction of tuberculosis treatment notifications in India from the private sector and 

overall 
 

Year (k) 
Fraction of reported notifications 
that came from the private sector  

 

Fraction of total possible private 
sector notifications that were 

reported  
 

Fraction of total notifications 
reported  

 

≤ 2012 0 0 0.60 

2013 0.05 0.08 0.63 

2014 0.12 0.20 0.68 

2015 0.10 0.17 0.67 

2016 0.18 0.33 0.73 

2017 0.22 0.42 0.77 

2018 0.25 0.50 0.80 

2019 0.28 0.58 0.83 

2020 0.31 0.674 0.87 

 
 
To adjust the WHO reported case notification estimates for underreporting, we divide the estimates by the fraction of 
total treatments reported ( ), and assume 20% upper and lower uncertainty bounds. The reported and adjusted 
estimates of case notifications are provided in Table S3.5 and assume 20% upper and lower uncertainty bounds. The 
reported and adjusted estimates of case notifications are provided in Table S3.5. 
 
 
Table S3.5 The WHO reported and adjusted tuberculosis case notification targets for India 
 

Year WHO reported case 
notification value  

Adjusted case notification 
value 

Low bound  
(Adjusted value ✕ 0.8) 

High bound 
(Adjusted value ✕ 1.2) 

2000 106 177 142 212 

2020 118 136 109 163 

 
 
 
3.4.4 Proportion of previously treated incident cases 
 
i. Adjusting the proportion retreated bounds 
The proportion retreated target is included to ensure that the disease tuberculosis incidence is derived from the correct 
source (i.e., to ensure that we do not overestimate the amount of incidence that is coming from fast-progression or 
reactivation without treatment).  
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The data available from the WHO are: 
1. Number of case notifications (i.e., the notified treatment initiations), per year 
2. Number of case notifications who are people who have been previously treated, per year 

 
By dividing the number of notifications who are people who have been previously treated (2) by the total number of 
notifications (1), we get the proportion of notifications that have been previously treated. 
 

 
 

 
 
We assume that at equilibrium, the proportion of notifications who have been previously treated will be equal to the 
proportion of incident disease cases who have been treated previously. 
 
The estimate of the proportion of notifications that have been previously treated for India from the WHO dataset is 
10.0% (4.3–14.7). However, country specific estimates may be subject to recall bias as they rely on patients to 
accurately report previous treatment. Additionally, studies have shown that approximately 11% of patients recorded 
as “new” have had some form of previous tuberculosis treatment.35 Therefore, we adjusted the estimates from the 
WHO dataset, and calibrated to a target of 19.1% (13.9–24.1). 
 
 
ii.  Calculating the proportion retreated target in the model 
 
The subsequent pages describe the methods used to calculate the proportion retreated target.  
 
Definition 1: The number of notifications, per year is the flow from Dc and T =  
 
Definition 2: Being “previously treated” implies that an individual arrived in the R compartment via the T 
compartment. 
 
Definition 3: For an individual to count as a notification of a person who was previously treated (Definition 2), they 
must flow from T → R → Ds → Dc → T 
 
Looking at the total number of notifications broken down to their origins, we see that: 
 

   
 

                 
                
  
The “Notifications of people who were in R” term is further broken down into: 

- People who entered R from T, per year 
- People who entered R from Dc, per year 
- People who entered R from Ds, per year 

 
We can rewrite the total number of notifications per year equation as: 
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Recall now what we are looking to calibrate to: 
 

 
 
The denominator is directly available from the model: the total number of notifications ( ). Using definitions 
2 and 3 above, the “number of notifications who are people who have been previously treated per year” = “notifications 
of people who were in R having entered R from T per year”. Therefore, we can redefine our calibration target as: 
 

 
 
We do not have notifications disaggregated by source, but we do have incidence disaggregated by source. Incident 
cases are defined as the flow into Ds, which can be from R, from Ls, or from Lf. 
 

                             
                                                                                                                                                                                                                         

                                                                                                                              
 

 
We obtain output on all of these flows, so we can calculate the proportion of incident cases from each pathway (Lf, 
Ls, and R) easily by just dividing the total number of incident cases of people from Lf, Ls or R by the total number of 
incident cases.  
 
The proportions of incidence from each pathway are:  
 

                            
 
RD = flow from R to Ds = total number of incident cases of people from R, per year 
LsD = flow from Ls to Ds = total number of incident cases of people from Ls, per year 
LfD = flow from Lf to Ds = total number of incident cases of people from Lf, per year 
RD + LsD + LfD = total number of incident cases, per year 
 
Similarly, we can disaggregate the flow from R to Ds further into how the people in R entered R. 
 

 
                        

                   
 

 
Again, we don’t have information on the disaggregated numbers of incident cases from R based on how they entered 
R, but we do have information on the entry to R. 
 

 
                                                                           
                                                                           
 
The proportion of the total flow into R from each of T, Ds, and Dc per year is: 
 

                                                
 
TR = flow from T to R = total number entering R from T per year 
DcR = flow from Dc to R = total number entering R from Dc per year 
DsR = flow from Ds to R = total number entering R from Ds per year 
TR + DsR + DcR = total number entering R per year 
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If we assume that the flows INTO R from each of T, Ds, and Dc are in the same proportions as the flows OUT of R, 
then we can disaggregate the outflow from R (which is the number of incident cases of people from R, per year, we 
called RD in the equation above) into incident cases of people from R who entered R from each of T, Ds, and Dc, per 
year by multiplying RD by the proportion from each of T, Ds, and Dc 
 
Number of incident cases of people from R who entered R from T, per year 
= (Number of incident cases of people from R, per year)(Proportion of flow out of R that is from people who entered 
R from T, per year) etc. 
 
We can rewrite RD in terms of the disaggregated pathways from T, Ds, and Dc: 
 

  
 
 
Subbing in the expression for RD above into the equation for the proportion of incident cases from R, we obtain: 
 

 
 
Factor, simplify and rewrite: 
 

 
 

   
        
 
Proportion of incident cases from R =  
       (Proportion of incident cases from R who entered R from T)  
    + (Proportion of incident cases from R who entered R from Dc) 
    + (Proportion of incident cases from R who entered R from Ds) 
 
The assumption we make here is that (at equilibrium) these proportions of incident cases will be equivalent for flows 
entering Ds (incident cases), entering Dc (progression from subclinical to clinical disease) and entering T (treatment 
initiation / case notifications). 
 

                         
             

     
 

   
 
Therefore, the proportion of notifications of people who were in R having entered R from T will be the same as the 
proportion of incidence from people who were in R having entered R from T. 
 
Going back to the calibration target once again:  
  

 
  
Although we do not know the number of notifications of people who were in R having entered R from T per year, this 
is equal to the proportion of notifications of people who were in R having entered R from T multiplied by the total 
number of notifications per year 
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We can cancel out the total number of notifications as it is in both the numerator and denominator. 
 

 
 

 
 
This value is calculated as the proportion of notifications of people who were in R multiplied by the proportion of the 
entry into R that came from T 
 

 
 
 
However, there may be some people who recently entered R from Dc or Ds, but who had also previously had treatment. 
Therefore, the previous equation is revised as: 
 

 
 
 
We assume that the proportion of those in (DcR + DsR) who have been treated previously is the same as the proportion 
of those in DsR who have been treated previously.  We can then set the value: 
 

 
 

 
 
 
If we substitute in the term, we can see that the same term is repeated again and again. Let   
 

 
 
 
Then we can rewrite the above as: 
 

 
 
 
Let  and , substitute and expand: 
 

 
 

 
 
Let  and , substitute and expand: 
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Substituting back in for , , ,  , and   we obtain: 
 

 
 

 
 
 

 
 
 

 
 
 
RD = flow from R to Ds = total number of incident cases of people from R, per year 
TR = flow from T to R = total number entering R from T, per year 
RD + LsD + LfD = total number of incident cases, per year 
 
DcR = flow from Dc to R = total number entering R from Dc, per year 
DsR = flow from Ds to R = total number entering R from Ds, per year 
LsD = flow from Ls to Ds = total number of incident cases of people from Ls, per year 
LfD = flow from Lf to Ds = total number of incident cases of people from Lf, per year 
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4. Policy scenarios 
 
4.1 No-new-vaccine baseline 
 
The primary no-new-vaccine simulated was the no-new-vaccine baseline, which assumed non-vaccine tuberculosis 
interventions continue at current levels into the future. As reported country-level data includes the high coverage levels 
of neonatal BCG vaccination, this was not explicitly modelled. We assumed that BCG vaccination would not be 
discontinued over the model time horizon. 
 
4.2 Vaccine delivery scenarios  
 
Two recently completed phase 2 trials have demonstrated encouraging efficacy results. The M72/AS01E candidate 
vaccine is a subunit vaccine for which results from a completed Phase IIb trial were published at the end of 2019.36 
After three years of follow-up, the efficacy of M72/AS01E at preventing disease in latently infected adults from South 
Africa, Zambia, and Kenya was estimated at 49.7% (95% confidence interval = 2.1–74.2).36 To confirm this finding, 
a larger, Phase III follow-up study is needed, which includes participants who are uninfected, adolescents, as well as 
those living with HIV to assess safety and immunogenicity in these populations. This is being planned. 
 
BCG-revaccination (administering a second dose of BCG to those who were vaccinated neonatally) was previously 
implemented in many countries, however evidence did not support the effectiveness of this practice. Interest in BCG-
revaccination has recently been renewed following results from a trial for the vaccine candidate, H4:IC31. BCG-
revaccination was assessed as a third parallel arm alongside H4:IC31 and a placebo in a pre-infection population in 
South Africa, and although neither vaccine appeared efficacious at preventing infection, BCG-revaccination appeared 
efficacious at preventing sustained infection (defined as three consecutive positive tests after day 84 of the trial) with 
an efficacy of 45.4% (6.4–68.1).37 A larger trial of BCG-revaccination versus placebo in 1800 healthy adolescents 
from across South Africa is now underway to verify this finding. 
 
We evaluated introducing vaccines with M72/AS01E and BCG-revaccination characteristics compared to the no-new-
vaccine baseline as described in the subsequent sections. 
 
 
 
4.2.1 Classifying tuberculosis vaccines 
 
Before describing the specific characteristics for the vaccine scenarios that we investigated, we provide a brief 
overview on classifying tuberculosis vaccines (descriptions from Clark et al.1).  
 
Tuberculosis vaccines are characterised on four key characteristics: the vaccine efficacy, the host infection status at 
the time of vaccination required for the vaccine to be efficacious, the mechanism of effect, and the duration of 
protection. Vaccine efficacy defines the magnitude of protection induced by the vaccine. Vaccine efficacy is assumed 
to be either “all or nothing”, where the vaccine offers full protection to a subset of individuals (equal to the vaccine 
efficacy) who were vaccinated, or “degree”, where the vaccine offers partial protection to all individuals who received 
the vaccine.  
 
The host infection status at the time of vaccination required for the vaccine to be efficacious defines the Mtb infection 
status required of the population at the time they receive the vaccine for the vaccine to be efficacious. We divide the 
host infection status into No Current Infection (NCI), where the vaccine is efficacious in uninfected populations only, 
Current Infection (CI), meaning the vaccine is efficacious in populations with current infection with Mtb only, or Any 
Infection (AI) where the vaccine is efficacious in both pre- and post-infection populations.  
 
The vaccine mechanism of effect type determines how the vaccine will offer protection. A prevention of infection 
(POI) vaccine protects individuals from initial or re-infection with Mtb, whereas a prevention of disease (POD) vaccine 
functions by preventing individuals who may be uninfected or infected with Mtb from progressing to active disease. 
A prevention of infection and disease vaccine (POI&D) prevents both infection and disease. Finally, the duration of 
protection represents the length of time following vaccination that individuals are protected. 
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4.2.2 M72/AS01E and BCG-revaccination scenarios 
 
For each vaccine product, we established one “Basecase” vaccine scenario based on clinical trial data and expert 
opinion. We then varied vaccine product and delivery scenarios as univariate scenario analyses from the Basecase 
scenario as described in Table S4.1.  
 
Table S4.1 M72/AS01E and BCG-revaccination scenarios evaluated in the analysis 
 

Characteristic 

M72/AS01E vaccines BCG-revaccination vaccines 

Basecase Univariate scenario 
analyses Basecase Univariate scenario 

analyses 

Vaccine efficacy 50% 60%, 70% 45% 70% 

Duration of 
protection 10 years 5, 15, 20 10 years 5, 15, 20 

Infection status at 
time of vaccination 
required for vaccine 

to take 

Any infection (current / no 
current infection) Current infection only No current infection only Any infection (current / no 

current infection) 

Mechanism of effect Prevents disease Prevents infection and 
disease Prevents infection Prevents infection and 

disease 

Introduction year  
(years of any repeat 

campaigns) 

2030  
(2040) 

2036  
(2046) 

2025  
(2035, 2045) 

2031  
(2041) 

Age targeting Campaign for ages 16-34, 
routine age 15 

Older ages (campaign for 
ages 18-55) 

 
Elderly ages (campaign for 
ages 60+, routine age 60) 

Campaign for ages 11-18, 
routine age 10 

Older ages (campaign for 
ages 16-34, routine age 15) 

 
Elderly ages: campaign for 

ages 60+, routine age 60 

Target coverage  
(with scale-up to 
coverage over 5-

years) 

Campaign = 70% / Routine 
= 80% 

Campaign = 50% / Routine 
= 70% 

 
Campaign = 90% / Routine 

= 90% 

80% 70% 
90% 

 
 
 
4.2.3 Vaccine delivery assumptions 
 
Vaccine eligible population 
In our modelling, we assume that there is no pre-vaccination infection testing. Therefore, even if a vaccine is only 
effective when delivered to uninfected individuals at the time of vaccination, we assume that both uninfected and 
infected individuals will receive the vaccine, and only the uninfected individuals will receive protection. Our model 
structure allows for counting and tracking individuals who received the vaccine but do not receive any protection from 
it.  
 
Efficacy  
From trial data, the efficacy of M72/AS01E at preventing disease in latently infected adults was estimated at 49.7% 
(2.1–74.2).36 Therefore, our Basecase vaccine efficacy was set at 50%, and based on expert opinion we evaluated 60% 
and 70% as scenario analyses. BCG-revaccination appeared efficacious at preventing sustained infection with an 
efficacy of 45.4% (6.4–68.1).37 The Basecase efficacy was set to 45%, and 70% was evaluated in a scenario analysis. 
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Protection from repeat vaccinations  
BCG-revaccination: No additional protection if a second or third vaccine is administered while currently protected 
from the first. 
 
M72/AS01E: Protection increases if a second or third vaccine is administered while currently protected by a first or 
second vaccine by (1-current protection) times vaccine efficacy, as in Table S4.2. 
 
 
Table S4.2 Increase in protection for the number of vaccine courses 
 

Number of vaccine courses 
currently protected by Basecase Efficacy variation 1 Efficacy variation 2 

One 50.0% 60.0% 70.0% 

Two 75.0% 84.0% 91.0% 

Three 87.5% 93.6% 97.3% 

 
Note that the number of vaccine courses refers to the number of vaccine courses that the individual is currently 
protected by, not that they have ever a) received, or b) been protected by. For example, if someone receives one 
vaccine, then wanes, then receives another one, they would only be currently protected by one, not two, vaccines, and 
so the efficacy would be either 50%, 60%, or 70% depending on the scenario. 
 
 
Mechanism of effect 
We assume that a vaccine that protects against infection will work by reducing the rate of infection for both initial and 
re-infection, and that a vaccine that protects against progression to disease will work by reducing the rate of 
progression to subclinical disease. If the vaccine protects against both infection and disease we assume that it has the 
same efficacy against preventing disease as it does infection. For example, if the vaccine is defined as a prevention of 
infection and disease vaccine with 50% efficacy, it reduces the rate of infection by 50% and the rate of progression to 
disease by 50%. 
 
Introduction year 
The Basecase introduction years, 2025 and 2030 for BCG-revaccination and M72/AS01E respectively, were 
determined based on considering when new trial data would become available, as well as incorporating time for 
licensure and policy change. The introduction year considered in scenario analyses, 2031 and 2036 for BCG-
revaccination and M72/AS01E respectively, was based on applying IAVI/Full Value Assessment of Tuberculosis 
Vaccines analyses from Shelly Malhotra and expert advice to the earliest possible introduction year.1  
 
Age targeting 
The Basecase age was informed by ages of trial participants and expert advice. Additional scenarios were informed 
by work conducted by Pelzer et. al and expert advice.38  
 
 
 
4.3 Vaccine model structure 
 
Depending on the host infection status required at the time of vaccination for the vaccine to be efficacious, we 
implemented a different vaccine structure in the model to account for differences in Vaccinated Protected, Vaccinated 
Not Protected, and Vaccinated Waned. Each compartment in the vaccine structure is replicated for all tuberculosis 
natural history compartments, access-to-care strata, and ages.  
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4.3.1 No Current Infection vaccines 
 
A No Current Infection (NCI) vaccine requires an individual to be uninfected at the time of vaccination in order for 
the vaccine to be efficacious. Implementation in the TBVax model of an NCI vaccine with the possibility of two repeat 
vaccine courses is provided in Figure S4.1.  For our purposes, we assume that the level of protection remains the same 
regardless of the number of vaccine courses received (i.e. level of protection in "Vaccinated Protected (one vaccine 
course)" is equal to "Vaccinated Protected (two vaccine courses)" etc.). Additionally, because the vaccine is only 
efficacious for NCI, and in this model once you leave UN (the state where the vaccine is effective) you never return, 
once you enter a "Vaccinated Not Protected" state you never have the opportunity to become "Vaccinated Protected" 
again. 
 

 
 

Figure S4.1 Vaccine structure for a NCI vaccine 
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4.3.2 Current Infection vaccines 
A Current Infection (CI) vaccine requires an individual to be infected at the time of vaccination in order for the vaccine 
to be efficacious. Implementation in the TBVax model of an CI vaccine with the possibility of two repeat vaccine 
courses is provided in Figure S4.2.  For our purposes, we assume that the level of protection builds with each vaccine 
course, with efficacy values as in Table S4.2. 
 
 

 
 
Figure S4.2 Vaccine structure for a CI vaccine (where protection builds with each vaccine course) 
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4.3.3 Any Infection vaccines 
An Any Current Infection (AI) vaccine will be efficacious with any infection status (aside from current active disease) 
at the time of vaccination. The “Vaccine Not Protected” compartments remain as we assume that individuals with 
subclinical disease may be accidentally vaccinated and would not receive protection from the vaccine. However, we 
do want to keep track of the number of vaccinations for cost purposes. 
 
AI-1 vaccines: With each vaccine course the level of protection remains the same (Figure S4.3). Waning occurs from 
any of the Vaccinated Protected compartments to the Waned Protection compartment. 
 

 
Figure S4.3 Vaccine structure for an AI vaccine (where protection does not build with each vaccine course) 
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AI-2 vaccines: With each vaccine course the level of protection builds if the recipient is currently in a Vaccinated 
Protected compartment (Figure S4.4). This is the same structure as the CI vaccine with protection building (Figure 
S4.2). Waning occurs from any of the Vaccinated Protected compartments to the Vaccinated Protected compartment 
one level below, or to the Waned Protection compartment for those with only one course of protection. 

 

 
 
Figure S4.4 Vaccine structure for an AI vaccine (where protection builds with each vaccine course) 
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5. Economic analysis methods 
 
Before undertaking this work, we established an economic analysis plan, involving stakeholders and government 
officials to ensure we had incorporated all necessary information and planned to report on all key outcomes, to outline 
the methods used in this work. This is summarised below.  
 
5.1 Calculation of disability-adjusted life years 
We calculated the difference in total disability-adjusted life years (DALYs) from vaccine introduction to 2050 for 
each scenario compared to the no-new-vaccine baseline. We used the disability weight for tuberculosis disease from 
the Global Burden of Disease 2019 study,39 and country- and age-specific life expectancy estimates from the United 
Nations Development Programme.40 To incorporate parameter uncertainty in years lost due to disability (YLD) weight 
estimates, we made 1000 draws from disability weight uncertainty ranges. 
 
5.2 Tuberculosis-related cost model  
We estimated health system unit costs, patient costs and productivity losses based on a scoping review of published 
literature. For the tuberculosis programme, we obtained unit costs for drug-susceptible (DS) and drug-resistant (DR) 
tuberculosis treatment and diagnostic costs. In India, as elsewhere,41,42 we explicitly include a financial incentive paid 
to the private sector to encourage case notification. Uncertainty in cost estimates is characterised through gamma 
distributions around plausible unit cost estimates in a probabilistic sensitivity analysis. There was considerable 
uncertainty in the cost of delivering a vaccine, including the price of vaccine compounds and programmatic delivery 
among adolescents. Based on expert opinion from funders, for the M72/AS01E vaccine we assume a $2.50 per-dose 
vaccination price with two doses per course assumed in the Basecase. Based on the average estimated BCG price from 
2020–2023 from UNICEF,43 the vaccine price per dose for BCG-revaccination was set at $0.17, with one dose 
assumed per course.  
 
5.3 Vaccine introduction  
Due to uncertainty in unit costs of vaccine supply and introduction among populations who may not typically receive 
large-scale mass vaccination, we make several assumptions around costs to supply and introduction of vaccines. One 
time vaccine introduction costs are assumed to be $2.40 per recipient based on the GAVI VIG, with a further $0.11 
supply costs per recipient. We assume a 5% wastage rate. All cost inputs are given in Table S5.1 below. 
 
 
5.4 Cost-effectiveness analysis and willingness-to-pay thresholds 
We calculated the incremental cost effectiveness ratio as the ratio between the incremental benefit, in DALYs averted, 
and the incremental cost, in USD, for each run across vaccination and baseline scenario. Both costs and benefits were 
discounted to 2025 (when vaccination began) at 3%, per guidelines.44 We analysed cost-effectiveness by 2050, 
reflecting a 25-year timeframe in line with WHO END TB45 and UN SDG TB control targets.46 We measured cost-
effectiveness by 2050 against three India specific cost thresholds: 1x gross domestic product (GDP) per-capita 
(US$1,927.71), the Ochalek upper bound (US$363), and the Ochalek lower bound (US$264).47  
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Table S5.1 Tuberculosis testing, diagnostic, and vaccination related cost inputs 
 

Unit Cost Estimate Lower Bound Upper Bound Sources 

Varying costs 

Unit cost of testing/diagnosis for DS cases $22.45 $18.37 $26.53 48 

Unit cost of testing/diagnosis for DR cases $24.36 $5.04 $117.81 49 

Unit cost of treatment for DS cases $317.00 $254.00 $374.00 50 

Unit cost of treatment for DR cases $3,891.00 $3,382.00 $4,401.00 51 

Non-medical patient cost per DS-TB disease episode 
(including transportation)  $51.25 $22.12 $76.94 52,53 

Indirect patient cost per DS-TB disease episode (time 
spent on treatment and transport * wage) $117.01 $24.04 $460.24 53,54 

Non-medical patient cost per DR-TB disease episode 
(including transportation)  $143.49 $61.95 $215.42 52,53 

Indirect patient cost per DR TB disease episode (time 
spent on treatment and transport * wage) $327.63 $67.30 $1,288.66 53,54 

Recurrent vaccine delivery cost  $2.50  $1.00  $5.00 55 

Fixed costs 

Incentive per patient treated in private sector $4.19 

 

56,57 

Patient nutritional support $7.87 57 

Welfare payments to TB patient $30.35 57 

M72/AS01E price per dose (2 doses per course) $2.50 Expert opinion 

BCG price per dose (1 dose per course) $0.17 43 

One-time vaccine introduction costs per person $2.40 55 

Vaccine supply costs $0.11 58 

 
 
 
6. Health impact outcomes 
 
The following measures were calculated for each vaccine scenario as the median and 95% uncertainty range 

-     Percent incidence rate reduction in 2050 for each vaccine scenario compared to the estimated value in 
2050 by No-New-Vaccine baseline 

-     Percent mortality rate reduction in 2050 for each vaccine scenario compared to the estimated value in 
2050 by No-New-Vaccine baseline 

-     Cumulative cases averted for each vaccine scenario between vaccine introduction (either 2025 or 2030) 
and 2050 compared to the cumulative number of cases estimated by the No-New-Vaccine baseline 
between the corresponding years 

-     Cumulative deaths averted for each vaccine scenario between vaccine introduction (either 2025 or 2030) 
and 2050 compared to the cumulative number of cases estimated by the No-New-Vaccine baseline 
between the corresponding years 

-     Cumulative treatments averted for each vaccine scenario between vaccine introduction (either 2025 or 
2030) and 2050 compared to the cumulative number of cases estimated by the No-New-Vaccine baseline 
between the corresponding years 
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SUPPLEMENTARY RESULTS 
 
7. No-New-Vaccine baseline 
 
7.1 No-New-Vaccine baseline calibration 
 

 
Figure S7.1 Tuberculosis incidence, disease prevalence, case notification and mortality rate trends from 

2000–2050 for all ages 
 
The black trend line indicates the median modelled output with 95% uncertainty in shaded grey. The black dot and 
vertical line is the calibration target from Table S3.1. 
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Figure S7.2 Tuberculosis infection prevalence, proportion retreated, access-to-care ratio and ratio of 

subclinical tuberculosis to total tuberculosis trends from 2000–2050 for all ages 
 
The black trend line indicates the median modelled output with 95% uncertainty in shaded grey. The black dot and 
vertical line is the calibration target from Table S3.1. 
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Figure S7.3 Tuberculosis incidence and mortality rate trends from 2000–2050 by age group 
 

The black trend line indicates the median modelled output with 95% uncertainty in shaded grey. The black dot and 
vertical line is the calibration target from Table S3.1. 
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Figure S7.4 Tuberculosis disease and infection prevalence trends from 2000–2050 by age group 
 

The black trend line indicates the median modelled output with 95% uncertainty in shaded grey. The black dot and 
vertical line is the calibration target from Table S3.1. 
 



 

35 

 
 
Figure S7.5 Tuberculosis case notification and proportion retreated trends from 2000–2050 by age group 
 

The black trend line indicates the median modelled output with 95% uncertainty in shaded grey. The black dot and 
vertical line is the calibration target from Table S3.1. 
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Figure S7.6 Access-to-care ratio and the ratio of subclinical tuberculosis to all active tuberculosis trends 

from 2000–2050 by age group 
 

The black trend line indicates the median modelled output with 95% uncertainty in shaded grey. The black dot and 
vertical line is the calibration target from Table S3.1.
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7.2 Posteriors distributions for model parameters 
 

 
 
Figure S7.7 Posterior distributions for the 1000 parameter sets of the 19 parameters varied during 

calibration 
 
Definitions: chi = rate of natural cure, eta = rate of treatment initiation, j1A0 = age multiplier for rate of fast 
progression (theta), j2A0 = age multiplier for rate of reactivation (sigma), j3A0 = age multiplier for rate of relapse 
(rho), j4A0 = age multiplier for rate of treatment initiation, kappa = on-treatment mortality fraction, muDc = rate of 
clinical disease mortality, muK = rate of background mortality for increased mortality rate from the Recovered 
compartment, multiplier = the multiplier to see the initial distribution of the population into the natural history 
compartments, omegaS0 = rate of progression between Latent-Slow and Latent-Zero, pEhigh = multiplier for high 
access-to-care relative to low access-to-care, pR = protection from reinfection for those in the Latency or Recovered 
compartments, pT = rate of transmission, rho = rate of relapse, sageA15 = age multiplier for mortality rates, sigma 
= rate of reactivation, theta = rate of fast progression following infection, zeta = rate of progression from subclinical 
to clinical disease compartments.
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8. Health impact results 
 
8.1 M72/AS01E scenarios 
 

 
 
Figure S8.1 Incidence and mortality rate reductions in 2050 for the M72/AS01E scenarios 
 
 

 
 

 
Figure S8.2 Cumulative tuberculosis cases, treatments, and deaths averted between 2030 and 2050 for 

the M72/AS01E scenarios 
 

The horizontal line is the median value of the Basecase for each vaccine, and the vertical line separates vaccine profile 
and delivery scenarios. 
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Table S8.1 Health impact results for the M72/AS01E scenarios  
 

Scenario IRR in 2050  
(%) 

MRR in 2050  
(%) 

Cumulative  
cases  

averted  
2030–2050 

Cumulative 
treatments 

averted  
2030–2050 

Cumulative 
deaths  
averted  

2030–2050 

Basecase 30.9%  
(28.9–33.5) 

30.4%  
(28.5–33.1) 

12.7m  
(11.0–14.6) 

6.9m  
(6.1–7.9) 

2.0m  
(1.8–2.4) 

60% efficacy 35.6%  
(33.3–38.5) 

35.1%  
(33.0–38.0) 

14.8m  
(12.8–17.0) 

8.0m  
(7.1–9.2) 

2.4m  
(2.1–2.8) 

70% efficacy 39.8%  
(37.5–43.0) 

39.3%  
(37.1–42.5) 

16.8m  
(14.5–19.3) 

9.1m  
(8.1–10.4) 

2.7m  
(2.4–3.1) 

5 years duration of protection 20.4%  
(18.9–22.5) 

20.9%  
(19.4–22.9) 

9.4m  
(8.1–10.9) 

5.1m  
(4.6–6.0) 

1.5m  
(1.4–1.8) 

15 years duration of protection 36.0%  
(33.9–38.9) 

35.0%  
(32.9–37.8) 

14.3m  
(12.3–16.3) 

7.6m  
(6.8–8.8) 

2.3m  
(2.0–2.6) 

20 years duration of protection 39.1%  
(36.9–42.1) 

37.7%  
(35.5–40.6) 

15.2m  
(13.1–17.3) 

8.1m  
(7.2–9.3) 

2.4m  
(2.1–2.8) 

Prevention of infection and disease 39.7%  
(37.2–43.1) 

39.0%  
(36.5–42.3) 

16.2m  
(14.1–18.7) 

8.7m  
(7.8–10.0) 

2.6m  
(2.3–3.0) 

Efficacious with current infection at 
vaccination 

14.8%  
(14.0–15.8) 

15.2%  
(14.4–16.1) 

6.9m  
(6.0–7.9) 

3.8m  
(3.4–4.3) 

1.1m  
(1.0–1.3) 

2036 introduction 28.8%  
(27.0–31.3) 

26.3%  
(24.6–28.7) 

7.5m  
(6.5–8.7) 

3.7m  
(3.2–4.3) 

1.1m  
(0.9–1.3) 

Lower coverage 25.3%  
(23.5–27.6) 

24.8%  
(23.1–27.1) 

10.2m  
(8.8–11.8) 

5.5m  
(4.8–6.3) 

1.6m  
(1.4–1.9) 

Higher coverage 36.0%  
(33.9–39.0) 

35.7%  
(33.6–38.5) 

15.1m  
(13.1–17.3) 

8.2m  
(7.3–9.4) 

2.4m  
(2.2–2.8) 

Older ages (campaign for ages 18-55) 27.1%  
(25.7–29.0) 

28.9%  
(27.6–30.7) 

13.8m  
(12.2–15.5) 

7.6m  
(7.0–8.5) 

2.3m  
(2.1–2.6) 

Elderly ages (campaign for ages 61+, 
routine age 60) 

6.2%  
(5.6–7.0) 

6.1%  
(5.4–6.9) 

3.1m  
(2.6–3.6) 

1.6m  
(1.5–1.8) 

0.5m  
(0.4–0.5) 

 
Abbreviations: IRR = incidence rate reduction, MRR = mortality rate reduction. 
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8.2 BCG-revaccination scenarios 
 

 
 
Figure S8.3 Incidence and mortality rate reductions in 2050 for the BCG-revaccination scenarios 
 
 
 

 
 
Figure S8.4 Cumulative tuberculosis cases, treatments, and deaths averted between 2025 and 2050 for 

the BCG-revaccination scenarios 
 
The horizontal line is the median value of the Basecase for each vaccine, and the vertical line separates vaccine profile 
and delivery scenarios. 
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Table S8.2 Health impact results for the BCG-revaccination scenarios 
 

Scenario IRR in 2050  
(%) 

MRR in 2050  
(%) 

Cumulative  
cases averted  

2025–2050 

Cumulative 
treatments 

averted  
2025–2050 

Cumulative 
deaths averted 

2025–2050 

Basecase 20.7%  
(19.0–23.4) 

20.0%  
(18.4–22.6) 

9.0m  
(7.8–10.4) 

4.8m  
(4.2–5.7) 

1.5m  
(1.3–1.8) 

70% Efficacy 30.0%  
(27.6–33.6) 

29.0%  
(26.7–32.5) 

13.2m  
(11.4–15.2) 

7.0m  
(6.1–8.3) 

2.2m  
(1.9–2.6) 

5 years duration of protection 14.6%  
(13.3–16.6) 

14.4%  
(13.1–16.4) 

6.6m  
(5.8–7.6) 

3.5m  
(3.1–4.2) 

1.1m  
(1.0–1.3) 

15 years duration of protection 24.0%  
(22.1–27.0) 

23.0%  
(21.1–25.9) 

10.1m  
(8.8–11.6) 

5.3m  
(4.7–6.4) 

1.7m 
(1.5–2.0) 

20 years duration of protection 26.1%  
(24.1–29.4) 

24.9%  
(22.9–27.9) 

10.8m  
(9.4–12.4) 

5.7m  
(5.0–6.8) 

1.8m  
(1.6–2.1) 

Prevention of infection and disease 28.4%  
(26.2–31.9) 

27.5%  
(25.3–30.8) 

12.4m  
(10.8–14.4) 

6.6m  
(5.8–7.9) 

2.1m  
(1.8–2.5) 

Efficacious with any infection status at 
vaccination 

21.6%  
(19.9–24.3) 

20.9%  
(19.2–23.5) 

9.4m  
(8.2–10.8) 

5.0m  
(4.4–5.9) 

1.6m  
(1.4–1.9) 

2031 introduction 17.0%  
(15.4–19.3) 

16.3%  
(14.8–18.6) 

5.6m  
(4.9–6.5) 

2.8m  
(2.4–3.4) 

0.9m 
(0.8–1.1) 

Lower coverage 19.0%  
(17.4–21.4) 

18.3%  
(16.8–20.7) 

8.1m  
(7.1–9.4) 

4.3m  
(3.8–5.2) 

1.4m  
(1.2–1.6) 

Higher coverage 22.3%  
(20.5–25.1) 

21.6%  
(19.8–24.4) 

9.7m  
(8.5–11.2) 

5.2m  
(4.5–6.2) 

1.6m  
(1.4–1.9) 

Older ages (campaign for ages 16-34, 
routine age 15) 

21.6%  
(19.7–24.4) 

20.7%  
(18.8–23.4) 

9.7m  
(8.3–11.4) 

5.3m  
(4.7–6.2) 

1.6m  
(1.4–1.9) 

Elderly ages (campaign for ages 61+, 
routine age 60) 

0.8%  
(0.7–0.9) 

0.7%  
(0.6–0.8) 

0.3m  
(0.2–0.3) 

0.1m  
(0.1–0.2) 

0.04m  
(0.03–0.05) 

 
Abbreviations: IRR = incidence rate reduction, MRR = mortality rate reduction. 
 
 
8.3 India NTEP scenario 
 
Considering the current NTEP tuberculosis targets, we evaluated an additional scenario. This scenario assumed a 
vaccine with 40% efficacy to prevent infection with 10-years protection and efficacious with no current infection at 
vaccination. This vaccine was introduced at the start of 2023 routinely to age 18 and as a campaign for ages 19 and 
above, with scale up to 80% vaccine coverage over two years. We found that a vaccine aligning with those 
characteristics could reduce incidence and mortality rates by 8–10% in 2030 and prevent 1.4 million cases and 160 
thousand deaths by 2030 compared to no-new-vaccine (Table S8.3).  
 
 
Table S8.3 Health impact results from the India NTEP scenario 
 

 Incidence rate reduction 
(%) 

Mortality rate reduction 
(%) 

Cumulative cases averted  
(1000s) 

Cumulative deaths averted 
(1000s) 

 2025 2030 2025 2030 2023–2025 2023–2030 2023–2025 2023–2030 

India NTEP 
scenario 

5.7%  
(5.3–6.4) 

9.9%  
(9.0–11.2) 

1.6%  
(1.4–2.0) 

8.0%  
(7.3–9.2) 

268.5  
(235.3–310.7) 

1,427.8  
(1,246.4–1,656.9) 

10.7  
(9.1–13.8) 

159.9  
(139.7–191.9) 
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9.  Economic results 
 
9.1 M72/AS01E scenarios 
 
Cost-effectiveness analysis 

 
Figure S9.1 Cost-effectiveness plane for M72/AS01E scenarios 
 
Abbreviations: DALYs = disability-adjusted life years, USD$ = United States Dollars. 
 
Points are the mean incremental costs and mean incremental DALYs averted for each scenario compared to the costs 
and DALYs from the no-new-vaccine baseline. The solid line represents 1x GDP, the dashed line represents the 
Ochalek upper bound, and the dotted line represents the Ochalek lower bound. The 20 years protection and 60% 
efficacy scenarios for the M72/AS01E vaccine overlap and appear as one single point on the figure. 
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Table S9.1 Incremental DALYs averted, incremental costs averted, and ICERs from the health-system 
and societal perspectives for the M72/AS01E scenarios (mean, 95% uncertainty range) 

 

Scenario 

Incremental 
DALYs 
averted 
between 

2025–2050 
(millions) 

Health-system perspective Societal perspective 

Incremental 
costs between 

2025–2050 
($, millions) 

ICERs  
($/DALY 
averted) 

Incremental 
costs between 

2025–2050 
($, millions) 

ICERs  
($/DALY 
averted) 

Basecase 36.9  
(32.5–42.9) 

5,330  
(3,083–8,574) 

145  
(82–237) 

5,121  
(2,860–8,375) 

139  
(77–229) 

60% efficacy 43.1  
(38.0–50.1) 

5,047  
(2,807–8,298) 

117  
(64–196) 

4,803  
(2,543–8,063) 

111  
(59–188) 

70% efficacy 49.0  
(43.2–56.9) 

4,780  
(2,516–8,063) 

98  
(50–167) 

4,502  
(2,235–7,783) 

92  
(45–160) 

5 years protection 28.0  
(24.6–32.7) 

5,739  
(3,507–9,000) 

205  
(123–326) 

5,581  
(3,337–8,826) 

199  
(118–317) 

15 years protection 40.8  
(36.0–47.4) 

5,148  
(2,904–8,386) 

126  
(70–210) 

4,916  
(2,652–8,174) 

120  
(65–202) 

20 years protection 43.1  
(38.0–50.0) 

5,042  
(2,802–8,293) 

117  
(64–196) 

4,797  
(2,536–8,058) 

111  
(58–188) 

Prevention of infection and disease 46.9  
(41.3–54.5) 

4,875  
(2,630–8,145) 

104  
(55–176) 

4,609  
(2,343–7,877) 

98  
(50–170) 

Efficacy with current infection at 
vaccination 

20.5  
(18.2–23.5) 

6,077  
(3,856–9,353) 

296  
(186–456) 

5,961  
(3,727–9,213) 

290  
(182–447) 

2036 introduction 18.5  
(16.2–21.6) 

4,437  
(2,762–6,877) 

240  
(145–377) 

4,332  
(2,656–6,774) 

234  
(141–368) 

Lower coverage 29.3  
(25.8–34.2) 

4,068  
(2,337–6,553) 

139  
(78–228) 

3,902  
(2,166–6,398) 

133  
(74–220) 

Higher coverage 43.9  
(38.8–51.0) 

6,616  
(3,852–10,621) 

151  
(86–245) 

6,366  
(3,572–10,381) 

145  
(81–237) 

 Older ages (campaign for ages 18–55) 38.5  
(34.8–43.2) 

7,114  
(4,177–11,349) 

185  
(108–294) 

6,879  
(3,940–11,048) 

179  
(102–287) 

 Elderly ages (campaign for ages 61+, routine 
age 60) 

5.3  
(4.7–5.9) 

3,233  
(2,074–4,967) 

615  
(397–933) 

3,183  
(2,028–4,889) 

606  
(387–922) 

 
Abbreviations: DALYs = disability-adjusted life years, ICERs = incremental cost-effectiveness ratio, US$ = United 
States Dollar. Values in cells are the mean and 95% uncertainty ranges. 
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Budget impact analysis 
 
 
Figure S9.2 Annual incremental costs (US$, 1000s) for the M72/AS01E scenarios 
 

 
 
 

Figure S9.3 Basecase M72/AS01E scenario incremental discounted costs (USD$, millions) by year 
 
 
Abbreviations: DS-TB = drug-susceptible tuberculosis, RR-TB = rifampicin-resistant tuberculosis, USD$ = United 
States dollars. 
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Table S9.2 Total vaccination costs, and incremental diagnostic, treatment, and net costs between 2025–
2050 for the M72/AS01E scenarios  

 

Scenario 
Vaccination 

costs  
(US$, millions)  

DS-TB 
diagnostic 

costs  
(US$, millions)  

RR-TB 
diagnostic costs  
(US$, millions)  

DS-TB 
treatment costs  
(US$, millions)  

RR-TB 
treatment costs  
(US$, millions)  

Incremental cost  
(US$, millions) 

Basecase 7,018  
(4,769–10,349) 

-84  
(-103– -67) 

-3  
(-10– -0.01) 

-1,183  
(-1,467– -941) 

-418  
(-501– -352) 

5,331  
(3,083–8,574) 

60% efficacy 7,019  
(4,770–10,351) 

-98  
(-121– -79) 

-3  
(-12– -0.02) 

-1,383  
(-1,715– -1,099) 

-488  
(-584– -411) 

5,047  
(2,807–8,298) 

70% efficacy 7,020  
(4,771–10,352) 

-111  
(-137– -89) 

-3  
(-14– -0.02) 

-1,571  
(-1,945– -1,249) 

-555  
(-664– -467) 

4,780  
(2,516–8,063) 

5 years protection 7,017 
(4,769–10,348) 

-64  
(-79– -51) 

-2  
(-8– -0.01) 

-896  
(-1,115– -712) 

-316  
(-379– -266) 

5,739  
(3,507–9000) 

15 years protection 7,018  
(4,770–10,350) 

-93  
(-115– -75) 

-3  
(-12– -0.02) 

-1,312  
(-1,625– -1,043) 

-463  
(-554– -390) 

5,148 
(2,904–8,386) 

20 years protection 7,019 
(4,770–10,350) 

-98  
(-121– -79) 

-3  
(-12– -0.02) 

-1,386  
(-1,717– -1,102) 

-490  
(-585– -413) 

5,042  
(2,802–8,293) 

Prevention of infection and 
disease 

7,019  
(4,770–10,351) 

-107  
(-131– -85) 

-3  
(-13– -0.02) 

-1,504  
(-1,867– -1,196) 

-531  
(-635– -448) 

4,875  
(2,630–8,145) 

Efficacy with current 
infection at vaccination 

7,016  
(4,768–10,346) 

-47  
(-57– -38) 

-1  
(-6– -0.007) 

-658  
(-806– -528) 

-233  
(-276– -195) 

6,077 
(3,856–9,353) 

2036 introduction 5,282  
(3,592–7,787) 

-42  
(-52– -34) 

-1  
(-5– -0.007) 

-593  
(-739– -470) 

-209  
(-253– -174) 

4,437  
(2,762–6,877) 

Lower coverage 5,410  
(3,682–7,970) 

-67  
(-83– -53) 

-2  
(-8– -0.01) 

-941  
(-1,171– -748) 

-332  
(-399– -279) 

4,068  
(2,338–6,553) 

Higher coverage 8,629  
(5,859–12,734) 

-100  
(-123– -80) 

-3  
(-12– -0.02) 

-1,412  
(-1,747– -1,123) 

-499  
(-596– -420) 

6,616  
(3,852–10,621) 

 Older ages (campaign for ages 
18–55) 

9,017  
(6,097–13,346) 

-95  
(-114– -77) 

-3  
(-12– -0.01) 

-1,334  
(-1,610– -1,072) 

-471  
(-551– -402) 

7,115  
(4,177–11,349) 

 Elderly ages (campaign for 
ages 61+, routine age 60) 

3,634  
(2,474–5,356) 

-20  
(-25– -16) 

-1  
(-3– -0.003) 

-282  
(-348– -227) 

-99  
(-119– -84) 

3,233  
(2,074–4,967) 

 
Abbreviations: DS-TB = drug-susceptible tuberculosis, RR-TB = rifampicin resistant tuberculosis, US$ = United 
States Dollars. Values in cells are the mean and 95% uncertainty ranges. 
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9.2 BCG-revaccination scenarios 
 
Cost-effectiveness analysis 
 

 
Figure S9.4 Cost-effectiveness plane for BCG-revaccination scenarios 
 
Abbreviations: DALYs = disability-adjusted life years, USD$ = United States Dollars. 
 
Points are the mean incremental costs and mean incremental DALYs averted for each scenario compared to the costs 
and DALYs from the no-new-vaccine baseline. The solid line represents 1x GDP, the dashed line represents the 
Ochalek upper bound, and the dotted line represents the Ochalek lower bound. The 20 years protection and 60% 
efficacy scenarios for the M72/AS01E vaccine overlap and appear as one single point on the figure. 
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Table S9.3 Incremental DALYs averted, incremental costs averted, and ICERs from the health system 
and societal perspectives for BCG-revaccination scenarios 

 

Scenario 

Incremental 
DALYs averted 
between 2025–

2050 
(millions) 

Health-system perspective Societal perspective 

Incremental 
costs between 

2025–2050 
($, millions) 

ICERs  
($/DALY 
averted) 

Incremental 
costs between 

2025–2050 
($, millions) 

ICERs  
($/DALY 
averted) 

Basecase 29.1  
(25.1–34.6) 

653  
(-419–2,179) 

22  
(cost-saving–79) 

502  
(-563–2,030) 

17  
(cost-saving–71) 

70% Efficacy 42.8  
(37.0–51.0) 

82  
(-1058–1,684) 

2  
(cost-saving–40) 

-140  
(-1,257–1,425) 

cost-saving 
(cost-saving–33) 

5 years protection 22.1  
(19.0–26.3) 

964  
(-78–2,456) 

44  
(cost-saving–116) 

851  
(-195–2,343) 

39  
(cost-saving–111) 

15 years protection 32.4  
(27.9–38.6) 

505  
(-576–2,049) 

16  
(cost-saving–67) 

336  
(-736–1,880) 

10  
(cost-saving–59) 

20 years protection 34.4  
(29.7–40.9) 

417  
(-678–1,970) 

12  
(cost-saving–60) 

237  
(-836–1,792) 

7  
(cost-saving–53) 

Prevention of infection and disease 40.6  
(35.0–48.4) 

175  
(-953–1,763) 

4  
(cost-saving–44) 

-35  
(-1133–1,526) 

cost-saving 
(cost-saving–38) 

Efficacy with any infection status at 
vaccination 

30.4  
(26.4–36.1) 

604  
(-466–2,145) 

20  
(cost-saving–74) 

446  
(-628–1,984) 

15  
(cost-saving–67) 

2031 introduction 16.2  
(13.9–19.3) 

539  
(-145–1,522) 

33  
(cost-saving–97) 

456  
(-227–1,438) 

28  
(cost-saving–92) 

Lower coverage 26.3  
(22.6–31.3) 

555  
(-390–1,900) 

21  
(cost-saving–76) 

418  
(-515–1,764) 

16  
(cost-saving–69) 

Higher coverage 31.7  
(27.3–37.7) 

758  
(-437–2,465) 

24  
(cost-saving–82) 

594  
(-591–2,301) 

19  
(cost-saving–74) 

Older ages (campaign for ages 16–34, 
routine age 15) 

30.0  
(26.1–35.6) 

1,554  
(-111–3,953) 

52  
(cost-saving–135) 

1,384  
(-301–3,773) 

46  
(cost-saving–131) 

Elderly ages (campaign for ages 61+, 
routine age 60) 

0.4  
(0.4–0.6) 

1,617  
(686–2,997) 

3,594  
(1,485–6,734) 

1,612  
(681–2,989) 

3,585  
(1,478–6,725) 

 
Abbreviations: DALYs = disability-adjusted life years, ICERs = incremental cost-effectiveness ratio, US$ = United 
States Dollar. Values in cells are the mean and 95% uncertainty ranges. 
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Budget impact analysis 
 

 
 

Figure S9.6 Basecase BCG-revaccination scenario incremental discounted costs (US$, millions) by year 
 
 
 
Abbreviations: DS-TB = drug-susceptible tuberculosis, RR-TB = rifampicin-resistant tuberculosis, USD$ = United 
States dollars. 
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Table S9.4 Total vaccination costs, and incremental diagnostic, treatment, and net costs between 

2025–2050 for the BCG-revaccination scenarios 
 

Scenario 
Vaccination 

costs  
(US$, millions)  

DS-TB 
diagnostic costs  
(US$, millions)  

RR-TB 
diagnostic costs  
(US$, millions)  

DS-TB 
treatment costs  
(US$, millions)  

RR-TB 
treatment costs  
(US$, millions)  

Incremental cost  
(US$, millions) 

Basecase 1,870  
(831–3,408) 

-61  
(-77– -48) 

-2  
(-8– -0.01) 

-854  
(-1,088– -674) 

-301  
(-368– -251) 

653  
(-419–2,179) 

70% efficacy 1,875  
(833–3,417) 

-89  
(-113– -71) 

-3  
(-11– -0.02) 

-1,257  
(-1,600– -994) 

-444  
(-540– -368) 

85  
(-1058–1,684) 

5 years protection 1,873  
(833–3,413) 

-45  
(-57– -36) 

-1  
(-6– -0.008) 

-638  
(-811– -505) 

-225  
(-276– -187) 

964  
(-78–2,456) 

15 years protection 1,869  
(831–3,405) 

-68  
(-86– -54) 

-2  
(-8– -0.01) 

-956  
(-1,220– -754) 

-338  
(-411– -280) 

506  
(-576–2,049) 

20 years protection 1,868  
(831–3,403) 

-72  
(-91– -57) 

-2  
(-9– -0.01) 

-1,018  
(-1,296– -802) 

-359  
(-438– -298) 

417  
(-678–1,970) 

Prevention of infection and disease 1,871  
(832–3,409) 

-84  
(-107– -67) 

-3  
(-10– -0.01) 

-1,189  
(-1,517– -938) 

-420  
(-512– -348) 

175  
(-953–1,763) 

Efficacy with any infection at 
vaccination 

1,878  
(835–3,424) 

-63  
(-80– -50) 

-2  
(-8– -0.01) 

-893  
(-1,142– -705) 

-316  
(-384– -262) 

604  
(-466–2,145) 

2031 introduction 1,211  
(537–2,208) 

-33  
(-43– -26) 

-1  
(-4– -0.006) 

-471  
(-605– -368) 

-166  
(-205– -137) 

539  
(-145–1,522) 

Lower coverage 1,655  
(743–3,003) 

-55  
(-69– -43) 

-2  
(-7– -0.009) 

-772  
(-984– -609) 

-272  
(-333– -226) 

555  
(-390–1,900) 

Higher coverage 2,083  
(918–3,807) 

-66  
(-83– -52) 

-2  
(-8– -0.01) 

-929  
(-1,184– -735) 

-328  
(-400– -273) 

758  
(-437–2,465) 

Older ages (campaign for ages 16-
34, routine age 15) 

2,926  
(1,264–5,390) 

-68  
(-86– -54) 

-2  
(-8– -0.01) 

-963  
(-1,219– -756) 

-340  
(-414– -282) 

1,554 
(-111–3,953) 

Elderly ages (campaign for ages 
61+, routine age 60) 

1,652  
(718–3,036) 

-2  
(-2– -1) 

-0.1  
(-0.2–0) 

-24  
(-31– -19) 

-9 
(-11– -7) 

1,617  
(686–2,997) 

 
Abbreviations: DS-TB = drug-susceptible tuberculosis, RR-TB = rifampicin resistant tuberculosis, US$ = United 
States Dollars. Values in cells are the mean and 95% uncertainty ranges. 
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