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Supplementary Text 
 
I. Phenotyping 
Registry data is available for all FinnGen participants from national health registers. This includes data 
on hospital and outpatient visits (HILMO - Care Register for Health Care), Primary care visits 
(AvoHILMO - Register of Primary Health Care), the Medical Birth Register (including data on the 
mother’s diseases during pregnancy: ICD-9,10), Causes of Death, reimbursed medication entitlements 
and prescribed medicine purchases, and the Finnish Cancer Registry. Clinical endpoints were 
constructed from the register codes using Finnish version of International Classification of Diseases, 
10th revision (ICD-10) diagnosis codes and harmonizing those with definitions from ICD-8 and ICD-9.  
 
 
Codes related to diagnoses are as follows: 
Phenotype Codes 
Gestational diabetes ICD10: O244;  

ICD9: 6480A; 

ICD8: None 
Diabetes ICD10: E10, E10.[0-9], E11, E11.[0-9], E13, E13.[0-9], E14, E14.[0-

9], M14.2, H36.0[0-9], O24, O24.[1-4]; 

ICD9: 250, 250.[0-8]A, 250.[0-8]B, 250.[0-8]C, 250.[0-8]X, 3620A, 
3620B, 6480A, 6488A; 

ICD8: 250, 2500[0-9],76110; 

KELA drug reimbursement registry: 103, 215; 

Drug ATC code: A10AB0[1-6], A10AB30, A10AC0[1-4], A10AC30, 
A10AD0[1-6], A10AD30, A10AE0[1-6], A10AE30, A10AE54, 
A10AE56, A10BA, A10BA0[1-3], A10BB, A10BB0[1-9], A10BB1[0-
2], A10BB31, A10BC, A10BC01; 

Chronic pancreatitis and 
pancreatic necrosis 

ICD10: K86.01, K86.08, K86.1; 

ICD9: 5771A, 5771B, 5771C, 5771D; 

ICD8: 57710, 57719, 57702,57793; 
Pancreatic cancer 

 

ICD10: C25, C25.[0-9]; 

ICD9: 157, 157[0-4]A, 157[8-9]X; 

ICD8: 157, 15701, 15787, 15788, 15799, 23060; 
Cystic fibrosis ICD10: E84, E84.[0-9]; 

ICD9: 2770A; 

ICD8: 27300; 
 
Temporal phenotyping was then performed in 2 steps: (1) pregnancies with gestational diabetes were 
identified, (2) individual females were assigned as cases or controls.  
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Date of delivery/ the child’s birth date of 330,000 children born to female FinnGen participants was 
identified from the Population Register or the Medical Birth Register. Then a “pregnancy window” was 
generated for each pregnancy from 40 weeks before delivery to 5 weeks after. The allotted timing was 
to account for variability introduced by pseudoanonymization of time scale within and across registries. 
A pregnancy was classified as having “gestational diabetes” or “unaffected” based on the following 
criteria: 
 

 
 
The inclusion criteria reflect that a gestational diabetes diagnosis code was only available in ICD9 and 
ICD10 whereas in ICD8 there was only a general “diabetes” code. To include representation from ICD8 
era, we constructed the inclusion and exclusion criteria to pull females who received a diagnosis of 
diabetes during a pregnancy window who had no other diabetes codes prior to pregnancy. The vast 
majority of cases were from ICD9 and ICD10 with only 730 cases added. Comparison of pregnancy 
labels created with the addition of ICD8 to the cohort to those without demonstrated they were 
sufficiently similar to proceed.  
  
Among the 151,000 genotyped females with a pregnancy, cases were identified as those with 
gestational diabetes in at least 1 pregnancy. Controls are females with a history of pregnancy where all 
pregnancies were “unaffected”. In other words, controls have (1) no abnormal blood glucose in the 
pregnancy registry, (2) no diabetes codes occurring prior to or during any pregnancy, and (3) no 
significant pancreatic disease prior to or during any pregnancy.  
 
 
 
 
 
 
 
 

 Inclusion Criteria  Exclusion Criteria 
Pregnancy 
with GDM 

Pregnancies were included if they had 
any of the following: 

 

1. Abnormal blood glucose listed 
in the pregnancy registry 

2. Gestational diabetes code☨ 
received in the pregnancy 
window 

3. Diabetes code received in the 
pregnancy window 

 

Pregnancies were excluded if any of the 
following occurred prior to the index 
pregnancy: 

1. Significant pancreatic disease 
including:  

• Chronic pancreatitis 
• Pancreatic necrosis 
• Pancreatic cancer 
• Cystic fibrosis 

2. Diabetes diagnosis code occurring 
outside a pregnancy window 

3. Type 1 or Type 2 diabetes☨ at any 
point prior 

Unaffected 
pregnancy 

None of the GDM inclusion criteria Same as above 

☨Recall these definitions contain only ICD9 and ICD10 codes. 
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II. Colocalization comparison metrics 
We perform colocalization on finemapped credible sets obtained from SuSiE using the posterior 
inclusion probabilities (PIP) estimated by SuSIE. For the colocalization we report both the Causal 
Posterior Probability (CLPP) and the Causal Posterior Agreement (CLPA). Colocalization was 
performed for the FinnGen release 8 endpoints (Supplementary Table 2), gene expression data from 
GTEx (Supplementary Table 5) and the eQTL Catalogue (Supplementary Table 6), lipid measures 
(Supplementary Table 7) and biomarkers (Supplementary Table 8). 
 
A. Causal Posterior Probability (CLPP)  
The Causal Posterior Probability (CLPP) is computed similarly to Hormozdiari et al (equation 8)1. For 
the credible set of phenotype 1 (𝑐𝑠!) and 2 (𝑐𝑠").  
 

𝐶𝐿𝑃𝑃 = 	 ( 𝑥𝑖 ∗ 𝑦𝑖

#

#∊%&!∩%&"

 

 
where x and y are vectors containing the PIP for 𝑐𝑠! and 𝑐𝑠", respectively. Notably CLPP is dependent 
on the credible set size.  
 
B. Causal Posterior Agreement (CLPA) 
The Causal Posterior Agreement (CLPA) is independent of credible set size and defined by  
 
 

𝐶𝐿𝑃𝐴 = 	 ( min	(𝑥! ∗ 𝑦#)
#

#∊%&!∩%&"

 

 
C. Datasets 
Colocalization was performed for SuSiE fine-mapped data from: FinnGen phenotype endpoints from 
FinnGen release 8 (Supplementary Table 2); gene expression data from 49 tissues from donors of 
mixed ancestry in GTEx v8 (Supplementary Table 5)2. Gene expression data from EMBL-EBI eQTL 
Catalogue on 24 tissues/cell types3 from samples of predominantly European ancestry (Supplementary 
Table 6); metabolism eQTL datasets from the GeneRISK study4,5, including 186 lipid species 
(Supplementary Table 7); and 36 continuous endpoints and 57 biomarkers from UK 
Biobank(Supplementary Table 8);.  
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III. Finnish metabolite mQTL annotations 
 
We annotate the SuSiE finemapped credible sets for GDM and Type 2 diabetes with metabolite QTLs 
(mQTL) on circulating metabolite data from the Finnish METSIM study6 .  
 
 
A. Dataset  
The Metabolic Syndrome in Men (METSIM) study6 is a Finnish population study 10,197 Finnish men 
examined in 2005-2010. Genetic data includes both array data and exome data. Fasting blood 
metabolites were obtained with NMR mass spectrometry. Notably, this is an all male study which is a 
potential limitation for our GDM annotations however this is in the same population as our study. Every 
SNP in METSIM has been tested for association with 1391 metabolites, 937 after removing metabolites 
that are classified as xenobiotics or uncharacterized.  
 
 
B. Method 
We evaluated the 28 diabetes loci (the 13 GDM associated loci and 15 loci from the T2D GWAS used 
in the shared variants analysis) to annotate the SuSiE finemapped credible sets with mQTLs on 
circulating metabolite data from the METSIM study. To annotate the loci, we choose a representative 
lead SNP for the metabolite annotation (metLead variant) that is the credible set variant with the highest 
SuSiE posterior inclusion probability, PIP, that occurs in the METSIM study. If no credible set member 
appears in METSIM then we assign the metLead variant as the variant in METSIM with the highest LD 
to the lead variant if the r2 is > 0.2, otherwise assign NA.Associations with 937 blood metabolites were 
then extracted for each of the metLead SNPs. Metabolites with significant p-values after Bonferroni 
correction were then annotated to the locus (threshold 5.3e-5 for multiple testing of 937 metabolites).  
 
C. Results 
We provide mQTL annotations for all of the GDM loci and for T2D loci. Seven of the 13 GDM loci have 
mQTL annotations. Novel GDM loci are associated with glucose, mannose, branched chain amino 
acids, serine, androgens, bile acids, and lipids. Detailed annotations provided in Supplementary Table 
9.  
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IV. Comparison of genetic correlation results 
Gestational diabetes was tested for genetic correlation (rg) with 24 disorders or traits and with 29 
biomarkers. Significantly correlated traits or biomarkers had their rg in GDM compared to the rg with 
T2D to determine if there was a significantly different overlap with T2D than GDM.  
 
A. Method to compare genetic correlation results  
For both GDM and T2D, initial pairwise genetic correlations (SNP-rg) between GDM and other traits 
was performed using LD Score Regression (LDSC) Version 1.0.1 with previously computed LD scores 
from European ancestry individuals from the 1000 Genomes Project. We then compared the magnitude 
of SNP-rg that was seen for each trait with GDM vs T2D by computing the Z-score for the comparison in 
SNP-rg between trait 1 and 2 as follows: 

𝑍 =
𝑟(,(*+ −	𝑟(,,"*

0𝑠𝑒2𝑟(,(*+3
" + 𝑠𝑒2𝑟(,,"*3

"	
"

	 

P-values for the comparison were computed from the Z-score.  
 
B. Results  
Significant genetic correlations were identified with 12 diseases or traits and 8 blood laboratory values 
all of which had been phenotypically related to GDM (Supplementary Table 15 & 16; Figure 1b). The 12 
traits with significant genetic correlation included glycemic traits such as fasting glucose, Hb1C, HOMA-
IR, and 2 hour glucose on OGTT testing but not Fasting insulin (Supplementary Table 15). Adulthood 
disorders in which we observed significant rg to GDM like Coronary Artery Disease (CAD), Heart 
Failure (HF), and Hypertension (HTN) have previously been phenotypically linked to gestational 
diabetes7-9. Significant biomarkers included liver and lipid biomarkers linked to GDM10-12as well as 
apolipoprotein A and Vitamin D that have recently been implicated prior to or early in GDM 
pregnancies13-15. 
 
We then took the eleven traits with significant genetic correlation (excluding T2D) and compared the rg 
in GDM to the rg in T2D, (Supplementary Table 17 and Supplementary Figure 19). Three traits had 
significantly different rg with GDM than with T2D after multiple testing correction: Waist Hip Ratio, BMI, 
and CAD. Comparison of the rg to GDM versus to T2D in 20 biomarkers showed a significant difference 
in the genetic correlation of two biomarkers after correction for multiple testing: urea and gamma 
glutamyltransferase (Supplementary Table 18 and Supplementary Figure 20).  
 
In particular, maternal GDM is known to affect child birth weight. Genetic studies of birth weight have 
identified both fetal and maternal genetic associations with the child birth weight16 and have used 
structural equation modelling to distinguish the separate contributions of maternal and fetal effects. 
Based on the observed genetic correlation of these maternal and fetal effects with fasting glucose it 
was hypothesized that genetic signals for GDM in the mother would be positively corelated with child 
birth weight while genetic signals for GDM in the fetus would be negatively correlated with fetal birth 
weight. Intuitively this is because glucose but not insulin passes the placenta and fetal insulin is an 
important growth hormone stimulating fetal size and development. Thus a fetal genetic effect that 
results in reduced GDM risk was thought to also correspond to reduced insulin levels and reduced 
production of this hormone essential for growth. Our GDM GWAS confirms this hypothesis that GDM 
has a significant positive genetic association with maternal GWAS of birthweight and maternal effect on 
birth weight but a negative genetic correlation with fetal GWAS of birth weight and fetal effect on birth 
weight (Supplementary Table 19, Supplementary Figure 19). However contrary to the hypothesis in the 
paper, we do not see any significant association to fasting insulin levels at current sample sizes, 
suggesting any genetic correlation of GDM with general fasting insulin levels is likely modest 
(Supplementary Table 15&20). 
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V. Comparison of GDM with T2D and glycemic traits 
 
Initial evaluation of the top SNPs for GDM 
comparing their genetic effects in GDM and 
T2D suggested a relationship as in 
Supplementary Figure 18. To more formally 
compare the genetic effect of 13 GDM-
associated loci on GDM versus T2D and 6 
other disorders, we extended existing 
methods17-20 to determine trends of effects 
across the loci and identify outliers that have 
different pattern of effects than the majority of 
SNPs. Our approach, Significant Cross-trait 
OUtliers and Trends in JOint York regression 
(SCOUTJOY), has the advantage of: (1) 
accounting for sampling error in the GWAS 
effect estimates for each phenotype, (2) 
allowing sample overlap or other sources of 
correlated sampling error, and (3) making no 
assumptions about a causal relationship 
between the phenotypes. To accomplish this 
we first had to derive estimating equations for 
a special case of York regression that has 
not been addressed by existing literature. 
Using this tool we were able to compare the 
loci’s genetic effects in GDM vs glycemic 
traits including T2D and the glycemic traits 
such as fasting glucose, 2h glucose on Oral 
Glucose Tolerance Testing (OGTT), and 
fasting insulin.  
 
 
A. Methods 
1. Derivation of York regression model 
with fixed intercept 
We want to compare the trend in genetic 
effects between the two disorders and identify outliers. To accomplish this we need regression tool 
allows for (1) sampling errors in GWAS scans for both disease X and Y, and (2) sample overlap, or 
other sources of correlated sampling errors in the two diseases. York regression is designed for this 
task, finding a best fit line for two variables that are observed with known measurement error 
(co)variance. Briefly, for observed variables X and Y, York regression finds the intercept a and slope b 
such that  

𝑌# = 𝑎 + 𝑏𝑋# 
[ 1 ] 

minimizes the sum of squared weighted residuals 

𝑆 = 	(	
#-!

.
:

(𝑌# − 𝑏𝑋# − 𝑎)"

𝜎/,#" +	𝑏"𝜎0,#" − 2𝑏𝜌#𝜎0,# 	𝜎/,# 	
@ 

[ 2 ] 

where 𝜎0,#" , 𝜎/,#" , and 𝜌# are the squared standard errors and estimated correlation of sampling errors for 
the two GWAS effect size estimates for each SNP i. Compared to standard linear regression, York 
regression avoids attenuation and inefficient error estimates that would be caused by the ignoring 

Variables 
Xi, Yi GWAS effect sizes for SNP i for the two 

diseases/traits being compared  
i Index for chosen top SNPs 1,…,K  
K Total number of SNPs being compared 
𝜎0,# 	, 𝜎/,# 	 Standard errors of Xi and Yi for SNP i 
 𝜌#   correlation of the errors for 𝑥# and 𝑦#  
a  Intercept of regression line comparing 

effect sizes between two traits 
𝑎1 Chosen fixed intercept for regression 
b Slope of the regression line comparing 

effect sizes between two traits 
𝑊# Weights 

	
1

𝜎/,#" +	𝑏"𝜎0,#" 	− 2𝑏𝜌#𝜎0,#𝜎/,# 	
 

	 
 𝑋D, 𝑌D  Weighted means of X and Y 

𝑋 =DDDDD
∑ 𝑊# 	𝑋2F 	3
#-!
∑ 𝑊# 	3
#-!

, 𝑌 =DDDDD
∑ 𝑊# 	𝑌2F	3
#-!
∑ 𝑊# 	3
#-!

 

𝑋2F , 𝑌2F  Estimate of the effect size under the York 
regression slope 

M Number of simulations 
𝛼4",0  estimated intercept from univariate LD 

score regression for the GWAS of the first 
phenotype 

𝛼4",/ estimated intercept for GWAS of the 
second phenotype  

𝛼5( estimated intercept from bivariate LD score 
regression for the genetic correlation 
between the two phenotypes 
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uncertainty in the predictor variable (X). This can be thought of as a generalization of Deming 
regression, which addresses the case where X and Y have error that is independent (𝜌# = 0). 
 
For our purposes (see SCOUTJOY below) we want to estimate York regression with the intercept fixed 
to 0. To our knowledge, no estimator has previously been derived for the fixed intercept case for York 
regression. However Mahon et al. derived estimators for Deming regression with a fixed intercept, 
which we closely follow here for generalizing to York regression by allowing for correlated errors19. 
First, let 

𝑋D = 	
∑ 𝑊# 	𝑋# 	.
#-!
∑ 𝑊# 	.
#-!

 

[ 3 ] 

𝑌D = 	
∑ 𝑊# 	𝑌# 	.
#-!
∑ 𝑊# 	.
#-!

 

[ 4 ] 

be the weighted averages across the K observations (e.g. loci) normally used in York regression, where 
W is the standard York regression weights for residual variation 

	𝑊# =	
1

𝜎/,#" +	𝑏"𝜎0,#" 	− 2𝑏𝜌#𝜎0,#𝜎/,# 	
 

[ 5 ] 

Then as has been shown in Mahon et al., given a fixed intercept 𝑎1 the best fit slope can be estimated 
by: 

𝑏 = 	
𝑌D − 𝑎1	
𝑋D

 
[ 6 ] 

As in regular York regression, this estimator for the slope is not a closed form solution since the 
weights, W, used to compute 𝑌D and 𝑋D depend on the slope, b. Instead the slope and weights can be 
calculated iteratively. The initial slope estimate is made based on ordinary least squares regression 
with the fixed intercept. W, 𝑋D, 𝑌D, and b are then updated iteratively until b converges.  
 
As with previous York papers17,19, the error variance of the slope can be estimated using the 
propagation of errors. 

𝜎6" 	=
∑ I𝜕𝜃𝜕𝑥#

L
"
	𝜎0,#" +	I𝜕𝜃𝜕𝑦#

L
"
	𝜎/,#" + 2 I𝜕𝜃𝜕𝑥#

L I𝜕𝜃𝜕𝑦#
L	𝜎0/,#3

#-!

M𝜕𝜃𝜕𝑏N
"  

[ 7 ] 

Where  
𝜃 = 𝑎1 + 𝑏	𝑋D −	𝑌D	 

[ 8 ] 

Solving the necessary partial derivatives and substituting	𝐷# = 	2𝑏𝜎0,#" − 	2𝜌#𝜎0,#𝜎/,#  yields: 
𝜕𝜃
𝜕𝑥#

=	
𝑏𝑊#
∑ 𝑊##

 
[ 9 ] 

𝜕𝜃
𝜕𝑦#

=	
−𝑊#
∑ 𝑊##

 
[ 10 ] 
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𝜕𝜃
𝜕𝑏

= 𝑋D +	
	P(∑ 𝑊## )2∑ 𝐷#𝑊#

"𝑌# − 𝐷#𝑊#
"𝑏𝑋## 3Q −	P(∑ 𝐷#𝑊#

"
# )(∑ 𝑊#𝑏𝑋# −𝑊#𝑌#)# Q

(∑ 𝑊## )"  
[ 11 ] 

The work above allows us to perform York regression with a fixed intercept. For our application it is also 
necessary to estimate predicted values for the observed data points based on the fitted regression 
(sometimes referred to as least squared adjusted points). It can be shown that prior estimators of these 
predicted values for York regression17,21 are equivalent18 and that they still hold with a fixed intercept, 
which when 𝑎1 = 0 simplify to 

𝑋2F = 𝑊#P2𝜎/,#" − 𝑏𝜌#𝜎0,#𝜎/,#3𝑋# + 2𝑏𝜎0,#" − 𝜌#𝜎0,#𝜎/,#3𝑌#Q 
𝑌2F = 𝑏𝑋2F  

[ 12 ] 

With this we can construct an approach to compare genetic effects in two disorders as per below. 
 
2. Estimation of correlation in sampling error for GWAS effect sizes 
York regression assumes that for each observation the sampling errors in Xi and Yi (𝜎0,#"  and 𝜎/,#" , 
respectively) and their correlation (𝜌#) are known. For our application to GWAS loci, standard error 
estimates for the effect sizes are normally available, but the sampling covariance is not normally 
estimated. To avoid requiring a joint model to be fit for each locus, we estimate the correlation 𝜌# from 
GWAS summary statistics.  
 
Specifically, it has previously been observed that the covariance of sampling errors in normalized 
GWAS effect sizes can be estimated, up to scaling factors for sample size, based on the intercept 
terms of univariate and bivariate LD score regression22.Thus if 𝛼4",0 is the estimated intercept from 
univariate LD score regression for the GWAS of the first phenotype, 𝛼4",/ is the corresponding intercept 
for GWAS of the second phenotype, and 𝛼5( is the estimated intercept from bivariate LD score 
regression for the genetic correlation between the two phenotypes, then we estimate 

𝜌 =
𝛼5(

R𝛼4",0𝛼4",/
 

[ 13 ] 

as the sampling correlation of the GWAS effect sizes for all SNPs in the analysis. We assume this 
correlation is likely to be stable across SNPs under the assumption that any sampling covariance is 
likely to be driven by sample overlap and phenotypic correlation and that these values will be constant 
across SNPs in our current analysis. We therefore use this estimate of 𝜌 for all loci in defining weights 
for York regression. 
 
3. Significant Cross-trait OUtliers and Trends in JOint York regression (SCOUTJOY) 
We are interested in the question of whether there is a consistent relationship in the effect sizes 
between GDM and T2D or other traits, as might be expected for instance if the loci for GDM reflect 
exposing the same underlying genetic risk factors as T2D. Genetic correlation estimates can help 
quantify this relationship on the genome-wide level, but we are interested in also making this 
comparison among genome-wide significant loci. Our interest is not only in quantifying the average 
relationship, but in identifying whether the observed locus results are consistent with a uniform 
relationship between the two phenotypes or if certain loci can be identified as outliers, potentially 
indicating differential roles or relative importance in each context. 
 
This question is statistically similar to the types of heterogeneity MR-PRESSO20 was developed to 
detect in mendelian randomization. Although we explicitly do not intend to draw any causal inferences 
about the pair of phenotypes, these diagnostic tests match our interest in identifying trends and outliers 
among the top genome-wide significant loci for a pair of traits.  
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Therefore we here adapt the tests introduced by MR-PRESSO20 to our use case, to (a) use York 
regression to account for measurement error in the effect size estimates from both GWAS, including 
possible correlated error due to e.g. sample overlap, and (b) extend outlier detect in cases where initial 
estimates of the trend in correlating effect size estimates may be unstable. We denote this adapted 
approach as Significant Cross-trait OUtliers and Trends in JOint York regression (SCOUTJOY). 
 
To begin, we identify the lead SNPs for the genome-wide significant loci in the first phenotype (e.g. the 
13 top SNPs for GDM) and get their estimated GWAS effect sizes and corresponding standard errors in 
GWAS of each trait (e.g. GDM and T2D), with effect sizes oriented to the risk increasing allele in the 
first phenotype. We then use York regression with the intercept fixed to zero (as described above) to 
estimate the slope representing the average trend in the relationship of the effect sizes for the two 
phenotypes for the selected SNPs. Fixing the intercept at zero represents a null model that the selected 
loci based on GWAS of the first phenotype aren’t expected to have an average effect on the second 
phenotype across SNPs that is unrelated to the first phenotype. Adopting this null model facilitates 
closely following the approach of MR-PRESSO to evaluating excess heterogeneity across SNPs 
relative to this null trend. 
 
After fitting this initial trend line by York regression, we then evaluate both (1) general overdispersion 
relative to a single trend line and (2) assess whether individual SNPs can be identified as outliers 
relative to the effects seen for other SNPs in the group. Outliers are of particular interest, so 
adaptations were made to extend the current approach of MR-PRESSO. 
 
i. Evaluation of general overall dispersion using the Global Test  
Our dispersion test is structured analogously to the general approach taken previously for MR-
PRESSO20 with a few changes. This approach evaluates whether the distribution of observed residuals 
from each point to the fitted regression line are larger than would be expected if the true SNP effect 
sizes followed a single line. In contrast to MR-PRESSO, we use York regression to fit the regression 
line which allows for correlated sampling error in both sets of betas in each study under comparison.  
 
More specifically, this is a 4 step process: 

(a) For each variant, i, we perform a leave-one-out analysis to calculate the regression line using 
York regression on the remaining variants, 𝑏S7#. This is the slope of the trend without point i, and 
allows evaluation of residual variation without overfitting of the slope to the variant.  

(b) Based on the estimated trend line, 𝑏S7# 	we calculate the observed weighted squared residual 
value (RE) for each of the K variants using the York regression weights and sum across SNPs: 
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(c) As in MR-PRESSO, the observed RE is compared against a simulated null distribution for 
expected REs under the null hypothesis that the true GWAS effect sizes fall on a single trend 
line. To simulate this null distribution, M simulation replicates for each variant is drawn from a 
bivariate normal distribution: 
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where 𝑋2F and 𝑌2F  are estimated as in Equation 12 using the leave-one-out estimate 𝑏S7#. We then compute 
the weighted squared residuals for each variant in each simulation replicate to obtain a null distribution 
of M expected REs.  
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(d) The observed sum of residuals is then compared to the distribution squared residuals from the 

M simulated null replicates to compute an empirical p-value23 for whether the observed squared 
residuals are more overdispersed than would be expected: 

 

𝑃 = :
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where 𝐼() is the indicator function. A significant P value for this test indicates that the observed effect 
sizes for the two phenotypes are not consistent with a uniform trend in effects across the included 
SNPs. 
 
 
ii. Identification of outliers  
Beyond overall overdispersion, we would like to identify if individual points are outliers relative to the 
bivariate trend line. Using the observed residuals and simulated null replicates from the Global Test we 
can use the same strategy as MR-PRESSO to compute the empirical p-value 
 

𝑃# = :
1 + ∑ 𝐼2𝑅𝐸89:(𝑖) > 𝑅𝐸=>?+ (𝑖)3@
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for each variant to test whether it is an outlier. We evaluate this p-value is evaluated after correction for 
multiple testing of the K variants in the analysis. 
 
This test, however, focuses on whether a given variant is an outlier relative to the leave-one-out 
estimate of the slope (𝑏S7#). If there are multiple outliers present among the included variants, this 
means the outlier status of the SNP is compared to a regression that is potentially biased by other 
outlier points. Given we are specifically interested in identifying outliers that might be scientifically 
informative we attempt to reduce this potential influence of the presence of multiple outliers by iterating 
the outlier detection process until the results appear stable. 
 
The first step in outlier identification is directly analogous to what is seen in MR-PRESSO where the 
observed residual of each point is compared against the residuals of the simulated residual null 
distribution across all SNPs. However we extend this approach by performing iterative outlier detection 
against a regression fit that excludes previously identified outliers and repeating this until no outliers 
remain. We also evaluate whether previously identified outliers are no longer outliers after updates to 
the regression fit. 
 
Specifically, the iterative outlier detection process works as follows:  

1. For each of the K points, test for outlier status by computing 𝑃# from 𝑅𝐸89:(𝑖) and 
𝑅𝐸=>?(𝑖)	based on leave-one-out York regression as described above. Denote the set of 
variants that are significant after Bonferroni correction for multiple testing as 𝑆1. If there are no 
identified outliers then the procedure stops here. 

2. For each of the K points, perform a new leave-n-out York regression excluding both the ith 
variant and the set of putative outliers 𝑆1. Simulate new null replicates and compute new 𝑃# 



13 

from observed and simulated residuals for each variant. From these new p-values determine 
which of the K points are significant outliers after Bonferroni correction for K variants, denoting 
this new set as 𝑆!. Note that this means that an outlier detected in a previous iteration could be 
returned to “non-outlier” status if it no longer appears to be an outlier after other exclusions.  

3. If the putative outlier sets 𝑆1 and 𝑆!are identical then the outlier detection has converged. If 
𝑆!does not match 𝑆1 but is identical to an outlier set identified in some previous iteration then 
the procedure will become stuck in a loop and so iteration is halted without convergence. 
Otherwise 𝑆1 is updated to match 𝑆! and step 2 is repeated. 

 
If the process converges then the variants in the final stable set 𝑆! are concluded to be significant 
outliers relative to the primary trend of relationship in GWAS effect sizes between the two phenotypes. 
While convergence is not guaranteed, in practice we do not encounter issues with infinite loops in the 
current analysis.  
 
B. Results 
For the 13 GDM-associated loci, we compared the genetic effects in GDM with 5 other disorders 
including Type 2 diabetes, fasting glucose, HbA1C, 2h Glucose on Oral Glucose Tolerance Testing 
(OGTT) and fasting insulin. The comparison to T2D showed a group of outliers with strong T2D effect 
indicating a stratification that was not seen in any of the other glycemic traits, (Supplementary Figure 
22). Falling into more than one group suggests some variants might have a different effect in pregnancy 
than the majority of variants that have an effect in both GDM and T2D. This would be further explored 
in the shared variants analysis. After removal of the outliers, there was a significant positive relationship 
between genetic effects in GDM and in T2D for the 13 loci (Supplementary Table 21).  
 
While the other glycemic traits did not have a stratified result seen in T2D, the relationship between 
genetic effects in GDM and in other traits (the trend line slope) was still informative (Supplementary 
Figure 21, Supplementary Table 20). A significant positive relationship was seen in fasting glucose 
(slope 0.19, p-value =5.2e-12) , HbA1C (slope 0.07, p-value =2.35e-10), and 2h glucose on 
OGTT(slope 0.15, p-value =4.0e-6) which suggests a uniform expected positive effect in SNPS in both 
disorders. In fasting insulin, no significant relationship was seen (slope= -1.24E-03, p-value=0.79). 
Complete list of slopes in Supplementary Table 20.  
 
C. Discussion 
We were able to compare genetic effects across related diseases using our new method, SCOUTJOY, 
that leverages a newly derived regression form. This detected a unique relationship between GDM and 
T2D that was not present with other traits and could detail the relationship or lack thereof with glycemic 
traits.  
 
 
 



VI. Genetic effect differences by sex or pregnancy history  
 
GDM is only experiences by pregnant females, so any observed differences between genetic effects for 
GDM and T2D could be confounded with differences in T2D genetic effects by sex or pregnancy 
history. We therefore evaluated whether the observed relationship of genetic effects between GDM and 
T2D was consistent across T2D in different groups by sex or pregnancy history.  
 
We first performed a genome wide association for T2D in (a) T2D in males, (b) T2D in females, (c) T2D 
in parous females who had a history of pregnancy and (d) T2D in nulliparous females with no history of 
pregnancy. Within each group, cases were those with T2D and controls were those without T2D.  
 
The stratified T2D GWAS allow comparison of sex or pregnancy effects in several ways. First, we test 
each of the 13 top hits from GDM for differences in T2D effect sizes between males and females or 
between parous and nulliparous females (method below). Second, we assess whether the overall trend 
in effect sizes for GDM and T2D across the 13 GDM hits differs when comparing to T2D in males vs. 
females or parous vs. nulliparous females using SCOUTJOY. Third, we consider the genome-wide 
genetic correlation of GDM with T2D in each sex and pregnancy history groups, as well as genetic 
correlation of T2D GWAS between the different groups.  
 
A. Method for comparing genetic effects of a SNP in two traits  
To determine if any of the GDM hits showed differences in T2D effects by sex or pregnancy history we 
compared the effect of each locus between groups. Following the same method previously used for 
testing sex differences in GWAS effect sizes24, for each comparison (i.e. male vs. female, parous vs. 
nonparous) we computed the Z-score for the difference in observed genetic effects in each of two 
nonoverlapping groups for each top GDM SNP i: 
 

𝑍# =
𝛽!,# −	𝛽",#

0𝑠𝑒!,#" + 𝑠𝑒",#"
	 

 
P-values for the comparison for each SNP are obtained from a two-sided test of this Z-score, and 
evaluated after Bonferroni correction for multiple testing of the 13 GDM loci. 
 
B. Results 
For the 13 GDM-associated loci, we compared the genetic effect on T2D in men versus women. Direct 
comparison of genetic effects at these loci revealed a significant difference at the CKDN2B locus 
(Supplementary Table 24). We then evaluated the relationship of genetic effects in T2D in men versus 
women using SCOUTJOY, (Supplementary Figure 23, Supplementary Table 21). The magnitude of 
genetic effect were very similar (slope=1.00, se=0.06) between sexes after identification of the one 
outlier at the CDKN2B locus. Effect plots of GDM versus T2D in each sex generally concordant, 
(Supplementary Figure 23) with the broadly similar slopes for the relationship of GDM with T2D in 
males (slope=0.44, se=0.05) and with T2D in females (slope=0.31, se=0.03).  
 
Comparison of the genetic effects in T2D was then performed for females with a history of pregnancy 
(parous females) and those without (nulliparous females). Direct comparison revealed that none of the 
13 GDM-associated loci were significantly different in these groups (Supplementary Table 24). 
Evaluation of the relationship of genetic effects using SCOUTJOY (Supplementary Figure 24, 
Supplementary Table 21) similarly revealed no outliers or heterogeneity (global test p=0.41) and 
generally concordant effect sizes (slope=0.77, se=0.11), though with higher uncertainty in nulliparous 
females due to lower sample size. 
 
We further assessed genome-wide genetic correlation of GDM with T2D in men and women with 
different pregnancy histories, respectively (Supplementary Table 23). Highly similar genetic correlations 
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were observed for GDM with males (rg =0.76, se = 0.062), females (rg =0.78, se =0.067), and parous 
females (rg =0.77, se =0.074). While the correlation of GDM vs nulliparous females (rg=0.94, se=0.16) 
appears different from the GDM vs the other subgroups, there’s no sign that the genetics of T2D in 
parous females and nulliparous females actually differs (rg=1.18, se=0.16). The initial observation could 
be attributable to sampling variation given the wider standard error and smaller sample size of the 
GWAS in nulliparous females. We do however find evidence that T2D in males is not perfectly 
genetically correlated with T2D in parous females (Z-score 1.73, p = 0.01) despite the high genetic 
correlation (rg 0.92), potentially consistent with the observation of a single outlier with sex differences at 
the locus level for CDKN2B. 
 
 



VII. Selection of variants for shared variants analysis 
As stated in the Online Methods, we used the linemodels package 
(https://github.com/mjpirinen/linemodels) to compare summary statistics for 28 lead variant from both 
the T2D and GDM GWAS (13 from GDM and 15 from T2D). 
 
Our goal was a fair comparison of effect sizes between our significant GDM loci and previously known 
T2D loci we might expect to have similar power to detect under a null hypothesis that the effect size in 
GDM is the same as in T2D. T2D has a higher effective sample size in Finngen, because it is both 
more common and is not restricted to parous females. Thus to balance the comparison, we took only 
the T2D loci that would have been identified in a smaller study equivalent to the power of the GDM 
GWAS.  
 
To do this, we first identified the minimum standardized effect size 𝛽+#A∗  among the genome-wide 
significant GDM loci (i.e. standardized for allele frequency).  

𝛽C∗ = 𝛽C 	 0(2𝑝C(1 − 𝑝C)	 

𝛽+#A∗ = min
C
	i𝛽C∗i 

where 𝛽C is the estimated log odds ratio for variant j in GDM GWAS, 𝑝C is the minor allele frequency for 
variant j and 𝛽C∗ is the standardized effect size for variant j. It can be shown that the expected GWAS 𝜒" 
statistic for a variant with observed standardized effect size 𝛽∗ can then be approximated by 

𝜒C" ≈ 𝑁𝐾(1 − 𝐾)𝛽C∗
" 

where N is the GWAS sample size and K is the proportion of cases in the GWAS sample. It may be 
noted that 𝑁𝐾(1 − 𝐾) is proportional to conventional estimates of effective sample size. We therefore 
estimate that a variant with the minimum detected standardized beta from the GDM GWAS 𝛽+#A∗  would 
correspond to an expected GWAS 𝜒" of  

	𝜒C,D"E" = 𝑁D"E𝐾D"E(1 − 𝐾D"E)𝛽+#A∗ "	 

in the Finngen GWAS of T2D with sample size 𝑁D"E and in-sample prevalence 𝐾D"E.  

Based on the sample size for T2D in Finngen release 6 (37031 cases, 214308 controls) we find the 
resulting 𝜒C,D"E"  corresponds to a p-value of 1.27e-22. Using this threshold we identified 15 independent 
loci from the T2D GWAS passing this p-value threshold that we would therefore expect to have power 
to detect in the GDM GWAS if the GDM and T2D effect sizes were equal. We therefore use the lead 
variants for this set of 15 T2D loci along with the 13 significant GDM loci for our comparison of top hit 
effect sizes. 

 

 



VIII. Comparison of relationship of genetic effects in BMI and GDM for 
Class T and Class G loci 
After identifying Class T and Class G SNPs, we were interested in their potential relationship with BMI. 
We focus here on BMI because we are not well powered to evaluate apparent patterns in other 
glycemic traits due to the smaller sample size of their published GWAS. For each class we compared 
the effects of member loci in gestational diabetes vs BMI using SCOUTJOY (Supplementary Figure 26, 
Supplementary Table 24). For each of the classes of SNPs we calculate the relationship between SNP 
effect in GDM and SNP effect in BMI IRN. We then compare the relationships observed across classes. 
 
A. Method to generate and compare genetic effect relationships 
Summary statistics from the GWAS for GDM, T2D, and inverse rank normalized BMI (BMI IRN) were 
used from Finngen release 8. We then compared the effects using SCOUTJOY algorithm as detailed 
above. Comparison of slopes from these independent sets of variants was performed using Z-score.  

𝑍 =
𝑠𝑙𝑜𝑝𝑒FGH&&# −	𝑠𝑙𝑜𝑝𝑒FGH&&$

0𝑠𝑒(𝑠𝑙𝑜𝑝𝑒)FGH&&#
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B. Results 
The Class G loci, which have a GDM-predominant effect, had no significant relationship between the 
genetic effect in GDM and in BMI IRN across all variants (slope=0.009, p=0.22; Supplementary Figure 
26a, Supplementary Table 24), and only a weak relationship after exclusion of 1 outlier (slope=0.026, 
p=0.010). In contrast, the Class T loci, which have predominant effect in T2D, had a significant 
relationship between the genetic effect in GDM and BMI after outlier removal (beta -0.12, p 6.8e-07). 
The relationship observed between GDM and BMI IRN was significantly different between Class G and 
Class T loci when the slopes were compared after excluding outliers (Z-score 9.6, p=6.0e-22). The 
negative relationship seen between top hits in Class T and BMI IRN echoes observations made 
previously about a negative correlation between genetic effects of top T2D hits and BMI25. We observe 
the same pattern in SCOUTJOY comparison of genetic effect in BMI IRN with T2D for class T loci 
(Supplementary Figure 26c; slope -0.9, p-value =1.55e-07).  
 



IX. Cell type specificity analyses 
We were interested assessing the relationship between the GDM summary statistics and single cell 
expression across the body – particularly in comparison to the T2D summary statistics. To that end, we 
assessed the relationship between genetic summary statistics and single cell RNA (scRNA) datasets to 
detect relationships with specific cells and tissues. We focused on independent signals from each 
tissue and then evaluated cross-tissue signal dependence related to each disease. We performed this 
analysis on cell-specific tissue expression despite the lack of significant findings on bulk level tissue 
expression (Supplementary Figure 16 and 17) because we know that adaptive physiologic changes in 
pregnancy induces major adaptive changes to specific cell populations within maternal tissues and 
effects on expression specific to these cell populations might be obscured in bulk tissue expression. 
 
A. Datasets for analysis  
Genetic datasets tested include (1) our GDM summary statistics and, for reference, for (2) summary 
statistics from a recent Type 2 Diabetes European meta analysis dataset26. 
 
The scRNA datasets were tested in a staged manner, summarized below. We first performed this 
analysis on a large, well curated murine scRNA dataset that provides survey level data across 22 
different organ/tissue types. Based on the results of this analysis, significant tissues were then more 
carefully evaluated with tissue specific murine datasets from hypothesized brain regions of interest. In 
the tissues/organs indicated, we also ran analyses on high quality human scRNA datasets where 
possible and provide comparisons.  
 
Name Description PMID column 
Tabula Muris 
FACS 

Mouse samples were tested resulting in 119 cell-tissue pairs 
from 22 tissues/organs. scRNA expression was measured in 
53,760 cells in the raw read count matrix, after QC 44,949 
cells exist in the annotation file. Cells with label "unknown" 
were included as it was stated in the original study that they 
are potential novel cell types. Number of genes tested was 
23,433 genes with 15,131 genes were mapped to human 
ENSG ID.  

30283141 (ref.27) 

Mouse 
Hypothalamus 
(GSE87544) 

Mouse hypothalamus samples were obtained from 8-10 week 
old mice and tested resulting in 46 cell types from 
hypothalamic tissue. scRNA expression was measured in 
14,437 cells, after QC the total number of cells used was 
1,039. Number of genes tested was 23,284 genes with 15,116 
genes were mapped to human ENSG ID.  

28355573 (ref.28)  

Mouse 
arcuate ME 
neurons 
(GSE93374) 

Mouse brain samples were obtained from the hypothalamic 
arcuate-median eminence complex in 4-12 week old mice. 
Testing resulted in 28 cell types from the arcuate nucleus 
tissue. scRNA expression was measured in 21,086 cells 
resulting in 13,079 cells after QC and clustering. Number of 
genes tested was 19,743 genes of which 14,366 genes were 
mapped to human ENSG ID. 

28166221 (ref.29 ) 

GSE84133 Mouse: All 1,886 cells were and from 14,878 genes, 12,741 
genes were mapped to unique human ENSG ID. 

27667365 (ref30) 

GSE84133 Human pancreas samples from individuals without diabetes.  
7,266 cell were sampled. Number of genes tested was 20,125 
genes and 19,546 genes were mapped to unique ENSG ID. 

27667365 (ref30) 

 
For complete dataset details see summarized descriptions (https://fuma.ctglab.nl/tutorial#celltype). 
Multiple testing correction was performed using the Benjamini-Hochberg multiple test correction (FDR).  
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B. Method for cell specificity analysis 
Assessing relationships across multiple scRNA-seq datasets is made particularly challenging due to 
complex batch and sampling differences between studies. A method addressing these concerns has 
been described by Wantanabe et al31. This method for a cell specificity analysis has been made 
available as part for the FUMA package. We briefly review the process below but for details please 
refer to the paper and online tutorials (https://fuma.ctglab.nl/tutorial#celltype). The analysis is a three-
step process.  
 
1.  Identify cells with scRNA expression significantly associated with genetic summary 
statistics  
For each cell/tissue type in each dataset, gene-level GWAS summary statistics from MAGMA are 
regressed on gene expression levels for the cell/tissue type and technical covariates. 
 
2. Identify independently associated cell types within each dataset 
For each dataset, all pairs of cell/tissue types that were significantly associated with the GWAS 
MAGMA results in Step 1 are systematically tested for conditional association. For each cell type pair, a 
proportional significance (PS) is then calculated: 
 

𝑃𝑆𝝉,𝝋 =
− log!12pK,L3
− log!1(pK)

 

 
Where pK is the marginal p-value for a cell type and pK,L is the conditional p-value for cell type 𝝉	
conditioning on cell type 𝝋. Using the PS score for each cell type, the signal between cell type is then 
determined to be dependent or independent.  
 
3. Identify independent signals across cells in different datasets/tissues 
All cell/tissue types showing within-dataset conditional association in Step 2 are compared across 
datasets to identify cell/tissue types that have substantial independent association (PS > 0.5) with the 
GWAS MAGMA results. 
 
C. Results 
First we performed the initial step of cell specificity analysis on the summary statistics for GDM on 
single cell RNA expression data from the Tabula Muris dataset which gives a high-level survey of 
expression data across 22 tissues in a well-characterized murine sample (Supplementary Figure 26, 
Supplementary Table 26). Differences were seen between GDM and T2D in this initial screen with 
GDM having (1) significant associations with cells in the brain not seen in T2D, and (2) different 
pancreatic cell types being associated with GDM than T2D. Because the cell-level brain data in Tabula 
Muris was limited, we then repeated the step 1 analysis augmenting the Tabula Muris dataset with data 
from several high quality scRNA studies of the murine brain. From this analysis, differences in 
independent signals in cell-tissue data between GDM and T2D were seen (Figure 3, Supplementary 
Table 27) that reveal GDM was associated with two cell populations in the hypothalamus and one in the 
arcuate nucleus that were distinct from the one cell-type association in the arcuate nucleus seen in 
T2D. This is of particular interest as it is well established that adaptive changes in pregnancy occur in 
the ventromedial hypothalamus (VMH) and arcuate nucleus to regulate blood sugar and blood pressure 
during pregnancy32. 
 
To consider the relationship signal in the cells of the brain had with cells in the pancreas, we performed 
cross dataset conditional analyses on these data (Supplementary Figure 27, Supplementary Table 28) 
which revealed that one of the GDM hypothalamic cell associations in Glu7 appeared related to the 
arcuate nucleus cell association Nr5a1-Adcyap1. In the initial paper describing the arcuate nucleus 
dataset29, the Nr5a1-Adcyap1 cell population was described as arising from the VMH and projecting 
across the arcuate nucleus, raising the hypothesis that this could be a direct shared signal. Cells arising 
from the VMH and projecting across the arcuate nucleus have been shown to express estrogen 
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receptor alpha (ER⍺) and control glucose balance33 and potentially be regulated by estrogen levels.34 
The gene encoding ER⍺, ESR1, is one of our GWAS hits for GDM, and estrogen is known to be 
elevated significantly in pregnancy.  
 
The conditional analysis of cell specificity also finds that the significantly associated pancreatic cells 
represent two signals but with some signal overlap (Supplementary Figure 28, Supplementary Tables 
28 & 29). The appearance of both murine beta cells and ductal cells as independent but related signals 
is interesting given ongoing recent work elucidating the role of ductal cells in murine beta cell 
compensation or expansion during pregnancy35,36. Signal in the pancreatic cell types appear distinct 
from that in the cells of the hypothalamus or arcuate nucelii and in fact that the PS > 1 implies that 
these signals appear stronger after accounting for signals in the brain (and vice versa).  
 
Finally, the structure of the mouse pancreas has known anatomic, physiologic, and molecular 
differences from the human pancreas. To compare the relationship of GDM summary statistics with 
human vs murine pancreatic expression, we performed the initial cell-specificity analysis for both 
human and mouse pancreatic data (Supplementary Figure 29, Supplementary Table 29). Significant 
differences in the cell-tissue relationships were seen in human vs murine scRNA expression. GDM was 
primarily associated with beta cells in the mouse but delta cells in human studies. This analysis of 
pancreatic cells alone does not show the association with ductal cells in mouse observed in analysis 
with the full 22 tissue Tabula Muris data, possibly indicating that some of that signal is associated with 
average expression across pancreatic cell types. In either case, larger human scRNA studies and 
additional characterization of the signal in mouse cells will be required to elucidate how the relevant 
aspects of GDM genetics manifest at the cellular level in the pancreas in mice and humans.  
 
 
 
 
 

 

 

 

 



 

 

 

 

Supplementary Figures



22 

 
 
 
Supplementary Figure 1: Regional GWAS results for rs780093 locus on chromosome 2 at 
27519736.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 
 
 

 
 
Supplementary Figure 2: Regional GWAS results for rs1402837 locus on chromosome 2 at 
168900844.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
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Supplementary Figure 3: Regional GWAS results for rs6798189 locus on chromosome 3 at 
123376465.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 
 
 

 
 
Supplementary Figure 4: Regional GWAS results for rs1820176 locus on chromosome 5 at 
96360881.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
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Supplementary Figure 5: Regional GWAS results for rs34499031 locus on chromosome 6 at 
20676183.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 
 
 
 

 
Supplementary Figure 6: Regional GWAS results for rs537224022 locus on chromosome 6 at 
151805650.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
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Supplementary Figure 7: Regional GWAS results for rs1333051 locus on chromosome 9 at 
22136490.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 
 
 

 
 
 
Supplementary Figure 8: Regional GWAS results for rs34872471 locus on chromosome 10 at 
112994312.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
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Supplementary Figure 9: Regional GWAS results for rs10830963 locus on chromosome 11 at 
92975544.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 
 
 

 
 
Supplementary Figure 10: Regional GWAS results for rs76895963 locus on chromosome 12 at 
4275678.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
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Supplementary Figure 11: Regional GWAS results for rs74628648 locus on chromosome 12 at 
97457224.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 

 
Supplementary Figure 12: Regional GWAS results for rs2926003 locus on chromosome 16 at 
81488676.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis. 
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Supplementary Figure 13: Regional GWAS results for rs56381411 locus on chromosome 23 at 
19380197.  
SNP label is the lead posterior inclusion probability (PIP) SNP from fine mapping. Dashed reference 
line is Bonferroni significance threshold (p = 5E-08). Color indicates LD with the lowest p-value SNP in 
the region. LD is computed from the Finnish SISu v3 reference panel. Shape indicates annotated 
functional consequence. Genes in the region from GENCODE are annotated below the X-axis.  
 
 
 
 
 



29 

 
Supplementary Figure 14: Gene property analysis of tissue specific expression.  
Unadjusted p-values for association of MAGMA gene-level results for GDM with tissue specific gene 
expression across 17310 genes. Performed using FUMA SNP2GENE based on tissue specificity 
analysis of expression in GTEx. Data available in Supplementary Table 12. 
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Supplementary Figure 15: Tissue specificity analysis of enrichment of differentially expressed 
gene sets (DEG).  
Unadjusted p-values of enrichment of genes from SuSiE finemapping of GDM GWAS in gene sets for 
DEG in 54 tissue types in GTEx v8 using FUMA GENE2FUNC tool per Online Methods. Panels 
correspond to enrichment for genes with (A) higher expression in a given tissue, (B) lower expression in 
a given tissue, (C) any expression change in a given tissue. No results are significant after correction 
for multiple testing. Data available in Supplementary Table 13.  
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Supplementary Figure 16: Heat map of gene expression.  
For each gene from finemapped GDM-associated loci, average log2(expression) in the given tissue 
compared to the average across tissues. Color scale is for intensity and direction of relative expression 
for gene labelled on Y-axis in tissue on X axis. Expression data from 54 tissues in GTEx analyzed using 
FUMA GENE2FUNC. 
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Supplementary Figure 17: Enrichment of annotated genes for finemapped GDM loci in GWAS 
Catalog gene sets.  
Figures display gene sets with adjusted P-value < 0.05. Red bars indicate proportion of genes in the 
gene set that are among the GDM-related genes. Blue bars are the p-values after Bonferroni correction 
for number of tests. Yellow squares indicate overlapping genes. Performed using FUMA GENE2Func 
[https://fuma.ctglab.nl/tutorial#snp2gene]. Data available in Supplementary Table 14. 
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Supplementary Figure 18: Genetic effect comparison in GDM vs T2D for GDM-associated loci  
Comparison of genetic effects in GWAS of GDM (x-axis) and T2D in males (y-axis). Heterogeneous 
appearance of effects was evident. The potential for components of effect was raised on gross 
examination – particularly given the more uniform appearance of many of the loci previously associated 
with T2D (green).  
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Supplementary Figure 19: Genetic correlation of GDM with 22 Traits. 
Genetic correlations (SNP- rg) of each trait with GDM (red) and T2D (Blue) estimated with LD score 
regression (Supplementary Table 14). Error bars reflect ±1 standard error. Filled points indicate the 
genetic correlation is significant after Bonferroni correction for multiple testing for both traits and 
biomarkers. The difference in rg between GDM and T2D is significant in 3 traits after Bonferroni 
correction: BMI, Waist-to-hip ratio adjusted for BMI, and CAD (Supplementary Table 15). 
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Supplementary Figure 20: Genetic correlation of GDM with 29 biomarkers. 
Genetic correlations (SNP- rg ) of each biomarker with GDM (red) and T2D (Blue) estimated with LD 
score regression (Supplementary Table 15). Error bars reflect ±1 standard error. Filled points indicate 
the genetic correlation is significant after Bonferroni correction for multiple testing for both traits and 
biomarkers. The difference in rg between GDM and T2D is significant in 2 biomarkers after Bonferroni 
correction: gamma glutyl transferase and urea (Supplementary Table 16). 
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Supplementary Figure 21: Comparison of effects of GDM-associated loci in GDM vs. glycemic 
traits 
Beta (log odds ratio) from the GWAS of GDM for each of the 13 significantly associated loci is 
compared to the beta from previous published GWAS of (A) fasting glucose, (B) 2 hour glucose, (C) 
HbA1C, and (D) fasting insulin. Error bars indicate +/- 1 standard error in each GWAS. Points labelled 
with gene names are identified as outliers by SCOUTJOY. Fitted slopes are shown from York 
regression with all variants (red) and after removal of identified outliers (blue). Dashed gray reference 
lines indicate equal absolute effect size. SCOUTJOY analysis suggests significant heterogeneity in all 4 
comparisons, and a significant positive relationship of GDM with fasting glucose, 2 hour glucose, and 
HbA1C after outlier removal (Supplementary Table 20). 
 

(A) Fasting glucose (B) 2h glucose 

   

(C) HbA1C                                                                  (D) Fasting insulin 
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Supplementary Figure 22: Comparison of effects of GDM-associated loci in GDM vs. T2D 
subgroups by sex and pregnancy history 
Betas (log odds ratios) from the GWAS of GDM for each of the 13 significantly associated loci are 
compared to the betas from GWAS of T2D in FinnGen among (A) males, (B) females, (C) parous 
females, and (D) nulliparous females. Error bars indicate +/- 1 standard error in each GWAS. Points 
labelled with gene names are identified as outliers by SCOUTJOY. Fitted slopes are shown from York 
regression with all variants (red) and after removal of identified outliers (blue). Dashed gray reference 
lines indicate equal absolute effect size. Data available in Supplementary Table 21 

(A) Men (B) Females 

   

(C) Parous Females (D) Nulliparous Females 
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Supplementary Figure 23: Comparison of effects of GDM-associated loci in T2D in males vs T2D 
in females 
Betas (log odds ratios) are reported from the GWAS of T2D in each sex in FinnGen. Error bars indicate 
+/- 1 standard error in each GWAS. Points labelled with gene names are identified as outliers by 
SCOUTJOY. Fitted slopes are shown from York regression with all variants (red) and after removal of 
identified outliers (blue). Dashed gray reference lines indicate equal absolute effect size. Data available 
in Supplementary Table 21 
 
 

 
Supplementary Figure 24: Comparison of effects of GDM-associated loci in T2D in parous 
females vs T2D in nulliparous females 
Betas (log odds ratios) are reported from the GWAS of T2D in parous and nulliparous females, 
respectively, in FinnGen. Error bars indicate +/- 1 standard error in each GWAS. No significant outliers 
are identified by SCOUTJOY. Fitted slope is from York regression with all variants. Dashed gray 
reference lines indicate equal absolute effect size. Data available in Supplementary Table 21 
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Supplementary Figure 25: Comparison of GDM vs BMI effects sizes by GDM variant class  
Betas (log odds ratios) from the GWAS of GDM are compared to the betas from GWAS of inverse rank 
normalized (IRN) BMI in FinnGen among (A) ClassG SNPs and (B) ClassT SNPs from the shared 
variants analysis of GDM and T2D. For comparison, (C) IRN BMI effect sizes are also compared to 
GWAS of T2D in FinnGen. Error bars indicate +/- 1 standard error in each GWAS. Points labelled with 
gene names are identified as outliers by SCOUTJOY. Fitted slopes are shown from York regression 
with all variants (red) and after removal of identified outliers (blue). Dashed gray reference lines indicate 
equal absolute effect size. Data available in Supplementary Table 25. 

(A) (B) 

  

(C) 
 

 



40 
 

 
 
Supplementary Figure 26: Cell type specificity analysis with GDM and T2D summary statistics  
Cell specificity analysis was performed for (A) the current GWAS of GDM and (B) published GWAS 
meta-analysis of T2D26. Unadjusted p-values are shown for the test of association between the GWAS 
results and results for cell-type specific gene expression for each cell-tissue pair. Analysis was 
performed using FUMA GENE2FUNC with murine single cell gene expression data from Tabula Muris. 
Cell-tissue pairs that remain significant after multiple testing correction are indicated in red. Data is 
available in Supplementary Table 26 
 
 
 
 
 

(A) GDM 

 

(B) T2D 
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Supplementary Figure 27: Cross dataset conditional analyses reveal independent signals for 
GDM and for T2D  
Evaluation of whether cell type specificity results across single cell expression datasets reflect 
overlapping genetic signals (Supplementary Note). Barplots indicate unadjusted P-values for the 
marginal association between relative gene expression in the given cell type and MAGMA gene-level 
associations in the GWAS of (A) GDM or (B) T2D. Colors indicate RNA-seq dataset source. Results are 
shown for cell types that are significantly associated with the GWAS after correction for multiple testing 
and have putatively independent association conditional on other cell types in the same RNA-seq 
dataset. Heatmaps are asymmetric and indicate the proportional significance (PS) of association with 
the cell type in the column after conditioning on the cell type in the row. Heatmap cell colors reflect PS 
between 0 and 1, with PS>1 is represented by double stars. Analysis was performed using FUMA 
GENE2FUNC. Data is available in Supplementary Table 28.

(A) GDM 

 

(B) T2D 
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(A) Mouse pancreas: (B) Human pancreas: 

 

 

 

 
Supplementary Figure 28: Cell type specificity analysis with GDM summary statistics in mouse 
vs human islets  
Cell specificity analysis for GDM GWAS with single cell gene expression data from (A) mouse pancreas 
in Tabula Muris and (B) a large single cell study of human pancreas30. Unadjusted p-values are shown 
for the test of association between the GWAS results and results for cell-type specific gene expression 
for each cell type. Cell types that remain significant after multiple testing correction are indicated in 
red. Analysis was performed using FUMA GENE2FUNC. Data is available in Supplementary Table 29. 
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18. York, D., Evensen, N.M., Martıńez, M.L. & Delgado, J.D.B. Unified equations for the slope, 
intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375 
(2004). 

19. Mahon, K.I. The New “York” Regression: Application of an Improved Statistical Method to 
Geochemistry. International Geology Review 38, 293-303 (1996). 

20. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in 
causal relationships inferred from Mendelian randomization between complex traits and 
diseases. Nature Genetics 50, 693-698 (2018). 

21. Titterington, D.M. & Halliday, A.N. On the fitting of parallel isochrons and the method of 
maximum likelihood. Chemical Geology 26, 183-195 (1979). 

22. Turley, P., Walters, R.K., Maghzian, O., Okbay, A., Lee, J.J., Fontana, M.A., Nguyen-Viet, T.A., 
Wedow, R., Zacher, M., Furlotte, N.A., Agee, M., Alipanahi, B., Auton, A., Bell, R.K., Bryc, K., 
Elson, S.L., Fontanillas, P., Furlotte, N.A., Hinds, D.A., Hromatka, B.S., Huber, K.E., Kleinman, 
A., Litterman, N.K., McIntyre, M.H., Mountain, J.L., Northover, C.A.M., Sathirapongsasuti, J.F., 
Sazonova, O.V., Shelton, J.F., Shringarpure, S., Tian, C., Tung, J.Y., Vacic, V., Wilson, C.H., 
Pitts, S.J., Magnusson, P., Oskarsson, S., Johannesson, M., Visscher, P.M., Laibson, D., 
Cesarini, D., Neale, B.M., Benjamin, D.J., andMe Research, T. & Social Science Genetic 
Association, C. Multi-trait analysis of genome-wide association summary statistics using MTAG. 
Nature Genetics 50, 229-237 (2018). 



45 
 

23. North, B.V., Curtis, D. & Sham, P.C. A Note on the Calculation of Empirical P Values from 
Monte Carlo Procedures. The American Journal of Human Genetics 71, 439-441 (2002). 

24. Martin, J., Khramtsova, E.A., Goleva, S.B., Blokland, G.A.M., Traglia, M., Walters, R.K., Hubel, 
C., Coleman, J.R.I., Breen, G., Borglum, A.D., Demontis, D., Grove, J., Werge, T., Bralten, J., 
Bulik, C.M., Lee, P.H., Mathews, C.A., Peterson, R.E., Winham, S.J., Wray, N., Edenberg, H.J., 
Guo, W., Yao, Y., Neale, B.M., Faraone, S.V., Petryshen, T.L., Weiss, L.A., Duncan, L.E., 
Goldstein, J.M., Smoller, J.W., Stranger, B.E., Davis, L.K. & Sex Differences Cross-Disorder 
Analysis Group of the Psychiatric Genomics, C. Examining Sex-Differentiated Genetic Effects 
Across Neuropsychiatric and Behavioral Traits. Biol Psychiatry 89, 1127-1137 (2021). 

25. Karaderi, T., Drong, A.W. & Lindgren, C.M. Insights into the Genetic Susceptibility to Type 2 
Diabetes from Genome-Wide Association Studies of Obesity-Related Traits. Current Diabetes 
Reports 15, 83 (2015). 

26. Mahajan, A., Taliun, D., Thurner, M., Robertson, N.R., Torres, J.M., Rayner, N.W., Payne, A.J., 
Steinthorsdottir, V., Scott, R.A., Grarup, N., Cook, J.P., Schmidt, E.M., Wuttke, M., Sarnowski, 
C., Magi, R., Nano, J., Gieger, C., Trompet, S., Lecoeur, C., Preuss, M.H., Prins, B.P., Guo, X., 
Bielak, L.F., Below, J.E., Bowden, D.W., Chambers, J.C., Kim, Y.J., Ng, M.C.Y., Petty, L.E., 
Sim, X., Zhang, W., Bennett, A.J., Bork-Jensen, J., Brummett, C.M., Canouil, M., Ec Kardt, K.U., 
Fischer, K., Kardia, S.L.R., Kronenberg, F., Lall, K., Liu, C.T., Locke, A.E., Luan, J., Ntalla, I., 
Nylander, V., Schonherr, S., Schurmann, C., Yengo, L., Bottinger, E.P., Brandslund, I., 
Christensen, C., Dedoussis, G., Florez, J.C., Ford, I., Franco, O.H., Frayling, T.M., Giedraitis, 
V., Hackinger, S., Hattersley, A.T., Herder, C., Ikram, M.A., Ingelsson, M., Jorgensen, M.E., 
Jorgensen, T., Kriebel, J., Kuusisto, J., Ligthart, S., Lindgren, C.M., Linneberg, A., Lyssenko, V., 
Mamakou, V., Meitinger, T., Mohlke, K.L., Morris, A.D., Nadkarni, G., Pankow, J.S., Peters, A., 
Sattar, N., Stancakova, A., Strauch, K., Taylor, K.D., Thorand, B., Thorleifsson, G., 
Thorsteinsdottir, U., Tuomilehto, J., Witte, D.R., Dupuis, J., Peyser, P.A., Zeggini, E., Loos, 
R.J.F., Froguel, P., Ingelsson, E., Lind, L., Groop, L., Laakso, M., Collins, F.S., Jukema, J.W., 
Palmer, C.N.A., Grallert, H., Metspalu, A., Dehghan, A., Kottgen, A., Abecasis, G.R., Meigs, 
J.B., Rotter, J.I., Marchini, J., Pedersen, O., Hansen, T., Langenberg, C., Wareham, N.J., 
Stefansson, K., Gloyn, A.L., Morris, A.P., Boehnke, M. & McCarthy, M.I. Fine-mapping type 2 
diabetes loci to single-variant resolution using high-density imputation and islet-specific 
epigenome maps. Nat Genet 50, 1505-1513 (2018). 

27. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula 
Muris. Nature 562, 367-372 (2018). 

28. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell 
Diversity. Cell Rep 18, 3227-3241 (2017). 

29. Campbell, J.N., Macosko, E.Z., Fenselau, H., Pers, T.H., Lyubetskaya, A., Tenen, D., Goldman, 
M., Verstegen, A.M., Resch, J.M., McCarroll, S.A., Rosen, E.D., Lowell, B.B. & Tsai, L.T. A 
molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20, 
484-496 (2017). 

30. Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, 
B.K., Shen-Orr, S.S., Klein, A.M., Melton, D.A. & Yanai, I. A Single-Cell Transcriptomic Map of 
the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst 3, 
346-360 e4 (2016). 

31. Watanabe, K., Umicevic Mirkov, M., de Leeuw, C.A., van den Heuvel, M.P. & Posthuma, D. 
Genetic mapping of cell type specificity for complex traits. Nat Commun 10, 3222 (2019). 

32. Ladyman, S.R. & Grattan, D.R. Region-Specific Suppression of Hypothalamic Responses to 
Insulin To Adapt to Elevated Maternal Insulin Secretion During Pregnancy. Endocrinology 158, 
4257-4269 (2017). 

33. He, Y., Xu, P., Wang, C., Xia, Y., Yu, M., Yang, Y., Yu, K., Cai, X., Qu, N., Saito, K., Wang, J., 
Hyseni, I., Robertson, M., Piyarathna, B., Gao, M., Khan, S.A., Liu, F., Chen, R., Coarfa, C., 
Zhao, Z., Tong, Q., Sun, Z. & Xu, Y. Estrogen receptor-alpha expressing neurons in the 
ventrolateral VMH regulate glucose balance. Nat Commun 11, 2165 (2020). 



46 
 

34. Yang, J.A., Stires, H., Belden, W.J. & Roepke, T.A. The Arcuate Estrogen-Regulated 
Transcriptome: Estrogen Response Element-Dependent and -Independent Signaling of 
ERalpha in Female Mice. Endocrinology 158, 612-626 (2017). 

35. Dirice, E., De Jesus, D.F., Kahraman, S., Basile, G., Ng, R.W., El Ouaamari, A., Teo, A.K.K., 
Bhatt, S., Hu, J. & Kulkarni, R.N. Human duct cells contribute to beta cell compensation in 
insulin resistance. JCI Insight 4(2019). 

36. Dirice, E., Basile, G., Kahraman, S., Diegisser, D., Hu, J. & Kulkarni, R.N. Single-nucleus RNA-
Seq reveals singular gene signatures of human ductal cells during adaptation to insulin 
resistance. JCI Insight 7(2022). 

 


