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Abstract 

Background 

Recent studies have leveraged quantitative traits from imaging to amplify the power of genome-

wide association studies (GWAS) to gain further insights into the biology of diseases and traits. 

However, measurement imprecision is intrinsic to phenotyping and can impact downstream 

genetic analyses.  

Methods 

Left ventricular ejection fraction (LVEF), an important but imprecise quantitative imaging 

measurement, was examined to assess the impact of precision of phenotype measurement on 

genetic studies. Multiple approaches to obtain LVEF, as well as simulated measurement noise, 

were evaluated with their impact on downstream genetic analyses.  

Results 

Even within the same population, small changes in the measurement of LVEF drastically 

impacted downstream genetic analyses. Introducing measurement noise as little as 7.9% can 

eliminate all significant genetic associations in an GWAS with almost forty thousand 

individuals. An increase of 1% in mean absolute error (MAE) in LVEF had an equivalent impact 

on GWAS power as a decrease of 10% in the cohort sample size, suggesting optimizing 

phenotyping precision is a cost-effective way to improve power of genetic studies. 

Conclusions 

Improving the precision of phenotyping is important for maximizing the yield of genome-wide 

association studies.  
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Clinical perspective 

What Is New? 

•  Measurement imprecision in cardiac imaging phenotypes can substantially impact 

downstream genetic association studies, explaining much of the difference in identified 

genetic variants between echocardiography and cardiac magnetic resonance imaging.  

•  Using the example of left ventricular ejection fraction as an important but imprecise 

clinical measurement, the analysis suggests that the measurement variation within the 

range of clinician interpretation reduced genome-wide association studies’ power to 

detect genetic risk factors as much as decreasing the study population size by 20%. 

What Are the Clinical Implications? 

•  More precise measurements can result in a better understanding of the genetics of cardiac 

phenotypes and accelerate the development of precision medicine.  

•  Rather than simply increasing population size, improving measurement precision allows for 

cost-effective discovery of genetic associations.  
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Introduction 

 Cardiovascular disease is the leading cause of death in the world, and significant work has 

been undertaken to understand the mechanisms of disease and develop preventive measures. By 

studying the human genome, insights have been obtained to understand pathways and 

mechanisms of function and disease risk, and in recent studies, researchers have moved beyond 

binary labels of disease diagnosis to quantitative phenotypes to obtain greater power in assessing 

the relationship between genotype and phenotype1–4. From quantitative laboratory biomarkers 

elucidating the relationship between hypercholesterolemia and coronary artery disease5 to 

imaging characteristics in population cohorts4 revealing the genetic determinants of 

cardiovascular development 6,7, quantitative assessments of health provide additional signal 

compared to conventional binary labels of disease.  

 Despite its relative frequency, critical public health importance, and often penetrant 

inheritance, heart failure has relatively few known genetic risk factors. Early classic genetic 

studies were not able to identify many genetic associations with measurements determined by 

echocardiography8. Different cohorts resulted in heterogenous findings in the genetic 

determinants of cardiomyopathy. More recent studies with measurements from cardiac magnetic 

resonance imaging (MRI) have been able to find additional loci of relevance and reaffirm 

previously suspected variants8,9, suggesting both larger sample sizes as well as improvements in 

phenotyping precision, can improve our understanding of the human disease. However, as 

populations increase, the scaling of phenotyping becomes more costly, and automated 

approaches are used for most quantitative measurements, despite only moderate correlation 

compared to manual measurements (R2 = 0.318 for cardiac MRI LVEF)9. 
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 While quantitative traits have more power than often binary labels of disease, quantitative 

traits can have noisy measurements. For example, left ventricular ejection fraction (LVEF) as 

measured by echocardiography can have measurement variation up to 7 - 10%10,11, impacting 

downstream analyses. While cardiac MRI is frequently thought of as a reference standard, given 

its improved image quality and high signal-to-noise ratio, automated approaches similarly have 

measurement variation of between 3 – 5%9. We use LVEF, an important metric of cardiac 

function, as an example of an important but noisy measurement to explore the impact of 

measurement variability on downstream genetic association studies. We compare various 

methods to obtain the same phenotypic measurement as well as introduce simulated noise in the 

phenotype measurement to evaluate the relative impact of measurement imprecision and sample 

size on downstream genetic studies. 
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Methods 

Cohort 

The UK Biobank is a population-based cohort that links genetic and phenotypic data for 

approximately 500,000 adult participants from the United Kingdom 12,13. We focused on 39,624 

participants who had InlineVF measured LVEF 14, cardiac MRI, and genetic data available. 

Before running Genome-Wide Association Studies this cohort was passed through additional 

quality check filters (Supplementary Figure 1).  

 

Multiple Approaches to Measure LVEF 

Multiple methods of calculating LVEF from the same underlying imaging data were used to 

assess the impact of phenotyping precision on downstream analyses. First, the UKB provides 

automated LVEF measurements derived from MRI using Inline VF software9, however, this is 

presented without manual quality control. To compare alternative automated approaches, we also 

derived LVEF from MRIs using the deep learning segmentation approach suggested by Bai et al 

10. From the short-axis view videos, segmentation was performed and we calculated the LV 

volume for each frame using Simpson’s method. 

 To simulate reader variability, additional experiments were performed introducing Gaussian 

noise with a mean of 0 and a standard deviation (sd) ranging from [1,10]. We generated multiple 

phenotypic measurements from the same underlying imaging data, gradually incrementing 

Gaussian noise, and performed GWAS on each to investigate how measurement 

error/imprecision affects genetic associations.  

 Additionally, we further compared results with two final approaches to assess LVEF. When 

visually assessing LVEF, clinicians often round the value to the nearest 5%, thus we generated a 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.16.23286058doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286058
http://creativecommons.org/licenses/by/4.0/


 
 

6 

 

set of phenotype labels by rounding LVEF values to the nearest multiple of 5. For the final 

comparison, we generated binary LVEF labels by categorizing values as normal or abnormal, 

with normal values ranging from 52-72 for males and54-74 for females. 

 

Genome-wide association study 

We used the UKB imputed genotype calls in BGEN v1.2 format. Samples were genotyped using 

the UK BiLEVE or UK Biobank Axiom arrays. Imputation was performed using the Haplotype 

Reference Consortium panel and the UK10K+1000 Genomes panel12
. We used the QC files 

provided by UKB to create a GWAS cohort consisting of subjects who did not withdraw, were of 

inferred European ancestry, and were unrelated. Subjects with a genotype call rate < 0.98 were 

also removed. We considered variants with a minor allele frequency (MAF) ≥ 0.01, and we 

required genotyped variants to have a call rate ≥ 0.95 and imputed variants to have an INFO 

score ≥ 0.3. Variants with a Hardy-Weinberg equilibrium P value < 1x10-20 were excluded. After 

variant filtering, we were left with 9774199 filtered variants. GWAS was done on a Spark 3.1.1 

cluster, using the library Hail 0.2 with Python version 3.6. The GWAS was adjusted for age at 

MRI and sex. We used the conventional P value of 5x10-8 as the threshold for defining genome-

wide significance.  

 

Assessing Association Power’s Relationship with Cohort Size 

Apart from noise in phenotype measurements, we also evaluate the effect of cohort decrease on 

GWAS results. We generated 6 different phenotype files where, starting from the original LVEF 

cohort (39,624), we keep 90% (35,661), 80% (31,699), 70% (27,736), 60% (23,774), 50% 

(19812), and 40% (15850) of the samples. Cohort decrease was performed before GWAS QC, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.16.23286058doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286058
http://creativecommons.org/licenses/by/4.0/


 
 

7 

 

and for each step the selection of samples to be excluded was random. Inspecting the effect of 

cohort decrease helps us define the relationship between the number of LVEF samples and 

GWAS power.   

 

SNP-based accuracy 

We use an accuracy metric to determine the amount of overlap in significant SNPs between the 

baseline GWAS results and noise-modified GWAS results. First, we remove all non-significant 

SNPs by excluding SNPs with a p-value less than 5 � 10��, which is the Bonferroni corrected 

p-value threshold. Then, we consider significant SNPs found in both the base results and noise-

modified results as true positives (TP), the SNPs found only in the noise-modified results as false 

positives (FP), and the SNPs not found in the noise-modified results but found in the base results 

as false negatives (FN). We then calculate ����������� 	  
�	

�	
�	
��
. 

 

GWAS Sensitivity 

Sensitivity determines the amount of overlap in significant loci between the baseline GWAS 

results and noise-modified GWAS results. Specifically, given that 
��
�
��� is the number of 

significant loci in base GWAS, and 
��
�������� is the number of significant loci that persisted 

in noise GWAS then ����������� 	  
������������

���������
.  The number of loci and their position can be 

determined by manual inspection, but we also developed an automatic method. Our automatic 

method uses a hierarchical clustering algorithm to determine the number and the position of loci 

from both GWAS, which we then use to compute 
��
�
���  and 
��
��������. 
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Results 

Quantitative phenotypes improve power of association studies 

The study cohort for all analyses consisted of 39,624 adult unrelated subjects of European 

ancestry (Table 1). As a baseline, we first conducted a GWAS of the LVEF phenotype released 

with the UKBB cardiac MRI data. We identified 5 loci at genome-wide significance on 

chromosomes 1, 6, 8, 10, and 19 near genes ZBTB17, CDKN1A, CTSB, BAG3, and AP1M1 

(Figure 1). In comparison, for an LVEF phenotype binarized to simply abnormal or normal, 

multiple previously detected loci lost genome-wide significance (including loci for CTSB and 

AP1M1). Similarly, recognizing the inherent variation present in measuring LVEF, we 

additionally compared the results if the LVEF was bucketed to 5% bins and showed such 

imprecision decreased statistical power in all SNPs in the association study compared to the 

continuous LVEF baseline phenotype.  

 

Phenotype noise degrades power of association studies 

To investigate the effect of measurement imprecision on GWAS power, we performed a series of 

association studies while introducing noise in the range of known clinician variation (Figure 2). 

Simulated variation to the LVEF measurement naturally increases in mean absolute error. Noise 

with a gaussian standard deviation of 5 results in a mean absolute error of 3.97% and R2 of 0.65 

(Supplementary Table 1), and results in the loss of genome-wide significance for the AP1M1 

loci on chromosome 19. As we increase phenotypic noise in the range of clinical variation, 

power gradually declines and the noise equivalent to 7.92% MAE results in a complete loss of 

genomic-wide significance (Table 2). Given echocardiography is known to have a clinician-to-
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clinician variation of the same or greater MAE10, such measurement imprecision could 

contribute to the limited hits in historial echocardiography-derived GWAS8.  

Comparison of Impact of Phenotype Noise vs Cohort Size  

Given the summary statistics from 16 different GWAS, we modeled the relationship between 

noise and GWAS power (Figure 3, Figure 4). There is a linear relationship between the increase 

in MAE and the decrease in GWAS power. We calculated that an increase of 1% in MAE causes 

the loci sensitivity to decrease by 13% (p=5.5e-6) and the SNP accuracy by 14% (p=6.6e-5). 

Experiments with other methods of introducing noise in assessing LVEF similarly show a 

decrease in genetic association with more imprecise measurements (Supplementary Figure 2 

and Supplementary Table 2). A similar effect occurs with reductions in cohort size, as a 1% 

decrease in cohort size results in a 1.3% decrease in loci sensitivity (p=0.01) and a 1.9% decrease 

in SNP-based accuracy (p=0.0007). We found that a 1% MAE increase has the same effect on 

loci sensitivity as a 10.3% cohort decrease and the same effect as a 7.2% cohort decrease on SNP 

accuracy.  

Improving phenotyping augments downstream genetic analyses 

 Cardiac MRI provides clinicians and researchers with a plethora of high-resolution imaging, 

with even the abbreviated 20-min UK Biobank cardiac MRI protocol resulting in 9 sequences 

with over 30,000 images per study11. With so many images and patients, the released UKBB 

measurements were generated using a fully automated workflow (with Siemens inLineVF) 

without quality inspection and bias correction. When compared with manual clinician evaluation, 

the automated measurements of LVEF result in a mean absolute error of 3.4%, R2 of 0.348, and 

ICC of 0.521 for LVEF.  Using a previously published deep learning segmentation model16, we 
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independently derived LV segmentation-based calculated LVEF and found a mean absolute error 

of 6.1%, R2 of 0.335, and ICC of 0.431 for LVEF compared to the automated measurements 

from UKBB (Figure 5). However, with these deep learning segmentation derived LVEF 

measurements, the same cohort identified more loci of interest with significant experimental data 

backing its relevance. In particular, loci on chromosomes 2, 5, and 8 near genes TTN, 

DNAJC18, and ZNF572 were not previously identified using the released UKBB LVEF 

measurements but able to be picked up with our quality-controlled measurements.   
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Discussion 

In this study, we assessed the impact of measurement imprecision on genetic associations with 

LVEF and found substantially impaired power in downstream GWAS analysis with even slight 

increases in imprecision. Even modest phenotyping variation significantly impacted downstream 

genetic associations, often to a greater extent than changes in cohort size.  As measurement 

variation is present in many clinical measurements and large cohorts increasingly rely on 

automated measurements, efforts to improve the precision of measurements can potentially be a 

cost-effective way to maximize the yield of genetic association studies.   

 Cardiac function as measured by LVEF is an important clinical measurement that defines 

disease and identifies patients who are eligible for life-prolonging therapeutics.  In 

echocardiography, human test-retest evaluation of LVEF can range between 7-10%, with slight 

changes in annotation as well as timing that can significantly impact calculations10,16. Few 

variability studies have been undertaken in cardiac MRI, although improved degrees of manual 

measurement variability have been found9,17. Our analysis suggests that a substantial gain in 

signal comes from the improvement of measurements precision, such that it’s impact is often 

greater in relative size than sample size. Efforts to improve phenotyping precision that can 

significantly affect the power and accuracy of downstream analyses. 

 Noise in measurements can appear in both semi-automated and fully automated 

workflows17, and by improving the precision of measuring LVEF, we also improve the accuracy 

and robustness of downstream GWAS results. The relatively large improvement in yield of 

genetic association with more precise phenotyping was substantial in comparison to the marginal 

benefit of increasing the cohort size.  As more genetic analyses are undertaken with automated 

measurements or assessments4,7,18,19, an additional evaluation must be taken to assess the 
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variability and quality of the phenotyping. Such insights ideally will be confirmed with parallel 

measurements of similar phenotypes or multiple approachs to obtain the same phenotype  

 In summary, genetic association studies on imaging phenotypes allow researchers to 

discover many associations that help understand the underlying biology of the disease and 

structure20. For LVEF, even advanced imaging has variability in measurements that can 

substantially impact downstream association studies. The impact of such variability is even more 

profound than significant changes in cohort size, suggesting improvement in imaging precision 

and precise phenotyping in general has significant additional value in improving the power of 

genetic association studies.  
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Figures 

Figure 1 Manhattan plots for genome-wide association studies on UK Biobank reported left 

ventricular ejection fraction 

a, GWAS on continuous LVEF measurements b, GWAS on Normal/Abnormal LVEF where the 

range for normal is 52-72 in male and 54-74 female population c, GWAS on LVEF bucketed to 

the nearest multiple of 5 
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Figure 2 Impact of noise in LVEF on GWAS  

a, Visualizing r2 score, mean absolute error, and the distribution of noise-modified-LVEF with 

respect to the baseline LVEF 

b, Q-Q plots of P values from GWAS summary statistics for different levels of noise 
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Figure 3 Impact of cohort decrease and noise generation on GWAS power.  

a, Regression analysis on the impact of measurement error quantified by a mean absolute error 

on sensitivity. b, Regression analysis on the impact of the mean absolute error on SNP accuracy. 

c, Regression analysis of the impact of cohort size decline on sensitivity. d, Regression analysis 

of the impact of cohort size decline on SNP accuracy.   
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Figure 4 a, Slope chart shows the change in the P value of the top 5 loci with respect to mean 

absolute error; b, Slope chart shows the change in a P value of top 5 loci with respect to the 

cohort decrease; each locus is named after the closest gene  
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Figure 5 Differences in distribution and GWAS summary statistics between two methods of 

obtaining LVEF from MRI 

a, Histograms of InlineVF derived LVEF and Deep Learning derived LVEF b, Manhattan plot 

from GWAS performed on Deep Learning derived LVEF; genes colored in blue don’t appear in 

InlineVF LVEF GWAS (Figure 1a); genes colored in red appear in InlineVF LVEF GWAS but 

not in deep learning derived LVEF GWAS 

  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.16.23286058doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.16.23286058
http://creativecommons.org/licenses/by/4.0/


 
 

20 

 

 
Tables 

Table 1. Cohort baseline characteristics 

Characteristic Mean or n 
N 39624 

Age at MRI 54.9 ± 7.47 

Male 18933 (47.8%) 
Self-identified White British 33726 (85.1%) 

Body mass index (kg/m2) 26.5 ± 4.19 

Hypertension 2487 (6.3%) 

Pulse rate 67.9 ± 10.9 

LV ejection fraction (%)      55.4 (6.78) 

LV end diastolic volume (mL) 141 
LV end systolic volume (mL) 64.1 
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Table 2. Metrics of genetic signal for each increase in SD 

Noise SD SNP Accuracy Loci Sensitivity 
0% 1.0 1.0 
1% 0.9377 1.0 
2% 0.8547 1.0 
3% 0.3675 1.0 
4% 0.2537 0.8 
5% 0.3921 0.8 
6% 0.0228 0.4 
7% 0.0307 0.4 
8% 0.0145 0.4 
9% 0.0020 0.2 
10% 0 0 
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Supplemental Material 

Supplementary Tables 

Supplementary Table 1. Mapping between Gaussian Noise SD and MAE 

SD MAE R2 

0 0 1 

1 0.797489 0.9788 

2 1.594416 0.9199 

3 2.386753 0.8371 

4 3.183924 0.743 

5 3.974958 0.6508 

6 4.793956 0.5632 

7 5.604129 0.4832 

8 6.380848 0.4192 

9 7.228321 0.3602 

10 7.920860 0.3183 
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Supplementary Table 2. Metrics of genetic signal for each decrease in cohort size 

Cohort 
decrease 

SNP Accuracy GWAS Sensitivity 

0% 1.0 1.0 
10% 0.8744 0.8 
20% 0.8713 0.8 
30% 0.3436 1.0 
40% 0.1392 0.4 
50% 0.0477 0.4 
60% 0.0019 0.2 
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Supplementary Figures 

Supplementary Figure 1. Cohort diagram 
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Supplementary Figure 2. Q-Q plots of P values from GWAS summary statistics for different percentages of cohort 
decrease 
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