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Abstract

Histological Grade is a well-known prognostic factor that is routinely assessed in breast
tumours. However, manual assessment of Nottingham Histological Grade (NHG) has high
inter-assessor and inter-lab variability, causing uncertainty in grade assignments. To address
this challenge, we developed and validated a three-level NHG-like deep learning-based
histological grade model. The primary performance evaluation focuses on prognostic
performance.

This observational study is based on two patient cohorts (SöS-BC-4, N=2421 (training and
internal test); SCAN-B-Lund, N=1262 (test)) that include routine histological whole slide
images together with patient outcomes. A Deep Convolutional Neural Network (CNN) model
with an attention mechanism was optimised for the classification of the three-level
histological grading (NHG) from hematoxylin and eosin-stained WSIs. The prognostic
performance was evaluated by time-to-event analysis of Recurrence-free survival (RFS) and
compared to clinical NHG grade assignments in the internal test set as well as in the fully
independent external test cohort. We observed effect sizes (Hazard Ratio) for grade 3 vs 1,
for the conventional NHG method (HR=2.60 (1.18-5.70 95%CI, p-value = 0.017)) and the
deep learning model (HR = 2.27, 95%CI: 1.07-4.82, p-value = 0.033) on the internal test set
after adjusting for established clinicopathological risk factors. In the external test set, the
unadjusted HR for NHG 1 vs 2 was estimated to be 2.59 (p-value = 0.004) and NHG 1 vs 3
was estimated to be 3.58 (p-value < 0.001). For predGrade, the unadjusted HR for grade 1 vs
2 HR=2.52 (p-value = 0.030), and 4.07 (p-value = 0.001) for grade 1 vs 3. In multivariable
analysis, HR estimates for neither NHG nor predGrade were found to be significant (p-value
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>0.05). We tested for differences in HR estimates between NHG and predGrade in the
independent test set, and found no significant difference between the two classification
models (p-value > 0.05), confirming similar prognostic performance between conventional
NHG and predGrade.

Routine histopathology assessment of NHG has a high degree of inter-assessor variability,
motivating the development of model-based decision support to improve reproducibility in
histological grading. We found that the proposed model provides similar prognostic
performance as NHG. The results indicate that deep CNN-based models can be applied for
breast cancer histological grading.
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Introduction

Histological grading is a well-established prognostic factor for breast cancer and is associated
with the aggressiveness of the tumour (1). An assessment of three morphological features
determines the histological grade of breast tumours. These features include tubular formation
(glandular differentiation), nuclear pleomorphism, and mitotic counts, and each component is
given a score from I to III. The sum of the sub-component scores enables the assignment of
tumours into three grades (Grade 1-3), referred to as Nottingham Histologic grade (NHG),
where Grade 1 is associated with a good prognosis and Grade 3 is associated with a poor
prognosis (2).

However, the assessment of histological grading has a high inter-observer variability
including the assessments of individual subcomponents of histological grading (3–5). A
recent nationwide study in Sweden reported significant inter-lab variabilities for histological
grading across different pathology labs (6). Such variabilities indicate an intrinsic uncertainty
in routine NHG assessment and potential errors, which can cause both under and
over-treatment of breast cancer.

Recent advances in high-resolution digital whole slide images (WSIs) have greatly enhanced
the computer-based pathology workflow, paving the way to novel digital decision support
solutions. Recently, deep learning-based analyses on WSIs have shown promising results in a
multitude of tasks, including cancer classification, grading, and predictions of genetic
mutations in prostate and lung cancers (7–9).

Deep learning, especially deep convolutional Neural Networks (CNNs), has been proven to
be effective for modelling of WSI data, including in the application of breast cancer
histological grading. Previously models for the classification of grades 1 and 2 (together) vs.
grade 3 have been implemented for breast cancer (10,11). Jaroensri et al. implemented a
model that classified the sub-components, and the sub-component score, for breast cancer
histological grading and the prognostic performance was compared against routine
classification (12). Wang et al. developed a model based on histological grade morphology in
breast cancer that was applied to improve risk stratification of intermediate-risk patients
(histological grade 2) (13).

To our knowledge, this is the first study focusing on the development of a
deep-learning-based breast cancer histological grade classification with a three-level grading
system resembling the routine NHG in breast cancer with prognostic evaluation. We evaluate
the proposed model from the perspective of prognostic performance (time-to-event) in both
internal test data and a fully independent external test cohort and compare it with the routine
clinical grade assignment.
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Methods

Study materials

The patients in this study were from two Swedish cohorts, SöS BC-4 (n = 2421), and the
SCAN-B cohort (n = 1262). SöS BC-4 is a retrospective observational study that included
patients diagnosed at Södersjukhuset (South General Hospital) in Stockholm between 2012
and 2018 that had archived histological slides available and also available histological grade
information. Patients that had received neoadjuvant therapy were excluded. The SCAN-B
cohort, which we used as an independent external test set, includes a subset of patients (n =
1262) enrolled in the prospective SCAN-B study (14), diagnosed between 2010 and 2019 in
Lund, Sweden. Both cohorts consist of female patients diagnosed with primary invasive
breast cancer. Patients’ clinical information (i.e. clinical NHG, estrogen receptor status, Her2
status, tumour size, and lymph node status) was retrieved from the Swedish National Registry
for Breast Cancer (NKBC). Whole Slide Images (WSIs) were generated (40X magnification)
using Hamamatsu NanoZoomer histopathology slide scanners (S360 or XR) from clinical
routine H&E-stained, formalin-fixed paraffin-embedded (FFPE) resected tumour slides. We
included one H&E WSI per patient, which was either the established primary diagnostic
fraction or otherwise the H&E WSI with the largest predicted tumour area. The CONSORT
diagram for this study is provided in Figure 1.

Image pre-processing and deep learning modelling methods

WSIs were pre-processed and quality controlled in a standardised processing pipeline,
followed by model optimisation and performance validation of the system (Figure 1a).
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Figure 1. Overview of the image pre-processing, model optimisation and performance
evaluation. a. Standardised WSI preprocessing pipeline from retrieval of WSI at 40x magnification to
the cancer-detected tumour tiles from the WSI. b. Schematic overview of the image modelling
strategy, including the deep CNN feature extractor and attention module. Model optimisation,
hyperparameter tuning and model selection were performed by cross-validation (CV). In each CV
training round, the Feature extractor and Attention module were trained from cancer tiles in the CV
training set. In each CV validation round, the features extractor and attention model were
re-optimised and subsequently, the CV validation set was evaluated. c. Two cut-offs were further
derived from the slide-level prediction scores, which categorised the prediction scores into three-level
predicted grades. The cut-offs were optimised by maximising the agreement between the predicted
grade and clinical NHG. We further evaluated the prognostic performance of the predicted grade on
recurrence-free survival.

WSI Preprocessing

The WSI pre-processing pipeline has been previously described in detail in (13). A brief
overview of the preprocessing steps is shown in Figure 2. First, we generated tissue masks
excluding most of the backgrounds from the WSIs. We added a maximum value of 25 on the
Otsu threshold in order to reduce the removal of the tissue regions in some cases due to the
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high threshold value on the transformed saturation channel. The tissue regions were divided
into image patches (i.e. tiles) of size 1196 x 1196 pixels. The image tiles were down-sampled
by a factor of two from the original scanning resolution (40X) to 20X resolution (598 x 598
pixels; 271 x 271 𝜇m). Next, we applied the Laplacian filter (OpenCV package version 3.4.2)
on all the image tiles and computed the variance of the filtered tiles. Tiles with a variance
lower than 500 units were considered blurry and excluded from further analyses (15) To
mitigate stain colour variability, the colour normalization method described by Macenko et al.
(16) was applied, with a modification to enable WSI-level colour correction, as previously
described in (13). Lastly, we applied a pre-trained CNN model developed in (13) to detect
invasive cancer in our current study population. Only tiles predicted as invasive cancer from
the pre-trained model were considered as regions of interest and thereafter included in further
analyses.

Image analysis using deep learning
The SöS cohort was used for model development and internal validation. The cohort was split
into the training set (n = 1695), internal test set 1 (n = 245 WSIs), and internal test set 2
(n=481 WSIs) as shown in Figure 2a). The training and internal test sets were split on the
patient level and stratified by histological grading (NHG), estrogen receptor (ER) status,
epidermal growth factor receptor 2 (HER2) and Ki-67 status.

The training and optimisation of the feature extractor and attention module were performed
on the training set (n=1695) using five-fold cross-validation (CV). For each CV-fold, the
training set was split into a CV training set (80%) and a CV test set (20%) stratified by
histological grading (NHG) as shown in Figure 1 b). The CV training set was further sub-split
into the Feature extractor training set (50%), the Attention module training set (40%), and the
Tuning set (10%). Both the feature extractor (Resnet-18 CNN) model and the attention
module were optimised against binary class labels (NHG 1 and 3) to ensure that the model
learns high and low-grade patterns despite substantial label noise (reflected by high
inter-assessor variability in NHG grade label assignments). The proposed approach implicitly
assumes that the NHG grading follows a continuum of morphological changes (1-3), and that
NHG2 is the intermediate group with the highest assessment uncertainty and inter-rater
variabilities. We, therefore, excluded NHG 2 from the model optimisation. These three
sub-splits were stratified on the clinical NHG (Figure 1b).
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Figure 2. SöS cohort splitting criteria. a. The SöS cohort was first split into the training, internal test
set 1, and internal test set 2 on the patient level. The split was stratified by clinical histological grading
(NHG), estrogen receptor (ER) status, epidermal growth factor receptor 2 (HER2), and Ki-67 status.
b. A five-fold cross-validation (CV) split was further generated on the patient level within the
training set (n=1695 WSIs). Each CV fold consisted of a CV training set (80%) and a CV test set
(20%) balanced on clinical NHG. The CV training set is further sub-split into the Feature extractor
training set (50%), the Attention module (40%), and the Tuning set (10%)

The attention-based Multiple Instance Learning (MIL) model was considered as the CNN
modelling architecture inspired by Lu et al. (17). It consisted of two separate trainable
modules: The feature-extractor and the attention module. The feature extractor was trained to
learn breast cancer domain-specific tile-level representations and the attention module was
trained to aggregate these tile-level representations to whole slide-level prediction scores.
Importantly, we specifically used different sub-splits of the training set for Feature extractor
optimisation and Attention module optimisation, respectively,

Feature-extractor module
The feature-extractor was a binary weakly-supervised learning model (8,13). We applied the
Resnet-18 (18) CNN architecture initialised with weights pre-trained from Imagenet (19). In
order to reduce overfitting, we included a dropout layer with a probability of 0.2 after the
global average pooling layer. Furthermore, a fully connected layer of 1024 hidden units
followed by ReLU activation was added before the final output layer to increase the depth of
the architecture. This model was trained on binary labels of NHG 1 vs NHG 3 with
cross-entropy loss. We used SGD optimiser (20) with a learning rate of 1e-5 and a
momentum value of 0.9. At each training partial epoch end, we used the tuning set to validate
the training performance and save the best model according to the lowest validation loss from
the tuning set. We applied an early stopping to terminate the training when the validation loss
showed no improvement after 50 consecutive partial epochs.

Attention module
We used the feature extractor to extract a 512-dimensional feature vector from the average
pooling layer for each image tile in the attention-module training set and the tuning set
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(Figure 1b). These learned features were further used to train the attention module. The
attention module consisted of an attention backbone and a classification layer with two output
neurons, one for each class (17). The attention backbone assigns and optimises the weights
for each tile-level feature vector from each WSI and these derived weights sum up to one in
order to be invariant to the number of tiles in each slide. The tile-to-slide feature aggregation
was facilitated by the weighted average feature vectors from all image tiles in each slide (21).
The attention module was trained as a binary classification task to predict NHG 1 vs NHG 3
tumours using the cross-entropy loss. We used SGD optimiser with a learning rate 1e-5 and a
momentum of 0.9. At each training epoch, we used the batch size of one single slide
including all image tiles in it, based on our previous work (22).

Assignment of predicted histological grade (i.e. predGrade)
We obtained the slide-level predicted scores (i.e. P[class=NHG3|WSIi] ) for the entire
training set (N=1695 WSIs) from the five-fold CV). We further optimised the two thresholds

on P(class=NHG3|WSIi) to generate a three-level predicted grade (i.e. predGrade 1, 2θ
1
, θ

2

and 3). The thresholds were established through an exhaustive search by maximisingθ
1
, θ

2

the agreement between the clinical NHG and the predicted grades (i.e. predGrade 1, 2 and 3)
using Cohen’s Kappa Score (κ).

Assessment of model performance
Performance of predGrade was evaluated in both five-fold CV and in the independent
external test set (SCAN-B cohort, n=1262). In performance evaluation in the SCAN-B
cohort, the five CV models were treated as base models in an ensemble model, where the five
predicted scores of P(class=NHG3|WSIi) were aggregated using the median across all
base-model predictions. Next, we applied the thresholds (see above) to map predictionsθ

1
, θ

2 

to predGrade 1, 2 and 3.

First, we assessed the agreement between the predGrade and the clinical NHG in the
independent external test using confusion matrices. Since the clinical NHG has high
inter-rater variability, we utilise patient outcome (recurrence-free survival (RFS)), as our
primary evaluation metric. We compared the prognostic performance of predGrade and the
clinical NHG grade. The RFS defined recurrence (i.e local or distant metastasis, detection of
contralateral tumours) or death as the event outcome. Patients were followed from the initial
diagnosis to the date of death/recurrence, emigration, or the last registration date, whichever
occurred first. Kaplan-Meier (KM) curves for the predGrade and the clinical NHG on RFS
using time since the initial diagnosis as the underlying time scale was used for visualisation
purposes. Differences in survival probability among clinical NHG and predGrade subgroups
were tested using the log-rank test. We assessed the associations between predGrade and RFS
as well as clinical NHG and RFS separately by estimating hazard ratios (HRs) with 95%
confidence intervals (CIs) using the Cox Proportional Hazard (PH) models. We used the time
since the initial diagnosis as the underlying time scale. First, we fitted univariate Cox models
for the predGrade and clinical NHG, respectively. Next, we fitted multivariable Cox models
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additionally adjusting for the well-established clinicopathological factors including tumour
size, ER status, HER2 status, lymph node status, and age at the diagnosis. Tumour size was
dichotomized as ≥20mm or <20mm. ER status was positive if the immunohistochemical
(IHC) staining indicated the presence of more than 10% ER positively stained cells. HER2
status was determined using IHC staining and FISH or SISH assay. Lymph node status
denoted the presence of lymph node metastasis. Cases with missingness in the outcome or in
any covariate were excluded from analyses. Two-sided alpha of 0.05 was used for all the
statistical tests. Statistical testing for differences in hazard ratio estimates between the grade
models was performed using the hr.comp2 function in the survcomp package in R (23).
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Results

Model performance

Classification performance in five-fold CV

Classification performance (Figure 3) of predGrade in comparison with clinical NHG was
first assessed using CV(see Methods section), indicating moderate agreement between
predGrade and clinical NHG (Cohen’s κ = 0.33). 4.8% of clinical NHG 1 was classified as
predGrade 3, and 5.3% of clinical NHG 3 was classified as predGrade 1.

Figure 3: Confusion matrix shows the agreement between the predGrade and clinicalNHG in the
five-fold cross-validation.

Prognostic performance on RFS in the five-fold CV

Subsequently we evaluated the prognostic performance through time-to-event analysis.
Figure 3 showed the KM curves comparing the risk stratification on RFS by clinical and
predGrade. We observed similar stratification effects by the predGrade and clinicalNHG.
Patients with clinicalNHG 1 or predGrade 1 showed the best survival while patients assigned
the clinical NHG 3 or predGrade 3 showed the worst survival (Figure 4).
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Figure 4: Kaplan-Meier (KM) curves on recurrence-free survival from cross-validation. a. KM curve
stratified by clinical NHG and b. KM curve stratified by predGrade.

In the univariate Cox models, we observed similar effect sizes between the predGrade or
clinical NHG and RFS (Figures 5a and 5b). The predGrade 3 (HR= 3.12, 95%CI =
1.69-5.76, p-value < 0.001) and clinicalNHG 3 (HR=3.19, 95% CI =1.74-5.85, p-value <
0.001) showed approximately two times higher risk of an event as compared to predGrade 1
and clinicalNHG 1, respectively. Neither HR estimates for predGrade 2 nor clinicalNHG 2
were found to be significant (p-value < 0.05) (Figure 4a and 4b).

In the multivariable Cox PH models, adjusting for tumour size, lymph node, ER, and HER2
status, the predGrade3 remained associated with a higher risk of death/recurrence (HR=2.27,
95%CI= 1.07-4.82, p-value = 0.033) (Figure 4d). A similar association was also noted for the
clinicalNHG 3 (HR= 2.60, 95% CI = 1.18-5.70, p-value = 0.017) (Figure 4c). Neither
predGrade2 nor clinicalNHG2 was found to be significantly (p-value < 0.05) associated with
RFS (Figures 4c and 4d). In addition, we observed a higher risk of death/recurrence linked to
older age and tumour size equal to or larger than 20mm, while the number of lymph nodes,
ER status, and HER2 status was not related to RFS (Figure 4c and 4d).
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Figure 5: Evaluation of the prognostic performance on recurrence-free survival (RFS)  in five-fold
CV. a. Univariate Cox PH regression analysis between the clinical NHG and RFS; b. Univariate Cox
PH model between the predGrade and RFS c. Multivariable Cox PH model between the clinical NHG
and RFS adjusting for age, tumour size, lymph node, ER and HER2 status; d. Multivariable Cox PH
model between the predGrade and RFS adjusting for age, tumour size, lymph node, ER and HER2
status.

Model performance in the independent external test set

Classification performance in the independent external test set

The classification performance, as assessed by the confusion matrix (Figure 6) and estimation
of Cohen’s κ = 0.33, were found to be consistent with CV results.
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Figure 6: Confusion matrix shows the agreement between the predGrade and clinical NHG in the
independent test set.

Prognostic performance in the independent external test set

In the independent external test set, KM curves showed similar risk stratification on RFS by
the predGrade (log-rank p-value = 0.0002) as compared to the clinical NHG (log-rank
p-value = 0.00049) (Figure 7).

Figure 7: Kaplan-Meier (KM) curves on recurrence-free survival stratified by clinical NHG and
predGrade in the independent external test set. a. KM curve stratified by the clinical NHG and b. KM
curve stratified by the predGrade

In the univariate Cox PH model, we observed similar effect sizes in the associations between
clinical NHG,predGrade and RFS (Figures 8a and 8b). Patients with clinical NHG 3
(HR=3.58, 95% CI: 1.88-6.81, p-value < 0.001) or predGrade3 (HR=4.07, 95% CI:
1.75-9.47, p-value < 0.001) had three-to-four-fold increased risks of death/recurrence (Figure
5a and 5b) as compared to those with clinical NHG 1 or predGrade 1. On the other hand, the
clinical NHG 2 (HR = 2.59, 95% CI: 1.36-4.92, p-value = 0.004) and predGrade 2 (HR=
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2.52, 95% CI: 1.10-5.81, p-value = 0.030) were linked to around 2.5-fold increased risk of
death/recurrence (Figure 5a and 5b).

In multivariable Cox PH analysis, adjusting for tumour size, lymph node, ER, and HER2
status, the associations between the predGrade, as well as the clinical NHG, with RFS were
no longer found to be statistically significant (Figure 8c and 8d), while the effect size
estimate was in the same direction as for the univariate analysis. In addition, we noted that
older age at diagnosis and larger tumour size was linked to a higher risk of death/recurrence,
while ER positive was related to a lower risk of death/recurrence (Figures 8c and 8d). The
number of lymph nodes and HER2 status was not related to RFS(Figures 8c and 8d).

Next, we tested for the difference in hazard ratio estimates for clinical NHG 2 vs 1 and
predGrade 2 vs 1, indicating no statistically significant difference (p-value > 0.05). We, also
tested for the difference in hazard ratio estimates for clinical NHG 3 vs 1 and predGrade 3 vs
1, revealing no significant difference (p-value > 0.05). The hazard ratios in this analysis were
calculated from the multivariate Cox PH model after adjusting for the established covariates.

Figure 8: Evaluation of the prognostic performance on recurrence-free survival (RFS) in the
independent validation set. a. Univariate Cox model between the clinical NHG and RFS; b.
Univariate Cox model between the predGrade and RFS; c. Multivariable Cox model between the
clinical NHG and RFS adjusting for age, tumour size, lymph node, ER and HER2 status; and d.
Multivariable Cox model between the predGrade and RFS adjusting for age, tumour size, lymph node,
ER and HER2 status.
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Subgroup analysis restricting to ER (+ve) or ER(+ve)/HER2(-ve) groups in the
independent test set

We plotted KM curves on RFS stratified by clinical NHG and predGrade among ER (+ve)
patients (Figure 9a and 9b) and ER (+ve)/HER2(-ve) patients (Figure 9c and 9d).

Figure 9: Subgroup analysis: Kaplan-Meier (KM) curves on recurrence-free survival (RFS) in the
independent validation set within ER(+ve) or ER(+ve)/HER2(-ve) groups. a. KM stratified by clinical
NHG in ER(+ve) patients; b. KM stratified by predGrade in ER(+ve) patients; c. KM stratified by
clinical NHG in ER(+ve)/HER2(-ve) patients. d. KM stratified by predGrade in ER(+ve)/HER2(-ve)
patients

In the univariate Cox model restricted to ER (+ve) patients, we observed increased risks of
death/recurrence associated with clinical NHG 3 (HR =2.63, 95% CI: 1.32-5.24, p-value =
0.006) or predGrade 3 (HR = 3.27, (95% CI:1.37-7.82, p-value = 0.008) (Figure 10a and
10b). The clinicalNHG 2 had a 2.42-fold increased risk of death/recurrence, while the
predGrade2 was not related to RFS albeit a similar point estimate HR of 2.07 (95% CI:
0.86-4.64, p-value = 0.091) (Figure 10a and 10b). In the multivariable analysis, the
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association between clinical NHG and RFS as well as the association between predGrade and
RFS diminished and were no longer statistically significant (Figure 10 c and 10d).

Among the ER(+ve)/HER2(-ve) patients, we observed HR = 2.43 (95% CI: 1.19-4.99,
p-value = 0.015) for clinical NHG 3 and HR = 3.15 (95% CI: 1.29-7.65, p-value = 0.011) for
predGrade 3 (Figure 10e and 10f). The clinical NHG 2 was associated with the RFS
(HR=2.41, 95%: CI 1.26-4.62, p-value = 0.008), while the predGrade2 was not related to the
RFS (Figures 10e and 10f). In the multivariable Cox PH models among ER(+ve)/HER2(-ve)
patients, neither clinical NHG nor predGrade were related to RFS (Figure 10g and 10h),
while older age was linked to poor RFS in the analysis for predGrade (Figure 10h).

Again, we tested for the difference in HR estimates between NHG and predGrade in the
subgroup analyses, both for grade 1 vs 2 and grade 1 vs 3, and found that neither was
significantly different (p-value > 0.05), indicating that the prognostic performance was
similar between NHG and the predGrade model.
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Figure 10: Evaluation of the prognostic performance (RFS) of predGradeon in the independent
external test cohort within ER(+ve) or ER(+ve)/HER2(-ve) groups. Univariate Cox PH model for a.
clinical NHG and b. predGrade on RFS among ER(+ve) patients, c. Multivariable Cox PH models
between c) clinical NHG, d. predGrade and FRS among ER(+ve) patients adjusting for age, tumour
size, and lymph node. Univariate Cox PH model between e. clinical NHG, f. predGrade and RFS
among ER(+ve)/HER2(-ve) patients. Multivariable Cox model between g. clinical NHG, h.
predGrade and RFS among ER(+ve)/HER2(-ve) patients adjusting for age, tumour size, and lymph
node.
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Discussion

In this study, we developed a MIL-based CNN model to reproduce clinical NHG breast
cancer patients. The proposed model was first evaluated using CV, followed by validation in
a fully independent external test set. Histological grading of breast tumours is routinely
assessed in the clinical setting and remains an important prognostic factor contributing to
clinical decision-making, especially for ER (+ve)/Her2(-ve) patients. However, it is
well-known that NHG suffers from substantial inter-assessor and inter-lab variability, which
motivates the development of decision-support solutions that can improve quality and
consistency in the assessment.

Our proposed model, predGrade, exhibited a moderate label agreement with the clinical NHG
(κ = 0.33). This imperfect agreement is likely driven by the ground truth labelling noise, both
during training and validation, mostly from the intermediate NHG 2, given the high
inter-rater variability observed in NHG 2 (3). However, interestingly we observed similar
prognostic performances (RFS) for predGrade compared with the clinicalNHG. We also
noted similar prognostic performance between predGrade and clinical NHG when restricted
to the clinically relevant subgroups of ER(+ve) or ER(+ve) and HER2(-ve) patients. Our
results suggest that the deep learning-based predGrade provides similar prognostic
performance (RFS) of the clinical NHG, which is a key consideration since the conventional
NHG grade is primarily used in clinical settings as a prognostic factor (24). This indicates
that deep learning-based solutions can provide decision support based on the same principles
of histological grading while offering the benefits of being objective and consistent. The
model has the potential to reduce inter-assessor variability between pathologists and
systematic variability between pathology labs, which has recently been shown to result in (6)
unequal diagnostic quality for patients.

Previous studies have focused on classifying NHG1 and 2 (low-intermediate) combined
versus NHG3 (high) (10,11). Wetstein et al. reported a 37% increased risk of recurrence
associated with a high grade compared to a low-intermediate grade. Wang et al. on the other
hand demonstrated that a deep learning model optimised to discriminate NHG 3 vs 1 can (13)
further stratify the intermediate NHG 2 into NHG2-low and NHG2-high, enabling improved
prognostic stratification of the NHG 2 group of patients. However, the possibility of utilising
a deep learning-based model to reproduce the three-level grade that resembles the
conventional clinical NHG has not previously been reported.

In our modelling strategy, we make some key assumptions. Due to the inter-observer and
inter-lab variability present in the clinical NHG with relatively higher variability in NHG 2,
thus we decided to optimise our model for the classification of NHG 3 and 1 where there is
less label noise. As stated earlier, this modelling strategy is based on the assumption that the
tumour grading exists in a continuum instead of the discrete labels at the morphological level
with a spectrum ranging from low to high grade, apart from assuming more reliable ground
truth for low and high NHG. Such variabilities in the ground truth labels are one of the
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important challenges in developing deep learning-based clinical decision support tools.
Especially the development of weakly-supervised learning-based models where the label is
only available at the WSI level. An alternative approach to the modelling problem would be
to attempt to reduce label noise, which could be achieved by e.g. utilising consensus labels
assigned by a set of assessors as performed in (12). However, such attempts remain
challenging due to the number of resources required and the shortage of pathologists
available in most parts of the world.

In this study we developed and validated a deep learning-based model for breast cancer
histological grading, providing a similar three-group grade assignment as the well-established
Nottingham Histological Grading system. We found that despite the relatively low
concordance of grade labels with clinical NHG, the proposed model provides equivalent
prognostic stratification of breast cancer patients. The proposed model has the potential to
provide objective and consistent decision support for histological grading, reducing
previously observed inter-assessor and systematic inter-lab variability in breast cancer
histological grading, and with the benefit of increased equality for patients and reduced risk
for over- and under-treatment.
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