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ABSTRACT 

 

INTRODUCTION: Obesity is a known risk factor for the development of insulin resistance and 

other cardiometabolic disorders. Recently, the gut microbiome has been associated with obesity 

and subsequent health complications. Exercise has been regularly utilized as a therapeutic 

intervention to treat obesity and its associated comorbidities. This study examined the effects of 

a 6-week resistance training exercise program (RT) on the diversity, composition, and metabolic 

pathways of the gut microbiome.  

METHODS: Sedentary young adults (age 18-35 years) with overweight and obesity (BMI 25-45 

kg/m2) were recruited to participate in this randomized controlled trial. Participants were 

randomized to RT (n=16), a 6-week resistance training program (3 days/week), or control (CT) 

(n=16), a non-exercising control. Main outcomes of the study included gut microbiome measures 

(taxa abundances, diversity, and predicted function) and cardiometabolic outcomes (blood 

pressure (BP) and glucoregulation). 

RESULTS: Increased abundances of Roseburia, a genus of short chain fatty acid (SCFA) 

producers, and predicted starch and sucrose metabolism pathway were observed over 6 weeks 

(W6) with RT in comparison to CT (group × week, p<0.05, q<0.25). RT also induced higher 

abundance of microbial flagellar assembly, a pathway involved in cell motility, at W6 compared 

to CT (group × week, p<0.05, q<0.25). Moreover, RT resulted in higher QUICKI and lower 

diastolic BP at W6 compared to CT (BL-adjusted p<0.05).  

CONCLUSION: This study provides preliminary evidence that resistance training induces 

potentially positive changes in the gut microbiome and cardiometabolic health. Additionally, the 
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associations of cardiometabolic indicators with the microbial community structure warrants 

further investigation.  

 

I. INTRODUCTION 

 The gut microbiome is associated with obesity and related cardiometabolic health 

disorders (1, 2). This link is primarily supported by animal studies that demonstrate an increased 

capacity for energy harvesting in an obese gut microbiome as well as a distinct state of dysbiosis 

characterized by a high Firmicutes/Bacteroidetes ratio (1). Additionally some human studies 

have linked impaired microbial states to metabolic impairments and obesity (3). Direct gut 

microbial changes are observed with bariatric surgery-induced weight loss in humans with a 

decrease in weight being positively associated with an increase in microbial diversity following 

surgery (4). Taken together, these data suggest that the gut microbiome plays a role in obesity 

etiology and may represent as a therapeutic target for obesity treatment. 

Exercise training has been regularly utilized as a therapeutic intervention to treat obesity 

and its associated comorbidities (5) and recently training has been shown to influence the gut 

microbiome (6). Alteration of the gut microbiome through exercise training is seen in 

populations with obesity and lean populations, which appear to reverse after cessation of exercise 

(7). These changes in the microbiome, while typically observed in long-term exercise 

interventions occurring over the span of multiple weeks, have also been observed acutely after 

single bouts of exercise, indicating the quick responsive capabilities of the gut microbiome and 

its response to physical stress (8). Most studies have observed the effects of aerobic exercise (9–

16), or combined aerobic and resistance training (12, 17–22) on the gut microbiome while fewer 

studies examined the effects of only resistance training (RT) (23–26). Unfortunately, numerous 

lifestyle factors (i.e., diet) and large individual variability observed in the human microbiome 
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have led to conflicting findings 12,46-62,. Further, lack of control groups in previous work makes it 

difficult to attribute any changes to exercise training or other lifestyle changes (11–13, 18, 23–

25, 27).  

Among the few studies that have utilized RT, some included additional dietary 

interventions. For example, RT with protein supplementation increased Veillonellaceae, 

Akkermansia, and Eggerthellaceae, however the confounding effects of increased protein intake, 

do not allow, the microbiome changes to be attributed solely to RT (23). Other studies have 

compared RT to other exercise modalities. In one study, brisk walking was associated with 

increased intestinal Bacteroides while trunk muscle training exhibited no effects on the 

microbiome in elderly women (27). No control group or full body exercise programming was 

included in this study.  In another study, changes in microbial alpha-diversity were observed with 

aerobic exercise but not with RT (28).  However, in a rat study, RT increased alpha-diversity, 

SCFA producer Coprococcus, and decreased Pseudomonas, Serratia, and Comamonas genera 

(26).  

Due to the paucity of well controlled trials, the research concerning the impact of 

resistance training on the gut microbiome in humans is limited. The current study sought to 

examine 1) the effects of RT on gut microbial diversity, taxa abundances, and predicted function 

in young adults with overweight and obesity, and 2) to examine the association of the 

microbiome with cardiometabolic outcomes in this context. 

 

II. METHODS 

This study was approved by the Institutional Review Board of the University of Missouri – 

Columbia and the trial was registered on clinicaltrials.gov (NCT04906525). 
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Participants 

Young male and female sedentary adults (n=33) with overweight and obesity were 

recruited for this study and 27 participants completed the study. The participant flow is depicted 

in Figure 1. Twenty-seven participants completed the study. Inclusion criteria included the 

following: (a) 18–35 years of age, (b) BMI: 25-45 kg/m2, (c) sedentary lifestyle, (d) weight 

stability (≤ 4 kg weight change over the past 3 months), (e) consistent dietary patterns, (f) non-

smoker over the previous year, and (g) physically capable of participating in a RT program. 

Participants with diabetes, uncontrolled hypertension, gastrointestinal diseases or bariatric 

surgery, pregnancy, use of antibiotics in the past six months, or drug therapy for coronary and/or 

peripheral artery disease, congestive heart failure or dyslipidemia were excluded. 

A health history questionnaire was used to assess medical history and screen for diseases 

or medications. The International Physical Activity Questionnaire (IPAQ) was used to assess 

current levels of physical activity to ensure participants met sedentary status (those not 

participating in structured exercise and/or physical activities who also reported spending most of 

their days sitting were classified as sedentary) (29). The Physical Activity Readiness 

Questionnaire (PAR-Q) was used to ensure participants could safely participate in an exercise 

program by asking questions about past medical history, family medical history, injuries, and 

symptoms that may be representative of cardiac issues (30).  If participants met inclusion criteria, 

they were invited to an in-person screening visit.  

 

Study Protocol 
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The study was a 6-week randomized, controlled, parallel-arm intervention. Participants 

were randomized at baseline (BL) into 1 of 2 groups: the control group (CT, n=16) or the 

resistance training group (RT, n=16) using simple randomization via a random number generator 

in excel. Participants baseline demographic and clinical characteristics are described in Table 1. 

After BL data collection, participants participated in their respective interventions described 

below and returned at Week 6 (W6) for final data collection. 

1. Resistance training intervention 

The RT group underwent a 6-week RT intervention consisting of 18 sessions (3 days per 

week) plus a familiarization session and a final assessment session after W6 data collection (20 

total sessions).  Participants were instructed to make no changes to dietary habits over the course 

of the 6 weeks.  After completing the BL visit, participants attended the 

familiarization/assessment session to assess mobility, core strength, and muscular endurance. 

Additionally, participants were taught how to properly perform the following exercises: bench 

press, squat, and barbell row. These three exercises, in addition to plank hold and max push up 

test, were assessed over the course of the 6 weeks. Participants performed two 3 rep-max (RM) 

tests for bench press, squat, and deadlift; the first during the first week of programming and the 

second, after completion of the 6-week intervention.  Starting workload was 50-75% of 1RM and 

was determined by American College of Sports Medicine and National Academy of Sports 

Medicine trained facilitators. Progression in workload occurred when the participant was 

successfully able to perform 3 sets of 12 repetitions with proper form. Once workload was 

increased, repetitions were decreased to 8 until the facilitators determined the participant was 

capable of increasing repetitions. The facilitator made constant observations to ensure the 

participant used proper form and was being properly challenged by the given weight. Any 
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necessary modifications to lifts were made by facilitator to ensure the participant could properly 

perform the lift without risk of injury.  

 

2. Control intervention 

 Subjects randomized to CT were provided a handout describing the recommended levels 

of physical activity for their age group but were not given any further instruction or guidance 

regarding physical activity. They were also instructed to maintain their normal dietary habits and 

not make any major lifestyle alterations that may influence measured outcomes. 

 

Study Outcomes and Assessments 

1. Microbiome outcomes 

Participants were provided stool collection kits at BL and W6 and were also instructed to 

record their food intake 3 days prior to the BL sample collection. They were asked to replicate 

the diet prior to the W6 sample collection to control for the influence of diet on the gut 

microbiome.  

1.1. DNA extraction and sequencing 

DNA from the fecal samples was extracted using Qiagen PowerFecal Kits by the 

University of Missouri Metagenomics Center as previously described (31).  The library 

preparation and sequencing of the extracted fecal DNA was conducted at the University of 

Missouri Genomics Technology Core using methodology described previously (32, 33). The V4 

region of the 16S rRNA gene was amplified with universal primers (U515F/806R). Paired end 
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reads (2x250 bp) were generated on the MiSeq instrument using Illumina’s standard sequencing 

protocol. 

1.2. Sequency quality control 

The demultiplexed paired-end sequence reads from the Illumina platform were imported 

into QIIME 2 (version 2021.08), a microbiome analysis platform for further analysis (34). The 

forward and reverse sequences were trimmed i.e., adaptors removed using the cutadapt plugin in 

QIIME2 (35). The paired-end sequences were filtered, denoised, dereplicated, and merged with 

the DADA2 quality control package in QIIME2 (36). The amplicon sequence variants (ASVs) 

obtained from DADA2 were used in all downstream analyses. A total of 4192 ASVs were 

detected. 

1.3. Taxonomy  

The ASVs were assigned taxonomy in QIIME2 using a naive Bayes classifier, which was 

trained on the V4 (515–806) region of the Greengenes 13_8 database reference sequences 

clustered at 99% sequence similarity (37).  

1.4. Microbial pathways 

The functions of the microbial community were predicted from 16S rRNA data using 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) 

which infers pathway abundances of gene families such as KEGG orthologs (KO) (38). 

1.5. Alpha- and beta-diversity  

Alpha-diversity measures assessed included: 1) Chao1 index to assess microbial richness 

(39), 2) Shannon index to assess both evenness and richness (40), 3) Simpson’s index (41); a 
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measure which takes into account both species present and the relative abundance of species, and 

4) Simpson evenness (42) to measure species representation. Phylogenetic beta-diversity 

measures such as weighted UniFrac (a quantitative measure that uses abundance to weight 

phylogenic tree branches) and unweighted UniFrac (a qualitative measure assessing unique 

phylogenetic branch fractions) (43), and nonphylogenetic Bray–Curtis dissimilarity (44) and 

Euclidean diversity (45) to assess between-sample differences in abundance per count were also 

conducted. 

2. Glucoregulatory outcomes 

Fasting serum glucose concentrations were measured at BL and W6 using a YSI 2300 

STAT Plus (Yellow Springs, Ohio). A 2-hour oral glucose tolerance test (OGTT) was conducted 

at BL and W6 using a 75g glucose drink (Fisherbrand™ Glucose Tolerance Test Beverage). 

Whole blood glucose was measured prior to consumption of the OGTT drink (time 0) and 60 and 

120 minutes after using an Accu-Chek Performa glucometer with capillary blood collected from 

a finger stick. Participants were instructed to finish the drink within five minutes of opening the 

bottle. OGTT area under the curve (AUC) over 120 minutes was calculated using the logarithmic 

trapezoidal method (46). Fasting insulin was assessed using enzyme-linked immunosorbent 

assay (Millipore Cat.# EZHI-14K). Quantitative insulin-sensitivity check index (QUICKI), an 

estimate of fasting insulin sensitivity, was computed using [1/[log(fasting insulin uU/ml) + 

log(fasting glucose mg/dL)] (47). Homeostatic model assessment for insulin resistance (HOMA-

IR), an estimate of fasting insulin resistance was computed using [fasting insulin (µU/L) × 

fasting glucose (nmol/L)/22.5] (48). HOMA-beta, an estimate of insulin secretion, was computed 

using [360 × fasting insulin(µU/mL) / fasting glucose (mg/dL)-63] (49) 

3. Cardiovascular outcomes 
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Resting systolic and diastolic BP were measured at BL and W6 using an OMRON 

automatic BP device (model BP:725, Kyoto, Japan) on the left arm after allowing participants to 

sit quietly for five minutes.  Fasting lipid profile (LDL, HDL, total cholesterol, and triglycerides) 

were measured at BL and W6 using an Alere Cholestech LDX (San Diego, CA) device with 

blood obtained from a fingerstick and collected with a capillary tube.  

4. Body composition outcomes 

All anthropometric and body composition measurements were obtained at BL and W6. 

Height was measured in centimeters via a stadiometer. Weight was measured via a standard 

scale. Segmental body composition was obtained using a bioelectrical impedance device (RJL 

Systems Quantum – V Segmental, Ref: Q5S). All participants were instructed to be well-

hydrated to obtain accurate measurements. Waist circumference was measured at the narrowest 

part of the abdomen, Hip circumference was measured at the widest part of the hips-gluteal 

region.  

5. Diet and physical activity assessments 

A Diet History Questionnaire (DHQIII) was completed to establish a clear understanding 

of dietary patterns and specific food consumption over the previous month at BL and W6 (50). A 

triaxial accelerometer (model: wGT3X-BT) was used to assess free living physical activity over 

three days (two weekday and one weekend period) at BL and W6. 

 

Statistical analysis 

The differential abundance of the ASVs at the different taxonomic levels, namely, 

phylum, class, family, order, genus, and species and differential abundance of pathways was 
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analyzed using the limma-voom pipeline in R (version 4.0.4) (51).  Only taxa and pathways 

detected in at least 25% of the samples were included in downstream analyses. A group, week, 

and group × week interaction model was fit, and participant id was treated as a random effect 

using the duplicate Correlation function. The week × group effect was adjusted for multiple 

testing (false discovery rate) within the taxa levels and pathways using the Benjamini–Hochberg 

procedure (52). When statistically significant (Q-value<0.25) week × group effects were 

observed, contrasts between groups at different time points were extracted from the model and 

adjusted for multiple comparisons using the Benjamini–Hochberg procedure. 

The beta-diversity distance/dissimilarity matrices were analyzed for the effects of week, 

group, and week × group using the permutational multivariate ANOVA (PERMANOVA) (53) 

package in Primer (version 7) (54). 

For the alpha-diversity, anthropometric, body composition, glucoregulatory, 

cardiovascular, and dietary data, a linear mixed model analysis with nlme package (55) was 

conducted in R with week (BL and W6) as the within subject fixed effect, group (CT and RT) as 

the between subject fixed effect, the week × group interaction, and participant as the random 

effect. For the strength data, a linear mixed model analysis was conducted with week (BL and 

W6) as the within subject fixed effect and participant as the random effect. For the physical 

activity data, a mixed ANOVA analysis was conducted with rstatix package (56) in R with week 

(BL and W6) and day (weekday and weekend) as the within subject fixed effects, group (CT and 

RT) as the between subject fixed effect, and the week × group, group × day, and week × day × 

group interactions included. 

Data not meeting normality assumptions were transformed using the Johnson’s family of 

transformations (57), however, only the non-transformed data are presented for interpretation 
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purposes unless otherwise indicated. Analyses were adjusted for baseline when baseline values 

had a significant effect on the model. When statistically significant (p<0.05) week × group 

effects were observed, contrasts between groups at different time points were constructed and 

adjusted for multiple comparisons using the multivariate t distribution (mvt) adjustment in R 

(58). 

For taxa demonstrating statistically significant differences over time by group, their 

associations with cardiometabolic outcomes were examined using Pearson’s correlation in JMP 

Pro (16.0.0) (59). The correlation coefficient by groups were compared using Fishers r to z 

transformation and statistical significance was assessed for the observed z test statistic.  

The best set of cardiometabolic variables associated with the community structure (i.e., ASV 

abundance) was deduced using the BIOENV (60) analysis in the vegan package of R (61) as 

described previously (62). The statistical significance for the BIOENV procedure was assessed 

using the Mantel test (61). The input dataset for this procedure comprised: weight, BMI, FFM%, 

fat%, torso fat%, fasting glucose, glucose AUC120 min, fasting insulin, HOMA-IR, QUICKI, 

systolic BP, diastolic BP, waist circumference, total cholesterol, HDL, LDL, and triglycerides. 

The best subsets of variables for the RT and CT groups at BL and W6 were plotted as vectors 

along nonmetric, multidimensional scaling (NMDS) plots. The significance of the variables on 

the 2-dimensional ordinations was assessed using vegan function envfit (61). The envfit results 

describe the contribution of the variables to the ordinations and do not supersede the results of 

the BIOENV analyses. 

 

III.  RESULTS 
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Gut microbiome outcomes 

Alpha diversity 

Significant group × week interaction effects were observed for Shannon entropy, 

Simpson index, and Simpson evenness (group × week, p<0.05). Post-hoc pairwise analyses 

indicate that these effects were driven by significantly higher levels of Shannon entropy and 

Simpson index in RT compared to CT at BL, and significant increase in Simpson evenness index 

over 6 weeks in CT (mvt-adjusted pairwise p<0.05). Baseline adjusted analyses indicate higher 

Simpson index in CT compared with RT at W6 (BL adjusted group effect, p<0.05). The alpha-

diversity results are presented in Figure 2 and Table S1. 

Beta diversity 

There was a significant group × week interaction effect only for Euclidian beta diversity 

(group × week effect, p<0.05), however post hoc results indicate no significant differences 

between group and week comparisons. Beta-diversity results for Euclidean, Bray-Curtis, Jaccard, 

weighted and unweighted unifrac matrices are presented in Table S2. The beta-diversity plots for 

Euclidean, weighted unifrac, and unweighted unifrac diversity are depicted in Figure 3. 

Taxa 

Univariate indicate significant group × week interaction effects (p<0.05 and q<0.25) for 

the Roseburia genus, Roseburia faecis, and single ASV in Faecalibacterium prausnitzii, and in 

the Roseburia and Holdemania genera. Post hoc pairwise analyses demonstrate significant 

increases in the Roseburia genus and Roseburia faecis over 6 weeks in RT, higher abundance of 

Roseburia genus ASV in RT compared to CT at week 6, increase in Holdemania ASV in CT 

over 6 weeks (BH-adjusted pairwise analysis, p<0.05), and a notable but non-significant increase 
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in Faecalibacterium prausnitzii ASV over 6 weeks in RT (BH-adjusted pairwise analysis, 

p<0.1). Group × week interaction effects (p<0.05 but q> 0.25) were also detected for numerous 

other taxa and the relative abundances and results are presented in Table 2. 

KEGG pathways 

Numerous pathways demonstrated significant group × week interaction effects (p<0.05 

and q<0.25), 1) carbohydrate metabolism i.e., starch and sucrose metabolism, ascorbate and 

aldrate metabolism, and pyruvate metabolism, 2) metabolism of other amino acids: phosphonate 

and phosphinate metabolism, 3) cellular processes i.e., flagellar assembly and bacterial 

chemotaxis, 4) genetic information processing: sulfur relay system, and 5) environmental 

adaptation: plant pathogen interaction. In the carbohydrate metabolism category, starch and 

sucrose metabolism was lower in RT compared to CT at BL and increased with RT over 6 weeks 

while ascorbate and aldrate metabolism was higher in CT at W6 compared to RT (BH-adjusted 

pairwise p<0.05). In cellular processes category, flagellar assembly and bacterial chemotaxis 

decreased with CT over 6 weeks and flagellar assembly was higher in RT compared to CT at W6 

(BH-adjusted pairwise p<0.05). The genetic information processing category revealed that sulfur 

relay system decreased over 6 weeks in CT (BH-adjusted pairwise p<0.05). And the plant 

pathogen interaction pathway (environmental adaptation category) decreased with CT over 6 

weeks (BH-adjusted pairwise p<0.05). Group × week interaction effects (p<0.05 but q>0.25) 

were also detected for numerous other pathways and the relative abundances and results are 

presented in Table 3. 

Anthropometric and body composition outcomes 

Waist circumference, FM%, FFM% and torso FM% demonstrated significant group × 

week effect interaction effects (p<0.05). Post hoc pairwise comparisons indicate that the effect 
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observed in waist circumference was driven by a significant increase in CT at W6 compared to 

BL (mvt-adjusted pairwise p<0.05). The baseline adjusted analyses indicate that FM%, torso 

FM%, and waist circumference were significantly higher and FFM% lower at W6 in CT 

compared to RT (BL adjusted group effect, p<0.05). Results are shown in Table 4.  

Cardiovascular outcomes 

Baseline adjusted analyses indicated that diastolic BP was lower in RT compared to CT 

at W6 (BL adjusted group effect, p<0.05). Results are shown in Table 4. 

Glucoregulatory outcomes 

QUICKI demonstrated significant group × week interaction effects (p<0.05). Post hoc 

pairwise analysis indicates a significant increase in QUICKI over 6 weeks in RT (mvt-adjusted 

pairwise p<0.05). Baseline adjusted analyses indicate higher fasting glucose in CT, higher 

QUICKI in RT, and lower HOMA-IR in RT at W6 (BL adjusted group effect, p<0.05). Results 

are shown in Figure 4 and Table S3. 

Strength gains in RT 

Strength significantly increased in bench max, row max, squat max, push up test, and 

plank test in the RT group over 6 weeks (week effect, p<0.05, Table S4). There were no strength 

assessments conducted for the CT group. 

Physical activity 

Percentage of time spent in sedentary activity, percentage of time spent in light activity, 

and total time of sedentary bouts demonstrated significant 3-way group × week × day interaction 

effects (p<0.05). Post-hoc tests for the variables did not reveal any significant or meaningful 
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differences. There were no significant interaction effects observed for total energy expenditure 

(kcals) or METs between groups over the course of the intervention. Data and results are 

presented in Table S5. 

Dietary intake  

Pinitol demonstrated significant week × group interaction effects (p<0.05, Table S6). 

Pairwise analyses indicate pinitol was significantly higher in CT compared to RT at W6 (mvt-

adjusted pairwise p<0.05). Baseline adjusted analyses indicate higher intake pinitol and sorbitol 

in CT compared to RT at W6 (BL adjusted group effect, p<0.05, Table S6).  

Association of microbial community structure with cardiometabolic variables 

The best correlated subset of cardiometabolic variables with the microbial community 

structure in the RT group at BL (model Spearman rho=0.43; p=0.009), CT group at BL (model 

Spearman rho=0.14; p=0.16), RT group at W6 (model Spearman rho=0.40; p=0.01), and CT 

group at W6 (model Spearman rho=0.35; p=0.027) are depicted in Figure 5. The subset of 

cardiometabolic variables with the highest correlation with the community structure comprised 

of FFM%, fat%, fasting glucose concentrations, and fasting insulin concentrations in RT at 

baseline (Figure 5A), fasting glucose in CT at BL which was not statistically significant (Figure 

5B), diastolic blood pressure and BMI in RT at W6 (Figure 5C), systolic and diastolic BP, and 

LDL in CT at W6 (Figure 5D). Moreover, fasting glucose (R2=42%; p<0.05 envfit test), FFM% 

(R2=46%; p<0.05), and fat% (R2=46%; p<0.05) each demonstrated a statistically significant 

association with the 2-dimensional NMDS ordination of RT at BL. 

Correlation between Roseburia genus and glucoregulatory outcomes 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.01.27.23285016doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.27.23285016
http://creativecommons.org/licenses/by/4.0/


 

 

Since the Roseburia genus was the only taxa to demonstrate a strong change with RT 

over 6 weeks in comparison to the CT group, we examined its association with cardiometabolic 

outcomes.  At BL in the RT group, there was a modest positive correlation of Roseburia with 

diastolic BP (r=0.52, p<0.05, Table S7) which was not observed at W6. However, there were no 

statistically significant differences found for the Roseburia-Diastolic BP correlations between the 

RT and CT groups at either BL or W6. 

There was a notable but non-significant moderately positive correlation between 

Roseburia and QUICKI (r=0.48, p<0.1, Table S7) in the RT group at W6.  At BL, there were no 

statistically significant group differences found for the correlations of Roseburia with QUICKI, 

but the group differences were apparent at W6 (p<0.1 for RT vs. CT at W6, Table S7).  There 

were no significant or notable correlations observed between Roseburia and body composition 

measures or glucose concentrations. 

 

IV. DISCUSSION  

The RT intervention demonstrated notable effects on the gut microbiome and 

cardiometabolic outcomes. RT increased butyrate producers in the Roseburia genus and induced 

changes in several microbial pathways involved in carbohydrate metabolism and cell motility. 

RT also had positive effects on insulin sensitivity indices which could potentially be associated 

with an increase in butyrate producers. 

RT increased Roseburia, a genus attributed to butyrate production in the gut (63). A 

notable (albeit non-significant) increase in Faecalibacterium prausnitzii, another known 

producer of butyrate and overall indicator of a healthy gut (64), was also seen with RT. Although 

SCFAs such as butyrate are commonly produced by microbial fermentation of non-digestible 
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fibers (65), exercise increases gut motility and mucus secretion (66) which can alter the 

interaction among microbiota, thereby potentially impacting SCFA production. Enhanced 

butyrate production could thus be the result of butyrate producers such as Roseburia cross-

feeding with mucin degraders (67), or the result of increased mucin colonization as several 

Roseburia species demonstrate mucin-adhering capability (68, 69). This increase in butyrate 

producers with RT has important clinical implications due to their roles in butyrate production 

and the observed effects of butyrate on the reduction of adiposity and insulin resistance (70).  

Butyrate specifically has been shown to have protective effects against adiposity as well 

as insulin resistance, whether it be increased via direct supplementation or through endogenous 

gut production, the latter method being associated with other benefits such as increased gut 

endocrine function (70, 71). Our correlation analyses did not demonstrate any associations of 

adiposity with butyrate producers in the RT group most likely because the adiposity changes 

were largely driven by an increase in adiposity with CT over 6 weeks while RT demonstrated 

protective effects or marginal decreases in adiposity overall. The insulin sensitivity index was 

improved 8.6% following the RT intervention, agreeing with much of the previous literature 

demonstrating that exercise can reduce insulin resistance (72, 73). Sedentary behavior and 

obesity are both risk factors for the development of insulin resistance driven by impairments in 

multiple pathways related to insulin signaling. Exercise is known to attenuate these impairments 

via multiple mechanisms such as increased glucose clearance, increased skeletal muscle mass, 

increased insulin receptors, and increased GLUT4 translocation (74). These findings also support 

previous findings highlighting the protective effects of physical activity against the development 

of type 2 diabetes and metabolic syndrome (75). The increases in selected SCFA producers may 

be associated with improvements in insulin sensitivity. This is supported by the correlation 
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analyses that demonstrate a potential link between Roseburia and QUICKI suggesting that those 

with higher abundance of Roseburia also exhibited improved insulin sensitivity. 

Although circulating SCFA were not measured in the present study, the effects of SCFA, 

specifically butyrate, on insulin sensitivity could be via multiple mechanisms.  As reviewed 

previously, SCFA can activate G-protein coupled receptors on gut enteroendocrine L-cells which 

can stimulate the release of GLP-1, an incretin hormone, thereby promoting insulin secretion and 

decreasing glucagon secretion (76). SCFA may have additional effects on insulin sensitivity in 

skeletal muscle and the liver, two tissues responsible for glucose uptake. SCFA can lead to 

upregulation of AMPK activity, which stimulates mobilization of glucose transporters like 

GLUT4, leading to improvements in insulin sensitivity (76).  

The microbial community structure was also found to be associated with blood pressure 

in the NMDS analyses. Specifically, RT resulted in lower diastolic blood pressure at the end of 

the 6-week intervention, which is indicative of an improvement of cardiovascular health. There 

is evidence to suggest that SCFAs can regulate BP by binding to G-protein coupled receptors 

GPR41, GPR43, and GPR109A which triggers a cascade of pathways inducing vasodilation and 

reducing BP (77). Although it is plausible to assume that the increases in butyrate producers with 

RT may serve as potential mechanisms for the observed improvements in diastolic blood 

pressure (78), our correlation analysis did not support these ideas.  

 Microbial pathways involved in carbohydrate metabolism such as starch and sucrose 

metabolism were differentially modulated with RT. The increased abundance of starch and 

sucrose metabolism pathways with RT appears to be independent of dietary changes as no group 

effects were observed for carbohydrates, sugars, or dietary fiber over the 6-week study. We 

speculate that the increased abundance of genes in these pathways with RT may be indicative of 
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increased efficiency of microbial starch and sucrose metabolism at any given intake level i.e., the 

microbiome becomes more adept at metabolizing these carbohydrates by increasing the 

abundance of these genes. This is a plausible theory considering that the positive effects of 

exercise on host carbohydrate metabolism are well established (79, 80). Whether changes in 

carbohydrate pathway abundances translate to changes in gene expression should be confirmed 

in future studies with meta-transcriptomics of fecal samples.  

RT also induced higher microbial flagellar assembly, a pathway involved in cell motility, 

at the end of the 6-week intervention compared to CT. While there is no current association 

between exercise and cell motility, these increases may be indicative of a more active gut 

microbiome. One of the motility mechanisms of bacteria involve the use of flagella to navigate 

their environment (81). Flagellar assembly is a complex process that ultimately allows bacteria to 

swim through liquids or adhere to semi-solid surfaces (82). The higher flagellar assembly 

pathway abundance with RT may be indicative of an increased ability of bacteria to colonize the 

RT-induced gut environment.  

The changes observed in alpha-diversity following RT are largely driven by the distinct 

differences observed between the RT and CT groups at baseline. Exercise studies that have 

examined alpha-diversity measures have presented mostly non-significant results indicating no 

effect of a true strength training intervention on diversity (24, 28). Studies comparing strength 

training to aerobic exercise training also report no changes in either alpha- or beta-diversity (24, 

28), but these studies were also limited by the lack of control groups. The present study did not 

demonstrate appreciable changes in beta-diversity with RT. However, there have been reports of 

changes in beta-diversity following strength training and increased protein intake in humans, but 

the results of strength training alone cannot be isolated in that study (23) due to the lack of an RT 
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only group. Moreover, changes in beta-diversity are not always positive changes and are often 

reported without reference to the direction of change. The subject of exercise and diversity still 

warrants further attention. 

Several mechanisms have been proposed for the effects of exercise on the gut 

microbiome (83). Exercise-induced heat stress and intestinal permeability may acutely result in 

direct contact between microbes and the immune system, thereby changing microbial 

architecture and activity (83). Exercise can also increase abdominal mechanical forces, reduce GI 

transit time, and alter gut motility which can impact mucus secretion, intestinal pH, and nutrient 

availability (83). Moreover, acute exercise can lead to reduction in mesenteric blood flow to the 

gut resulting in localized intermittent hypoxia (84, 85), which could acutely promote a more 

anaerobic gut environment potentially promoting increased inhabitation of anaerobic bacteria, 

such as species in the Roseburia genus (86), a genus that increased following RT in the present 

study. Additionally, we speculate that the metabolites and hormones that are increased in the 

blood immediately following exercise (i.e., lactate, cortisol, etc.) (87, 88) could potentially be  

transported to the gut once at-rest blood flow is returned. The exposure of these metabolites, 

hormones, and cytokines to the gut could provide additional stimuli for the gut microbiome and 

lead to an environmental shift that could promote and/or deter the inhabitation of various 

microbes in the gut. Hence, the beneficial impact of RT on gut microbial taxa and functions 

could be via long-term adaptations resulting from these mechanisms and should be explored in 

future studies. 

  This study has numerous strengths and provides significant findings that contribute to a 

larger body of literature in the field of exercise and the gut microbiome. To our knowledge, this 

is one of the first studies to look solely at the effects of RT without any additional dietary or 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.01.27.23285016doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.27.23285016
http://creativecommons.org/licenses/by/4.0/


 

 

lifestyle intervention in humans and with the inclusion of a rigorous control. This study 

highlighted not only alterations in the gut microbiome, but potential associations between SCFA 

producers and insulin sensitivity which should be examined further. In the context of real-world 

applications and viability for the studied intervention to be utilized as a treatment method, all 

participants who began the RT intervention (came to the first session) completed the entire 

intervention, speaking to the plausibility of this studied intervention to be adapted and safely 

utilized by this population outside of a research setting. Additionally, this intervention was 

specifically designed to reflect a program designed by a certified personal trainer to promote not 

just physiological and cardiometabolic changes, but also functional strength, mobility, and 

balance.  

The limitations of this study pertain to not controlling for other lifestyle factors. Diet 

composition is known to have a significant effect on the gut microbiome as well as other markers 

of cardiometabolic health and adiposity (89). While diet was assessed before and after the 

intervention to ensure that no major shifts occurred over the course of the intervention, and 

participants were asked to consume diets similar to their baseline diets 3 days before their week 6 

visit, no other method of controlling the diet was used, which could be a potential confounder on 

inter-individual microbiome variability. Evidence also indicates that other lifestyle factors such 

as sleep can have significant implications for adiposity and insulin resistance (90) and potentially 

on the gut microbiome (91) but was not assessed due to the scope of this study. Other limitations 

are related to using predictive modeling for assessing microbial functions. However, PICRUST2 

(38) is a common tool for predicting microbial functions based on 16S marker genes, and 

demonstrates strong correlations (0.79-0.88) for prediction of KO genes when compared to the 

gold-standard shotgun metagenomics sequencing (38).  
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This study provides preliminary evidence that resistance training induces positive 

changes in the gut microbiome and cardiometabolic health. Future studies should 1) interrogate 

the microbiome-SCFA-glucoregulation axis in response to exercise with larger sample sizes, and 

2) the interaction of lifestyle factors i.e., diet, exercise, and sleep on the gut microbiome in a 

controlled manner to gain a greater understanding of the complex relationship of the gut 

microbiome with human physiology and metabolism.  
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TABLES 

Table 1. Baseline demographic characteristics of participants in the RT and CT groups. 

Characteristics* RT (n = 16) CT (n = 16) 
Sex, n (%) 

 
  

 Male 6 (37.5) 4 (25.0) 
 Female 10 (62.5) 12 (75.0) 
Age, years 28.4 ± 4.1 28.5 ± 4.4 
Race/Ethnicity, n (%) 

 
  

 Hispanic 1 (6.3) 0 (0.0) 
 Asian/Pacific Islander 2 (12.5) 3 (18.7) 
 African American 2 (12.5) 1 (6.3) 
 Caucasian White 11 (68.7) 12 (75.0) 
BMI, kg/m2 31.17 ± 4.79 31.26 ± 4.32 
BMI Category, n (%) 

 
  

 Overweight 8 (50.0) 6 (37.5) 
 Obese 8 (50.0) 10 (62.5) 
*Data only presented for participants that completed the baseline visit 
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Table 2. Microbial taxonomic relative abundance for RT and CT at baseline and week 6. 

 Baseline Week 6       P-Values      Q-Value 

  RT CT RT CT Group Week 

Group 
x 

Week Group x Week 

Family   
p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Leuconostocaceae 0.003 ± 0.005 0.003 ± 0.01 0.002 ± 0.005 0.026 ± 0.086 0.304 0.319 0.016 0.58 

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_undefined 0.018 ± 0.068 0.03 ± 0.113 0.006 ± 0.017 0.009 ± 0.028 0.901 0.542 0.042 0.77 

Genus 
       

  

p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Roseburia 6.919 ± 4.005 10.209 ± 6.302 10.725 ± 5.487* 8.696 ± 5.629 0.577 0.291 0.002 0.13 

p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Holdemania 0.023 ± 0.023 0.017 ± 0.025 0.012 ± 0.017 0.02 ± 0.02 0.864 0.865 0.02 0.67 

 0.506 ± 0.699 0.678 ± 0.767 0.805 ± 1.083 0.853 ± 1.264 0.408 0.14 0.041 0.85 

Species        
  

p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Roseburia;s_faecis 5.419 ± 4.145 8.616 ± 5.715 8.64 ± 5.24* 7.265 ± 5.047 0.661 0.444 0.003 0.25 

p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Holdemania;s_undefined 0.023 ± 0.023 0.017 ± 0.025 0.012 ± 0.017 0.02 ± 0.02 0.96 0.986 0.017 0.8 

p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia;s_obeum 2.214 ± 2.984 0.797 ± 0.817 1.412 ± 1.319 1.621 ± 1.803 0.267 0.051 0.029 0.84 

p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae;g_Clostridium;s_celatum 0.076 ± 0.126 0.04 ± 0.069 0.098 ± 0.227 0.547 ± 0.964 0.611 0.937 0.043 0.84 

ASV        
  

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Roseburia; s_undefined 0.557 ± 1.031 0.637 ± 0.911 0.699 ± 0.706** 0.494 ± 0.705* 0.176 0.19 0.001 0.22 

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; _Roseburia; s__faecis 4.571 ± 4.311 6.834 ± 5.173 7.527 ± 5.737* 5.792 ± 4.968 0.395 0.264 0.005 0.22 

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_Faecalibacterium; s_prausnitzii 0.14 ± 0.122 0.186 ± 0.174 0.171 ± 0.096� 0.151 ± 0.173 0.487 0.644 0.005 0.22 
p_Firmicutes; c_Erysipelotrichi; o_Erysipelotrichales; f_Erysipelotrichaceae; g_Holdemania; 
s_undefined 

0.016 ± 0.023 0.011 ± 0.026 0.007 ± 0.012 0.013 ± 0.017* 0.69 0.197 0.005 0.22 

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Lachnospira; s_undefined 0.118 ± 0.171 0.025 ± 0.083 0.065 ± 0.112 0.097 ± 0.218 0.198 0.741 0.012 0.39 

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Blautia; s_obeum 2.214 ± 2.984 0.797 ± 0.817 1.411 ± 1.319 1.621 ± 1.803 0.226 0.073 0.015 0.41 

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_Oscillospira; s_undefined 0.056 ± 0.059 0.013 ± 0.031 0.105 ± 0.234 0.027 ± 0.052 0.219 0.229 0.02 0.49 

p_Firmicutes; c_Clostridia; o_Clostridiales; f_Clostridiaceae; g_Clostridium; s_celatum 0.076 ± 0.126 0.04 ± 0.069 0.098 ± 0.227 0.547 ± 0.964 0.736 0.97 0.032 0.65 
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Actinomycetaceae; g_Actinomyces; 
s_undefined 

0.018 ± 0.02 0.021 ± 0.024 0.015 ± 0.035 0.034 ± 0.036 0.288 0.61 0.035 0.65 

p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae 0.211 ± 0.703 0.041 ± 0.07 0.018 ± 0.026 0.197 ± 0.356 0.867 0.741 0.038 0.65 

                  

Relative abundance percentages presented as Mean ± SD.  
Pairwise comparisons only done for variables with group x week q-value<0.25. 
* indicates statistically significant effect (BH-adjusted pairwise p<0.05) in comparison to baseline  
� indicates BH-adjusted pairwise p<0.1 in comparison to baseline 
** indicates statistically significant effect (BH-adjusted pairwise p<0.05) compared to CT 
CT, control group; RT, resistance training group 
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Table 3. Microbial functions for RT and CT at baseline and week 6. 
 

KEGG Pathway Baseline Week 6 P-values Q-value 
Metabolism; Carbohydrate Metabolism RT CT RT CT Group Week Group x Week Group x Week 
Starch and sucrose metabolism 1.289 ± 0.049** 1.354 ± 0.038 1.342 ± 0.035* 1.349 ± 0.055 0.015 0.015 0.003 0.25 
Ascorbate and aldrate metabolism 0.237 ± 0.046 0.238 ± 0.036 0.218 ± 0.038** 0.263 ± 0.054� 0.073 0.534 0.013 0.25 
Pyruvate metabolism 1.256 ± 0.034 1.235 ± 0.043 1.237 ± 0.049 1.246 ± 0.04 0.790 0.843 0.010 0.25 
Pentose and glucoronate interconversions 0.776 ± 0.08 0.769 ± 0.049 0.751 ± 0.082 0.805 ± 0.065 0.183 0.430 0.018 0.26 
Glycolysis/gluconeogenesis 1.217 ± 0.025 1.206 ± 0.03 1.214 ± 0.037 1.224 ± 0.043 0.889 0.395 0.045 0.34 
Metabolism; Amino Acid Metabolism   
Valine, leucine and isoluecine degradation 0.266 ± 0.021 0.271 ± 0.026 0.254 ± 0.017 0.281 ± 0.03 0.037 0.931 0.028 0.32 
Lysine degradation 0.144 ± 0.012 0.147 ± 0.015 0.139 ± 0.012 0.153 ± 0.021 0.069 0.971 0.038 0.37 
Metabolism; Metabolism of other Amino Acids   

Phosphonate and phosphinate metabolism 0.152 ± 0.018 0.147 ± 0.024 0.141 ± 0.018�, � � 0.154 ± 0.026 � 0.545 0.955 0.006 0.25 
Selenocompound metabolism 1.06 ± 0.036 1.08 ± 0.036 1.076 ± 0.031 1.065 ± 0.033 0.439 0.745 0.048 0.34 
Metabolism; Xenobiotics biodegradation and metabolism   
Caprolactum degradation 0.003 ± 0.005 0.003 ± 0.007 0.001 ± 0.001 0.006 ± 0.012 0.343 0.568 0.039 0.34 
Metabolism; Metabolism of Cofactors and vitamins   
Thiamine metabolism 1.858 ± 0.078 1.89 ± 0.08 1.883 ± 0.071 1.863 ± 0.091 0.984 0.497 0.041 0.34 
Metabolism; Metabolism of Cofactors and Enzymes   
Folate biosynthesis 0.994 ± 0.076 0.987 ± 0.074 0.963 ± 0.102 1.018 ± 0.09 0.112 0.758 0.030 0.32 
Cellular Processes; Cell Motility   
Flagellar assembly 0.629 ± 0.178 0.648 ± 0.205 0.668 ± 0.204** 0.551 ± 0.198* 0.162 0.102 0.010 0.25 
Bacterial chemotaxis 1.311 ± 0.212 1.391 ± 0.255 1.382 ± 0.253 1.252 ± 0.248* 0.509 0.111 0.004 0.25 
Genetic Information Processing; Folding, sorting and 
degradation   

Sulfur relay system 1.257 ± 0.059 1.265 ± 0.067 1.271 ± 0.06 � � 1.229 ± 0.093* 0.271 0.179 0.014 0.25 
Organismal Systems; Environmental adaptation   

Plant pathogen interaction 0.219 ± 0.021 0.22 ± 0.021 0.224 ± 0.021� � 0.212 ± 0.018* 0.223 0.224 0.016 0.25 
Environmental Information Processing; Signal 
transduction   
Two-component system 0.393 ± 0.026 0.398 ± 0.034 0.398 ± 0.024 0.386 ± 0.033 0.482 0.278 0.027 0.32 
Genetic Information Processing; transcription   
RNA polymerase 1.294 ± 0.044 1.295 ± 0.061 1.303 ± 0.042 1.264 ± 0.078 0.275 0.239 0.032 0.32 
Organismal Systems; Endocrine system   
Insulin Signaling Pathway 0.117 ± 0.007 0.116 ± 0.008 0.118 ± 0.005 0.114 ± 0.007 0.251 0.579 0.049 0.34 

Relative abundance percentages presented as Mean ± SD. 
Pairwise comparisons only done for variables with group x week q-value<0.25. 
* indicates statistically significant effect (BH-adjusted pairwise p<0.05) in comparison to baseline  
� indicates BH-adjusted pairwise p<0.1 in comparison to baseline 
** indicates statistically significant effect (BH-adjusted pairwise p<0.05) compared to CT 
� � indicates BH-adjusted pairwise p<0.1 in comparison to CT 
CT, control group; RT, resistance training group 
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Table 4. Anthropometric, body composition, and cardiovascular data for RT and CT at baseline and week 6. 

Non-transformed data presented as Mean ± SD. Analyses were conducted on transformed variables.  
* indicates statistically significant (mvt-adjusted pairwise p<0.05) effect in comparison to baseline  
� indicates mvt-adjusted pairwise p<0.1 in comparison to baseline 
RT, resistance training group; CT, control group; Circ., circumference; FM, fat mass; FFM, fat-free mass; TC, total cholesterol; HDL, 
high density lipoproteins; LDL, low density lipoproteins; TG, triglycerides; BP, blood pressure 

  Baseline Week 6 P-Values 

  RT CT RT CT Group Week 
Group x 
Week 

Baseline 
adjusted 
group 

Anthropometric      

      
Weight (kg) 85.25 ± 20.19 89.69 ± 17.75 88.41 ± 21.18 91.92 ± 20.44  0.500 0.016 0.174 0.266 
BMI 31.17 ± 4.79 31.26 ± 4.32 32.02 ± 5.08 31.58 ± 4.9 0.867 0.015 0.215 0.23 
BIA FM% 39.98 ± 5.94 36.59 ± 7.36 38.48 ± 6.50 37.64 ± 8.52 � 0.531 0.330 0.009 0.027 

BIA FFM% 60.16 ± 5.94 63.41 ± 7.36 61.52 ± 6.50 62.36 ± 8.52 � 0.531 0.330 0.009 0.027 

Torso FM% 23.49 ± 3.85 21.61 ± 3.91 22.45 ± 3.61 22.52 ± 4.59 � 0.577 0.622 0.002 0.013 

Waist circ. (cm) 93.00 ± 11.86 94.28 ± 10.28 93.79 ± 12.71 97.31 ± 9.41* 0.407 0.048 0.025 0.02 
Hip circ. (cm) 109.73 ± 9.57 111.06 ± 10.68 110.93 ± 10.42 112.27 ± 12.56 0.878 0.005 0.838 0.877 
Lipid profile 

  
TC  169.56 ± 29.7 187.38 ± 41.12 163.64 ± 40.55 189.77 ± 56.72 0.115 0.886 0.570 0.369 

HDL  46.62 ± 19.41 41.06 ± 15.56 44.57 ± 14.14 40.31 ± 17.4 0.265 0.954 0.974 0.555 
LDL  99.5 ± 30.21 118.94 ± 31.46 101 ± 30.92 115.08 ± 43.31 0.093 0.884 0.475 0.962 
TC: HDL  4.06 ± 1.40 5.21 ± 2.44 3.99 ± 1.23 5.24 ± 1.77 0.024 0.752 0.985 0.154 
TG  119.38 ± 41.78 136.88 ± 56.8 114.23 ± 57.92 171.23 ± 84.9 0.04 0.337 0.082 0.068 
Blood pressure   
Systolic BP  116.41 ± 15.67 117.22 ± 7.73 117.79 ± 14.60 118.81 ± 9.52 0.572 0.389 0.914 0.698 
Diastolic BP  75.81 ± 7.76 77.19 ± 5.60 73.61 ± 7.5 77.35 ± 3.33 0.082 0.356 0.184 0.025 
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FIGURES 

Figure 1. Consort flow diagram of RT and CT from screening to study completion.  

 

 

 

 

 

 

 

 

 

 

 

CT, control group; DQ, disqualified; RT, resistance training group; WD, withdrew. 
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Figure 2. Indexes of alpha-diversity: (A) Simpson Evenness, (B) Shannon Entropy, and (C) Simpson Index between groups at BL and 

W6. 

 

 

 

 

 

 

 

Non-transformed data presented as Mean ± SE. Analyses were conducted on transformed variables.  

RT, resistance training group; CT, control group; BL, baseline; W6, week 6 

*, Baseline adjusted group effect, P<0.05 
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Figure 3.  Beta-diversity measures (A) Weighted Unifrac, (B) Unweighted Unifrac, and (C) Euclidean between groups at BL and W6. 

 

 

 

 

 

 

RT, resistance training group; CT, control group; BL, baseline; W6, week 6 
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Figure 4.  Glucoregulatory measures (A) QUICKI, (B) HOMA-IR, and (C) Fasting BG between groups at BL and W6. 

 

Non-transformed data (unless otherwise indicated) presented as Mean ± SE. Analyses were conducted on transformed variables.  

RT, resistance training group; CT, control group; OGTT, oral glucose tolerance test; AUC; area under the curve; QUICKI, quantitative 

insulin-sensitivity check index; HOMA-IR, homeostatic model assessment for insulin resistance; BG, blood glucose: BL, baseline; W6, 

week-6.  Transformed values (Johnson’s (JN) transformation) for HOMA-IR plotted in figure.  

*, Baseline adjusted group effect, P<0.05 
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Figure 5.  Nonmetric multidimensional scaling (NMDS) plot of the Bray–Curtis dissimilarities of microbial data with best set of clinical 

and dietary variables at (A) baseline in RT, (B) baseline in CT, (C) week 6 in RT, and (D) week 6 in CT.  

 

 

 

 

 

 

 

 

 

 

 

 

NMDS RT baseline stress = 0.083, NMDS CT baseline stress = 0.123, NMDS RT week 6 stress = 0.103, and NMDS CT week 6 stress = 

0.115. *P < 0.05 from envfit. The arrow shows the direction of the gradient. The line length is proportional to the variable-NMDS score 

correlation. Line lengths are not comparable across plots.  

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted F
ebruary 14, 2023. 

; 
https://doi.org/10.1101/2023.01.27.23285016

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.01.27.23285016
http://creativecommons.org/licenses/by/4.0/

