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S1 Basic reproduction number derivation

We derive an expression the basic reproduction number R0 for our model using the next-generation

operator method for compartmental models (1, 2). Suppose at some arbitrary time t = 0 a small

number of newly infected (i.e. age of infection x = 0) individuals g0 is introduced into an otherwise

disease free system, where the components of the vector g0 denote the following infection classes:

g0 =



EA

EY

A

Y


. (s1)

Let g(x) denote the infection status of those individuals who are still infected after x infection

days. Assuming that the number of new infections generated by these individuals remains small,

we linearize our model equations (Eq. (7) in the main text) about the disease-free state to find the

following ODE for the time evolution of g(x):

dg(x)

dx
= −V (x)g(x), g(0) = g0, (s2)
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where V (x) denotes the following 4× 4 matrix:

V (x) =



V11(x) 0 0 0

0 V22(x) 0 0

V31(x) 0 V33(x) 0

0 V42(x) 0 V44(x)


, (s3)

where

V11(x) = ε(x) + τ−1N0
κ (s4)

V22(x) = ε(x) + τ−1N0
κ(1− Pe(x)) + τ−1C0

Pe(x)

V33(x) = r(x) + τ−1N0

V44(x) = r(x) + τ−1N0
κ(1− Py(x)) + τ−1C0

Py(x)

V31(x) = −ε(x)

V42(x) = −ε(x),

and where τ−1N0
and τ−1C0

are the non-clinical and clinical testing rates, respectively, evaluated at the

disease free equilibrium:

τ−1N0
=


0, C = 0 or ρ = 0[
τ + κ1−η

ρC

]−1
, otherwise,

(s5)

τ−1C0
=


0, C = 0 or ρ = 1

τ−1, otherwise.

(s6)

The component −Vij(x) is the transition rate from infection class i to infection class j for i 6= j,

while the diagonal component Vii(x) is the total rate of transition out of infection class i, assuming

an otherwise disease free system. The solution to Eq. (s2) is written as the following:

g(x) = M(x)g0, (s7)
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where M(x) is the solution to the following matrix differential equation:

dM(x)

dx
= −V (x)M(x), M(0) = I, (s8)

where I denotes the 4× 4 identity matrix. The solution to Eq. (s8) is given by the following:

M(x) =



M11(x) 0 0 0

0 M22(x) 0 0

M31(x) 0 M33(x) 0

0 M42(x) 0 0 M44(x)


, (s9)

where

M11(x) = exp

[
−
∫ x

0
ds
(
ε(s) + τ−1N0

κ
)]

(s10)

M22(x) = exp

[
−
∫ x

0
ds
(
ε(s) + τ−1N0

κ
(
1− Pe(s)

)
+ τ−1C0

Pe(s)
)]

M33(x) = exp

[
−
∫ x

0
ds
(
r(s) + τ−1N0

κ
)]

M44(x) = exp

[
−
∫ x

0
ds
(
r(s) + τ−1N0

κ
(
1− Py(s)

)
+ τ−1C0

Py(s)
)]

M31(x) =

∫ x

0
ds ε(s) exp

[
−
∫ s

0
ds′
(
ε(s′) + τ−1N0

κ
)
−
∫ x

s
ds′
(
r(s′) + τ−1N0

κ
)]

M42(x) =

∫ x

0
ds ε(s) exp

[
−
∫ s

0
ds′
(
ε(s′) + τ−1N0

κ(1− Pe(s′)) + τ−1C0
Pe(s

′)
)

−
∫ x

s
ds′
(
r(s′) + τ−1N0

κ(1− Py(s′)) + τ−1C0
Py(s

′)
)]
.

The number of new infections generated by g(x) in the otherwise disease-free system is given

by the following matrix integral :

∫ ∞
0

dxFg(x) =

∫ ∞
0

dxFM(x)g0, (s11)
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where F denotes the 4× 4 infection rate matrix:

F =



0 0 fAλAβ fAλY β

0 0 fY λAβ fY λY β

0 0 0 0

0 0 0 0


. (s12)

The component Fij represents the rate of new infections generated in infection class i by an indi-

vidual in infection class j in an otherwise disease free system. Expressions for these components

are found by linearizing eA(t, 0), eY (t, 0), a(t, 0), and y(t, 0) in Eq. (7) of the main text about the

disease-free equilibrium. The matrix in Eq. (s11) defines next generation matrix N (1, 2):

N =

∫ ∞
0

dxFM(x). (s13)

The basic reproduction number R0 is defined as the spectral radius of N , i.e. the largest solution

to the eigenvalue problem Ng0 = R0g0 which is guaranteed to be real and non-negative (1, 2).

The following analytic expression for R0 is obtained by finding the largest positive solution to the

determinant equation det (N −R0I) = 0:

R0 =

∫ ∞
0

dx

∫ x

0
dsαA(x, s) +

∫ ∞
0

dx

∫ x

0
dsαY (x, s) (s14)

where we define the following notation:

αA(x, s) = fAλAβ ε(s) exp

[
−
∫ s

0
ds′
(
ε(s′) + τ−1N0

κ
)
−
∫ x

s
ds′
(
r(s′) + τ−1N0

κ
)]

(s15)

αY (x, s) = fY λY β ε(s) exp

[
−
∫ s

0
ds′
(
ε(s′) + τ−1N0

κ(1− Pe(s′)) + τ−1C0
Pe(s

′)
)

−
∫ x

s
ds′
(
r(s′) + τ−1N0

κ(1− Py(s′)) + τ−1C0
Py(s

′)
)]

The αA double integral Eq. (s14) is the contribution to R0 from never symptomatic infections while

the αY double integral is the contribution from eventually symptomatic infections.
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S2 Basic reproduction number analysis

Considered as a function of the resource allocation strategy parameter ρ, R0(ρ) is differentiable for

ρ ∈ [0, 1) and is discontinuous at ρ = 1 whenever C > 0 such that R0(1) > limρ→1− R0(ρ). Taking

the derivative of R0(ρ) with respect to ρ yields the following:

dR0(ρ)

dρ
= −

∫ ∞
0

dx

∫ s

0
dsαA(x, s)

∫ x

0
ds′κ

dτ−1N0

dρ
(s16)

−
∫ ∞
0

dx

∫ s

0
dsαY (x, s)

[∫ s

0
ds′κ

dτ−1N0

dρ
(1− Pe(s′) +

∫ x

s
ds′κ

dτ−1N0

dρ
(1− Py(s′))

]

= −[κτ−1N0
]2

1− η
ρ2C

∫ ∞
0

dx

∫ s

0
dsαA(x, s)x

−[κτ−1N0
]2

1− η
ρ2C

∫ ∞
0

dx

∫ s

0
dsαY (x, s)

[∫ s

0
ds′(1− Pe(s′) +

∫ x

s
ds′(1− Py(s′))

]
.

The integrands in the above equation are positive, so dR0(ρ)
dρ ≤ 0 on ρ ∈ [0, 1), and limρ→1− R0(ρ)

is therefore the greatest lower bound for R0(ρ) on ρ ∈ [0, 1]. The expression for limρ→1− R0(ρ) is

obtained by substituting the following limits for the testing rates into Eq. (s14):

lim
ρ→1−

τ−1N0
=


0, C = 0[
τ + κ1−η

C

]−1
, C > 0,

(s17)

lim
ρ→1−

τ−1C0
=


0, C = 0

τ−1, C > 0.

(s18)

Under the ODE assumptions for our model (exponential distributions and correlated symp-

toms), we have ε(x) = ε, r(x) = r, Pe(x) = 0, and Py(x) = 1, and R0 simplifies to the following

expression:

R0 =
ODE

ε

ε+ κτ−1N0

fAβλA

r + κτ−1N0

+
ε

ε+ κτ−1N0

fY βλY

r + τ−1C0

. (s19)
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For the uncontrolled system, where C = 0 such that τ−1N0
= τ−1C0

= 0, we find the following

uncontrolled basic reproduction number Run0 :

Run0 =

∫ ∞
0

dx

∫ x

0
ds
(
fAβλA + fY βλY

)
ε(s) exp

[
−
∫ s

0
ds′ ε(s′)−

∫ x

s
ds′ r(s′)

]
(s20)

=
ODE

fAβλA
r

+
fY βλY
r

.

The ODE expression for Run0 is equivalent to that of Eq. (12) in the main text. Values of Run0 for

the COVID variants and various distribution assumptions are given in Table S1. Here, we fix Run0

under exponential distribution assumptions on both fε and fr to values found in the literature by

setting values for the transmissibilities λA and λY = 2λA. The same transmissibilities are used for

non-exponential distribution assumptions, so changes in Run0 relative to the both exponential fε and

fr case represent changes due solely to the use of gamma distributions. We find that distribution

assumptions have a very small impact on Run0 .

Run0 values fε Gamma Distribution fε Exponential Distribution

fr Gamma Distribution

Original: 3.004 Original: 3.098
Delta: 6.402 Delta: 6.473

Omicron: 9.500 Omicron: 9.501

fr Exponential Distribution

Original: 3.000 Original: 3.000
Delta: 6.400 Delta: 6.400

Omicron: 9.500 Omicron: 9.500

Table S1: Uncontrolled basic reproduction number Run0 for COVID variants assuming either ex-
ponential or gamma distributions for fε and fr (symptom onset assumptions are irrelevant in the
uncontrolled system).

S3 Uncontrolled COVID variant infection curves

In Fig. S2, we plot outbreak curves under the uncontrolled disease dynamics for original, delta, and

omicron COVID variants, assuming different combinations of exponential and gamma distributions

for fr and fε differentiated by curve color and dashing style as indicated in Fig. S1 (correlated

versus incubation symptoms assumptions have no impact on the disease dynamics under no control).

Although the results of the main text show that distribution assumptions have no noticeable impact
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on the total number of infections generated under the uncontrolled disease dynamics, Fig. S2 shows

noticeable effects on the epidemic peak height and peak time. A gamma distributed fr tends to

expedite peak times and significantly increase the peak heights. Conversely, a gamma distributed fε

tends to delay peak times and, when fr is gamma distributed, can marginally reduce peak heights.

We hypothesize that distribution assumptions on fε noticeably influence peak heights only for a

gamma distributed fr because the infectious period distribution finf is independent of fε when fr

is exponential (see Eq. (10) of the main text).

Figure S1: Legend for interpreting curve color and style in Figs. S2, S3, S4, S5, S6, S7, S9a,
and S9b. Different colors represent different combinations of exponential and gamma distribution
assumptions for fε along with different assumptions for correlated versus incubation symptom onset
as indicated by the colored table. Dashed lines indicate the exponential distribution assumption
for fr while solid lines indicate the gamma distribution assumption. The model with all IPDE
elements is given by a solid purple curve while the ODE equivalent model is given by a dashed blue
curve.
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(a) (b)

(c)

Figure S2: Uncontrolled disease dynamics for the 3 COVID variants assuming either exponential
or gamma distributions for fr and fε. Curve color and solid versus dashed lines represent different
distribution assumptions as indicated in Fig. S1. We plot curves only for the correlated symptoms
(rather than incubation symptoms) because symptom onset assumptions have no impact on the
uncontrolled disease dynamics.

S4 Alternative measures of controllability

In the main text, we use the amount of testing capacity required to reduce total infections to a

given level as a measure of controllability. Here, we present two alternative notions of controllability

utilizing the basic reproduction number. These alternatives manifest the same same controllability

reducing factors as listed in Table 7 of the main text, thus showing that our main text results and
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conclusions on controllability are quite general.

First, we consider the minimum testing capacity required to reduce R0 to 1 for given set of model

assumptions and testing parameters. A smaller minimum testing capacity indicates that disease

outbreaks and be effectively suppressed with fewer resources and thus represents a greater degree of

controllability. Because limρ→1− R0(ρ) (henceforth denoted R0(1−)) is the greatest lower bound for

R0 under a given set of distribution assumptions, testing parameters, and model parameters, the

minimum testing capacity required to reduce R0 to 1 is equivalent to the testing capacity required

to reduce R0(1−) to 1. We find this minimal testing capacity numerically under a variety of model

assumptions and present the results in Figs. S3, S4, S5, S6, S7, and S8. These plots show that

factors which reduce controllability in the sense of raising the minimum testing capacity needed to

reduce R0 to 1 are the same factors which reduce controllability in the sense used in the main text.

The ability to reduce R0 to 1 is not guaranteed in our model. Specifically, for any set of

that model parameters and distribution assumptions, there may exist a critical κ value below

which R0(1−) is always greater than 1 even when unlimited resources are available (i.e C → ∞).

This critical κ provides an additional alternative measure of controllability, where larger critical κ

indicates decreased ranges of parameter and model assumptions over which disease outbreaks can be

suppressed. We calculate these critical κ values for the COVID variants and generic disease under

a variety of model assumptions and plot our results in Fig. S9. We find that factors that reduce

controllability in the sense of raising the critical κ are the same factors that reduce controllability

in the sense used in the main text.
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(a) Original Variant: Variable Distribution and
Symptom Assumptions

(b) Original Variant: Variable Distribution and
Symptom Assumptions

(c) Original Variant: Variable Distribution and
Symptom Assumptions

Figure S3: Minimum testing capacities needed to reduce R0 to 1 as a function of concentration η
for the original COVID variant, assuming a variety of distribution assumptions and accessibility
levels κ. The meaning of curve color and dashed versus solid curves is given in Fig. S1.
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(a) Delta Variant: Variable Distribution and
Symptom Assumptions

(b) Delta Variant: Variable Distribution and
Symptom Assumptions

(c) Delta Variant: Variable Distribution and
Symptom Assumptions

Figure S4: Minimum testing capacities needed to reduce R0 to 1 as a function of concentration η
for the delta COVID variant, assuming a variety of distribution assumptions and accessibility levels
κ. The meaning of curve color and dashed versus solid curves is given in Fig. S1.
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(a) Omicron Variant: Variable Distribution and
Symptom Assumptions

(b) Omicron Variant: Variable Distribution and
Symptom Assumptions

(c) Omicron Variant: Variable Distribution and
Symptom Assumptions

Figure S5: Minimum testing capacities needed to reduce R0 to 1 as a function of concentration η
for the Omicron COVID variant, assuming a variety of distribution assumptions and accessibility
levels κ. Note the change in scale in Fig. S5c. The meaning of curve color and dashed versus solid
curves is given in Fig. S1.
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(a) Generic Disease Run
0 = 6.4, z = 1.5 days:

Variable Distribution and Symptom Assump-
tions

(b) Generic Disease Run
0 = 6.4, z = 1.5 days:

Variable Distribution and Symptom Assump-
tions

(c) Generic Disease Run
0 = 6.4, z = 1.5 days:

Variable Distribution and Symptom Assump-
tions

Figure S6: Minimum testing capacities needed to reduce R0 to 1 as a function of concentration
η for the generic disease with Run0 = 6.4 and z = 1.5 days, assuming a variety of distribution
assumptions and accessibility levels κ. The meaning of curve color and dashed versus solid curves
is given in Fig. S1.
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(a) Generic Disease Run
0 = 9.5, z = 1.5 days:

Variable Distribution and Symptom Assump-
tions

(b) Generic Disease Run
0 = 9.5, z = 1.5 days:

Variable Distribution and Symptom Assump-
tions

(c) Generic Disease Run
0 = 9.5, z = 1.5 days:

Variable Distribution and Symptom Assump-
tions

Figure S7: Minimum testing capacities needed to reduce R0 to 1 as a function of concentration
η for the generic disease with Run0 = 9.5 and z = 1.5 days, assuming a variety of distribution
assumptions and accessibility levels κ. The meaning of curve color and dashed versus solid curves
is given in Fig. S1.
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(a) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(b) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(c) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

Figure S8: Minimum testing capacities needed to reduce R0 to 1 as a function of concentration η
for the generic disease with Run0 = 6.4, assuming gamma distributions for fε and fr and various
concentration κ values. Curve colors represent different offsets z = 〈fI〉 − 〈fε〉 between mean
incubation and latent periods as indicated by the legends (measured in units of days). Black
dashed curves represent the correlated symptoms assumption where z values are irrelevant.
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S5 Additional generic disease plots

The following plots are analogous to the generic disease optimal infection size and optimal strategy

plots in Figs. (11) and (12) of the main text, but with greater disease strengths Run0 = 6.4 and

Run0 = 9.5.
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(a) COVID-19 Variants: Variable Distribution
and Symptom Assumptions

(b) Generic Disease z = 1.5 days: Variable Dis-
tribution and Symptom Assumptions

(c) Generic Disease: Gamma Distribution As-
sumptions and Variable z

Figure S9: Critical accessibility levels κ below which R0 can not be reduced to 1. Figures S9a
and S9b plot critical accessibility as a function of uncontrolled R0 for the COVID variants and the
comparable generic disease with incubation-latent offset z = 1.5 days under various distribution
and symptom onset assumptions, where the meaning of curve color and dashed versus solid curves
is given in Fig. S1. Figure S9c plots critical accessibility for the generic disease as a function of
incubation-latent offset, where differnt curve colors represent different uncontrolled R0 values.
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(a) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(b) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(c) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(d) Generic Disease Run
0 = 6.4: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

Figure S10: Optimal total infection sizes and corresponding optimal resource allocation strategies
for the generic disease with Run0 = 6.4, assuming gamma distributions for fε and fr. Curve
colors represent different offsets z = 〈fI〉 − 〈fε〉 between mean incubation and latent periods as
indicated by the legend in Fig. S10a (measured in units of days). Black dashed curves represent
the correlated symptoms assumption where z values are irrelevant. Insets in Figs. S10c and S10d
zoom in on strategy threshold testing capacities Cth where optimal strategies switch from clinical
only to mixed clinical and non-clinical.
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(a) Generic Disease Run
0 = 9.5: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(b) Generic Disease Run
0 = 9.5: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(c) Generic Disease Run
0 = 9.5: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

(d) Generic Disease Run
0 = 9.5: Gamma Dis-

tribution Assumptions and Variable Incubation-
Latent Offsets

Figure S11: Optimal total infection sizes and corresponding optimal resource allocation strategies
for the generic disease with Run0 = 9.5, assuming gamma distributions for fε and fr. Curve
colors represent different offsets z = 〈fI〉 − 〈fε〉 between mean incubation and latent periods as
indicated by the legend in Fig. S11a (measured in units of days). Black dashed curves represent
the correlated symptoms assumption where z values are irrelevant. Insets in Figs. S11c and S11d
zoom in on strategy threshold testing capacities Cth where optimal strategies switch from clinical
only to mixed clinical and non-clinical.
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Figure S12: Strategy threshold testing capacities at various concentration levels η for the generic
disease with Run0 = 6.4. Curves represent (C, η) values where the strategy threshold capacity
Cth occurs, assuming either incubation symptoms (colored curves) or correlated symptoms (black
dashed curve) with gamma distributed fr and fε. Colors represents different off sets z between the
mean incubation and mean latent period, with values in the legend given in units of days. At (C, η)
points above or to the right of a given curve, optimal strategies are mixed clinical and non-clinical
for that z value or symptom assumption. At points below or to the left, optimal strategies are
clinical only. The η value for which a colored curve crosses the black curve represents a threshold
ηth for which the role of non-clinical testing switches between enhanced and diminished compared
to the correlated symptoms assumption.
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Figure S13: Strategy threshold testing capacities at various concentration levels η for the generic
disease with Run0 = 9.5. Curves represent (C, η) values where the strategy threshold capacity
Cth occurs, assuming either incubation symptoms (colored curves) or correlated symptoms (black
dashed curve) with gamma distributed fr and fε. Colors represents different off sets z between the
mean incubation and mean latent period, with values in the legend given in units of days. At (C, η)
points above or to the right of a given curve, optimal strategies are mixed clinical and non-clinical
for that z value or symptom assumption. At points below or to the left, optimal strategies are
clinical only. The η value for which a colored curve crosses the black curve represents a threshold
ηth for which the role of non-clinical testing switches between enhanced and diminished compared
to the correlated symptoms assumption.
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