Supplementary Material

Cost Effectiveness of Newborn Screening for Spinal Muscular Atrophy in England and Wales

Diana Weidlich¹; Laurent Servais^{2,3}; Imran Kausar⁴; Ruth Howells⁵; Matthias Bischof⁶

¹Health Economics, Clarivate, Frankfurt am Main, Germany; ²MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK; ³Neuromuscular Center of Liège, Department of Paediatrics, Hospital and University of Liège, Liège, Belgium; ⁴Novartis Gene Therapies, London, UK; ⁵Health Technology Assessment, Clarivate, Manchester, UK; ⁶Novartis Gene Therapies GmbH, Rotkreuz, Switzerland

Corresponding Author:

Diana Weidlich, MSc Clarivate Mayfarthstrasse11 Frankfurt am Main 60314 Germany E-mail: Diana.Weidlich@Clarivate.com

A. Cost inputs for running scenario analysis: societal perspective

Costs (£)	Health state E	Health state D	Health state C	Health state B	Health state A
Annual indirect costs	22,999	22,999	16,560	0	0
Annual carer costs	48,004	48,004	30,243	0	0
Onasemnogene abeparvovec /Risdiplam - transport costs for treatment	21	16	10	5	5
Nusinersen - transport costs for treatment (plus dosing related visits calculated below)	21	16	16	16	16
BSC - transport costs for treatment	31	31	31	0	0

Table S1. Societal costs: cost summary per health state

BSC best supportive care.

Indirect costs	Input value
Average labor force participation rate (%) [1]	75
Average working hours per year [2]	1,934
Percentage of work hours lost per health state	
Health state E [3]	100
Health state D [3]	100
Health state C [3]	72
Health state B ^a	0
Health state A ^a	0
Average hourly wage (£) [2]	16
Productivity cost per hour (\pounds) [4]	34
Start working age (years) ^a	18 ^a
End working age (years) [5]	68

Table S2. Societal costs: indirect cost inputs

^aBased on assumption.

Table S3. Societal costs:	caregiver	cost in	puts
---------------------------	-----------	---------	------

Caregiver costs	Input value
Average hourly wage for a caregiver (£) [6]	33
Percentage of patients requiring a carer per health state ^a	
Health state E	100
Health state D	100
Health state C	63
Health state B	0
Health state A	0

^aBased on assumption.

Table S4. Societal costs: transport cost inputs

	Input value
Percentage of patients that incur transport costs ^a	100
Average distance to academic hospital (kilometer) [7]	9.0
Cost per kilometer (£)	0.3
Parking per visit (£) [8]	0.0
Cost per kilometer taxi (£) [9]	4.9
Total transport costs per visit (£) [10]	5.2

^aBased on assumption.

Table S5.	Societal	costs: average	e number o	of hospital	visits n	er vear
I able bol	Docietai	cosus average	mumber	or mospital	vibros p	ci ycai

	Average number of visits (per year) onasemnogene abeparvovec /risdiplam ^{a,b}	Average number of visits (per year) nusinersen (plus dosing visits) ^{a,b}	Average number of visits (per year) BSC ^a
Health state E	4	4	6
Health state D	3	3	6
Health state C	2	3	6
Health state B	1	3	0
Health state A	1	3	0

BSC best supportive care.

^aBased on assumption.

^bBased expert opinion.

B. Results

B.1. Proportion of SMA patients, alive and by level of motor milestone achievement over time

To provide additional insight on the main drivers of health gains and health care cost savings associated with NBS and early treatment, the percentage of patients residing in each of the six health states of the model was computed at different time points to follow the children's development over time. The results of this analysis under NBS and no NBS from 5 years to 30 years of follow-up are provided in **Figs. S1** and **S2** below.

The main key findings of the analysis are the following:

- With NBS and early treatment, from the age of 5 years old onwards, approximately 80% of children with SMA will sit and walk independently, as opposed to approximately 20% of children with no NBS who are clinically diagnosed.
- In the current treatment situation with no NBS in place, for most patients with SMA, sitting will be the highest motor milestone that they will ever achieve.
- Without NBS and early treatment, less than 50% of children with SMA are expected to live beyond the age of 30, compared with 80% of patients with NBS and early treatment. In fact, with NBS and early treatment, 70% of patients are expected to reach the age of 70 versus less than 20% of patients diagnosed symptomatically.

Figure S1. Percentage of SMA patients, alive and by motor milestone achievement over time, with NBS and early treatment

BRND broad range of normal development; NBS newborn screening; PAV permanent assisted

ventilation.

Figure S2. Percentage of SMA patients, alive and by motor milestone achievement over time, in the current situation: no NBS and treatment at symptom onset

BRND broad range of normal development; NBS newborn screening; PAV permanent assisted

ventilation.

Table S6. Percentage of SMA patients at age 70, alive and by motor milestone achievement over time, under NBS and early treatment compared with no NBS and treatment at symptom onset

	Dead	Non- sitter (PAV)	Non- sitter (no PAV)	Sitter	Walker	BRND	Sum
SMA patients identified via NBS							
and treated immediately upon							
diagnosis	33%	0%	0%	0%	0%	67%	100%
SMA patients treated at							
symptom onset	82%	0%	0%	2%	0%	16%	100%

BRND broad range of normal development; NBS newborn screening; PAV permanent assisted

ventilation; SMA spinal muscular atrophy.

B.2. Economic outcomes per SMA patient

Table S7. Undiscounted and discounted disaggregated costs and QALYs per SMA patient

under NBS and no NBS

	Costs per SMA patient			
	NBS	No NBS	Increment	
Disaggregated cost results — undiscounted			·	
Screening costs ^a	£46,200	£1,200	£45,000	
Drug acquisition and administration costs	£4,668,496	£6,132,232	-£1,463,736	
Medical care costs	£428,274	£1,396,914	-£968,640	
Total undiscounted cost saving net of			CO 207 276	
screening costs			-t2,387,370	
Disaggregated cost results — discounted at 3	3.5% p.a.		•	
Screening costs ^a	£46,200	£1,200	£45,000	
Drug acquisition and administration costs	£2,346,391	£2,949,844	-£603,452	
Medical costs	£342,703	£847,000	-£504,297	
Total discounted cost saving net of			61 062 740	
screening costs			-\$1,002,749	
	QALYs per SMA patient			
	NBS	No NBS	Increment	
Total undiscounted QALY gain	56	24	32	
Total QALY gain discounted at 3.5% p.a.	19	10	9	

NBS newborn screening; *p.a* per annum; *QALY* quality-adjusted life year; *SMA* spinal muscular

atrophy.

^aScreening costs include £4.54 for the heel-prick test and £1,200 for the confirmatory genetic

test. A total of 58.8 SMA patients receive the confirmatory genetic test under both NBS and no

NBS. Under NBS, 585,195 newborns receive the heel-prick test.

Newborn screening and early treatment are expected to provide infants at risk for SMA an

additional 32 (undiscounted) years at full health when compared with the current situation in

which patients with SMA are treated at symptom onset.

Implementing NBS and providing early treatment are also expected to generate an overall discounted cost savings, net of the cost of screening all newborns, of more than £1 million per SMA patient. These savings capture savings in medical care costs, such as care during hospital admissions, breathing equipment, and other costly health care services, and a reduction in drug acquisition costs because of different treatment patterns used for treating presymptomatic versus symptomatic patients (see **Table 1** in main document).

REFERENCES

- Office for National Statistics. Labour market overview, UK: August 2019. 13 Aug 2019. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemplo yeetypes/bulletins/uklabourmarket/august2019. Accessed 18 Jan 2023.
- Office for National Statistics. Average actual weekly hours of work for full-time workers (seasonally adjusted). 2019. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkingh ours/timeseries/ybuy/lms/previous. Accessed 18 Jan 2023.
- 3. Klug C, Schreiber-Katz O, Thiele S, Schorling E, Zowe J, Reilich P, et al. Disease burden of spinal muscular atrophy in Germany. Orphanet J Rare Dis. 2016;11(1):58.
- Office for National Statistics. Regional labour productivity, including industry by region, UK: 2019. 2019.

https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/bu lletins/regionallabourproductivityincludingindustrybyregionuk/2019. Accessed 18 Jan 2023.

- Department for Work & Pensions. Policy paper. State pension age timetable. 15 May 2014. https://www.gov.uk/government/publications/state-pension-age-timetable/state-pensionage-timetable. Accessed 18 Jan 2023.
- Curtis L, Burns A. Unit Costs of Health and Social Care 2020. Personal Social Services Research Unit (PSSRU), University of Kent. DOI: 10.22024/UniKent/01.02.84818. https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2020/. Accessed 18 Jan 2023.

- The Health Foundation. QualityWatch: Focus on distance from home to emergency care. Feb 2014. https://www.health.org.uk/publications/qualitywatch-focus-on-distance-from-home-to-emergency-care. Accessed 18 Jan 2023.
- Department of Health & Social Care. NHS car parking guidance 2021 for NHS Trusts and NHS Foundation Trusts. 2021. https://www.gov.uk/government/publications/nhs-patientvisitor-and-staff-car-parking-principles/nhs-patient-visitor-and-staff-car-parking-principles. Accessed 30 April 2022.
- Transport for London. Taxi fares. 2 Jan 2020. https://tfl.gov.uk/modes/taxis-andminicabs/taxi-fares. Accessed 18 Jan 2023.
- 10. NimbelFins. Average Cost to Run a Car UK. 2022. https://www.nimblefins.co.uk/cheap-car-insurance/average-cost-run-car-uk. Accessed 30 April 2022.