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Key Points

Question: How does a European-derived polygenic score (PGS) for tobacco use

disorder (TUD) perform in ancestrally diverse individuals within a real-world medical

system and what are the systemic health risks in TUD predisposed individuals?

Findings: European ancestry TUD-PGS performs inconsistently in non-European

ancestry populations. TUD-PGS correlates with cardiometabolic, respiratory, and

psychiatric phenotypes. In individuals with no history of smoking, TUD-PGS correlates

with obesity and alcohol-related disorders.

Meaning: Existing TUD-PGS is not generalizable across ancestries. TUD-predisposed

individuals are at risk for obesity and alcohol use disorder in the absence of smoking

behavior, suggesting shared genetic etiology between these phenotypes.
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Abstract

Importance: Tobacco use is heavily influenced by environmental factors with significant

genetic contributions. An extensive evaluation of the genetic variants predisposing to

tobacco use is necessary to understand associated health risks and formulate equitable

health policies.

Objective: To evaluate the predictive performance, risk stratification, and potential

systemic health effects of tobacco use disorder (TUD) predisposing germline variants

using a European-derived polygenic score (PGS) in the UCLA ATLAS biobank.

Design, Setting, and Participants: Publicly available TUD-PGS, developed in

European ancestry individuals, was evaluated in participants enrolled in the UCLA

ATLAS biobank - a multi-ancestry, hospital-based biobank with participant genotypes

linked to their de-identified medical records.

Main Outcomes and Measures: The outcomes of interest were (a) tobacco use

disorder and (b) 1,847 phenotypes, identified by phecodes (aggregated ICD codes)

extracted from electronic health records.

Results: Among genetically inferred ancestry groups (GIAs), TUD-PGS associated with

TUD in European American (EA) (OR: 1.20, CI: [1.16, 1.24]), Hispanic/Latin American

(HL) (OR:1.19, CI: [1.11, 1.28]), and East Asian American (EAA) (OR: 1.18, CI: [1.06,

1.31]) GIAs but not in African American (AA) GIA (OR: 1.04, CI: [0.93, 1.17]). Similarly,

TUD-PGS offered strong risk stratification across quantiles in the EA and HL GIAs but

inconsistently in EAA and AA GIAs. In a cross-ancestry phenome-wide association

meta-analysis, TUD-PGS was associated with cardiac, respiratory, psychiatric, and

metabolic phecodes (17 phecodes at P < 2.57e-5). In individuals with no history of
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smoking (never-smokers), the top TUD-PGS associations were obesity and

alcohol-related disorders (P = 3.54E-07, 1.61E-06). Mendelian Randomization (MR)

analysis provides evidence of a causal association between tobacco use and adiposity

measures.

Conclusions and Relevance: This study provides an investigation of TUD-PGS across

multiple ancestries and a range of phenotypes in a hospital-based biobank, suggesting

shared biological pathways between tobacco use, alcohol use disorder, and obesity.

European ancestry TUD-PGS demonstrated inconsistent performance in non-European

ancestries for risk prediction and stratification. Equitable clinical translation of TUD-PGS

will require the inclusion of multiple ancestry populations at all levels of TUD genetic

research. Additionally, TUD-predisposed individuals may require comprehensive

tobacco use management approaches to address underlying addictive tendencies.
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Introduction

Tobacco use is a leading cause of global mortality and morbidity, contributing to

several systemic conditions, including cardiometabolic diseases and cancers1,2.

Tobacco use is heavily influenced by environmental factors3, with growing evidence of

underlying contributions from genetic factors4,5. Multi-ancestry studies on tobacco use

behaviors report an estimated heritability (i.e., the proportion of the phenotypic variance

explained by genetics) of smoking behaviors ranging between 5-18%4,5. Tobacco use

management can greatly benefit from precision medicine initiatives, with the inclusion of

baseline genetic risk to develop individualized preventive and therapeutic strategies for

tobacco use cessation. These efforts require a thorough understanding of the effects of

a genetic predisposition to tobacco use across ancestry groups and the impact of

tobacco predisposition on the overall systemic health of an individual.

Genome-wide association studies (GWAS) are a commonly used approach to

identify genetic variants associated with complex traits. GWAS have identified >2000

loci associated with tobacco use traits such as smoking behaviors and nicotine

dependence4,5. Polygenic scores (PGS) are composite scores that capture the overall

genetic predisposition to a trait (e.g., tobacco use) by aggregating the weighted effects

for multiple variants of interest, thus capturing a larger proportion of phenotypic

variation. Polygenic scores have been used in research for disease prediction and to

evaluate disease correlations6. Tobacco PGS, in particular, have been associated with

diseases such as schizophrenia, and substance use disorders7–11.

Phenome-wide association studies (PheWAS) systematically test the association

of a single genetic variant across multiple phenotypes12. These phenotypes are
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identified using ‘Phecodes’ which are ICD-codes that are aggregated to be clinically

meaningful. Thus, a PheWAS can identify variant-phecode associations across a

spectrum of phenotypes. Tobacco use polygenic scores can be combined with a

PheWAS to create a PGS-PheWAS, a powerful way to examine the potential pleiotropic

effects of multiple genetic variants that predispose to tobacco use disorder and identify

systemic disease risks for individuals with a genetic predisposition to tobacco use13.

In this study, we used a publicly available PGS for tobacco use disorder,

developed in European-ancestry individuals in UK Biobank14, and imputed these scores

into the UCLA ATLAS biobank 15–19. We found that the TUD-PGS demonstrated

inconsistent predictive performance and risk stratification in non-European ancestry

groups. In a PGS-PheWAS, we detected several phecodes associated with a genetic

predisposition to tobacco use, mainly cardiometabolic, respiratory, and neuropsychiatric

phenotypes. Stratifying to individuals with no history of smoking, we identified TUD-PGS

associations with obesity and alcohol-related disorders. Finally, we used publicly

available GWAS summary statistics to perform Mendelian randomization20 analysis and

found evidence of causality between tobacco use and adiposity measures.

Methods

Study population

All analyses were performed with UCLA ATLAS Biobank data - a biobank

embedded within the UCLA Health medical system15–19. UCLA Health is a

comprehensive healthcare system serving the population in and around the greater Los

Angeles area. The UCLA Institute for Precision Health is home to the UCLA ATLAS

biobank with >40k participants genotyped, of which 26,517 participants were included in
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this study. This large-scale collection of genotyped biospecimens is integrated with the

UCLA Data Discovery Repository (DDR), containing de-identified patient electronic

health records (EHR) which include clinical, procedural, laboratory, prescription, and

demographic information.

Final analyses included all ATLAS participants with complete information on the

outcome and covariates (described below in detail). For ancestry-specific analysis, we

included European American, Hispanic/Latin American, East Asian American, and

African American ancestry groups with sufficient sample sizes for analysis (n = 17752,

4599, 2603, and 1563).

Data Processing and Population Stratification

Detailed information on data processing can be found in previous

publications15–19 Blood samples were collected from consented participants and

genotyped on a custom array21. Initial array-level quality control measures included

removing strand ambiguous SNPs and variants with >5% missingness. After restricting

to unrelated individuals, the QC-ed genotypes were imputed to the TOPMed Freeze5

reference using the Michigan Imputation Server22,23. The final QC steps were to filter the

variants at the threshold of R2 > 0.90 and minor allele frequency > 1%. All quality control

steps were conducted using PLINK 1.924.

We computed the top 10 principal components for our study population using

FlashPCA2 software25 and grouped our study population into genetically inferred

ancestry groups (GIAs) - European American (EA), Hispanic/Latin American (HL), East

Asian American (EAA), African American (AA) by k-nearest neighbor (KNN)

stratification of the principal components, using the continental ancestry populations
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from 1000 Genomes Project26,27. To account for differences in population stratification

across GIA groups, for the PGS-PheWAS analysis, we conducted individual

PGS-PheWAS within each GIA group and then meta-analyzed across GIA groups to

obtain cross-ancestry results.

Polygenic Score Imputation within ATLAS

We used a publicly available polygenic score trained on 391,124 European

individuals from the UK biobank for the trait ‘tobacco use disorder’ from the PGS

catalog (PGS002037)14,28. This PGS was selected for two reasons: (1) the PGS was

trained on the same phecode for TUD that is available in ATLAS and (2) there is a high

degree of overlap with ATLAS genotyped variants (802,624 of 847,691 total variants in

TUD-PGS overlapping with ATLAS data). The original PGS training analyses were

performed using LDpred229 and adjusted for the following covariates: sex, age, birth

date, Townsend’s deprivation index, and the first 16 principal components of the

genotype matrix. We computed the PGS for each ATLAS participant by multiplying the

individual risk allele dosages by their corresponding weights that are provided by the

PGS catalog28. The PGS was mean-centered and standardized by the standard

deviation within each GIA group to generate a PGS Z-score.

Phecodes

ICD9 and ICD10 billing codes were aggregated into clinically meaningful

groupings called phecodes. These phecode groupings used mappings derived from the

PheWAS catalog, v1.230. Cases were defined by the presence of an ICD code tagged

by the respective phecode and controls by the absence of the ICD codes. Tobacco use

disorder diagnosis was derived from the presence of “tobacco use disorder” phecode
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(318.00) within an individual’s health record which groups ICD codes (F17.200,

F17.201, F17.210, F17.211, F17.220, F17.221, F17.290, F17.291, O99.33, O99.330,

O99.331, O99.332, O99.333, O99.334, O99.335, Z87.891) for tobacco use disorder

(TUD). For the PheWAS analysis, we used 1847 phecodes, extracted from each

individual’s health record as described above, to capture phenotypes across the

phenotypic spectrum30.

Statistical Analysis

All analysis was conducted in either Python 2.6.831 or R 4.2.132.

a) Predictive performance and Risk Stratification

We analyzed the predictive performance of the standardized TUD-PGS across

ancestry groups and risk quantiles using GIA-stratified logistic regression models, with

the phecode for TUD as the outcome and with predictors including terms for age, sex,

the first five principal components of the genotype matrix, and insurance class.

We include insurance class information as the closest proxy to bias introduced by

participation and access to healthcare within the de-identified electronic health

records33. This insurance class variable consists of the type of insurance used by the

patient in their clinical encounters. The classes include - “Public”, “Private” or “Self-pay”.

Public class includes ‘Medicare’, ‘Medicare Advantage’, ‘Medicare Assigned’,

‘Medi-Cal’, ‘Medicaid’, and ‘Medi-Cal Assigned’.

Private class includes - ‘International Payor’, ‘Group Health Plan’, ‘Worker's Comp’,

‘Tricare’, ‘UCLA Managed Care’, ‘Blue Shield’, ’Commercial’, ’Blue Cross’, ‘Package

Billing’ and ‘Other’.
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Odds ratios were calculated within each GIA, with P-values from Wald-type test

statistics and a Bonferroni-corrected significance level of 0.0125 = (0.05/4). For risk

stratification analysis, we grouped individuals of each GIA group into 5 groups of equal

size based on their PGS and compared the quintile with the highest score with the

quintile with the lowest scores.

b) Phenome-wide association meta-analysis

For the phenome-wide association analysis, we tested the association between

the standardized TUD-PGS and 1847 electronic health record-derived phecodes across

the phenome. Each GIA-specific PheWAS analysis consisted of logistic regressions

across 1847 EHR-derived phecodes, controlling for age, sex, first 5 PCs, and insurance

class. For the cross-ancestry meta-analysis, we use the PGS-PheWAS results

computed within each GIA group and meta-analyze across these ancestry groups using

a random effect, inverse variance weighted model using the metafor (version 3.4)

package in R34. We use a phenome-wide Bonferroni-corrected p-value significance

threshold of 2.7e-05 to adjust for the multiple testing burden (P = 0.05/1847 tests for

each trait identified by phecodes). The never-smoker analysis followed a similar

analysis plan, restricted to individuals of European American GIA with no history of

smoking recorded by their provider within their medical records (n=9,921).

c) Mendelian Randomization

We evaluated causality using Mendelian Randomization (MR) methods to test for

and evaluate the causality between tobacco use and obesity20. We used summary

statistics from GSCAN Consortium GWAS for “Cigarettes Smoked Per Day” (249,752

males and females of European Ancestry and 12,003,613 SNPs)35 and summary
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statistics from MRC Integrative Epidemiology Unit - the University of Bristol and UKBB

GWAS for “Waist Circumference” (462,166 males and females of European Ancestry

and 9,851,867 SNPs)36 as our instrumental variables to test the causal association

between tobacco use and obesity measures. We performed a second MR analysis to

validate the previous analysis using summary statistics for ‘Body Mass Index - BMI’

using summary statistics from UK Biobank36 (461,460 individuals and 9,851,867 SNPs),

using the same ‘Cigarettes smoked per day’ summary statistics from GSCAN as the

outcome. We used the ‘TwoSampleMR’ R package to extract instruments, harmonize

and obtain effect sizes from multiple MR methods (MR Egger, Weighted median,

Inverse variance weighted, Simple mode, and Weighted mode)37.

Results

Baseline characteristics of cases and controls in ATLAS Biobank

The final analysis included n = 26,517 individuals with complete information on all

covariates. Within the “TUD” phecode, our study population consisted of 8,667 cases

and 17,850 controls. The average age of individuals with a TUD phecode was 64.2

years. Participant sex was significantly associated with TUD phecode with 56% of the

phecode represented by the male sex. Four genetically inferred ancestry groups had

sufficient sample size to perform the analyses - European American (EA),

Hispanic/Latin American (HL), East Asian American (EAS), and African American

ancestry (AA) (n=17,752, 4,599, 2,603, and 1,563).  (Table 1).

TUD-PGS predicted and risk-stratified strongly for TUD in EA, HL GIAs, and

inconsistently in EAA and AA GIAs across risk quantiles

12



The TUD-PGS associated with the phecode for TUD within the ATLAS biobank

for individuals of European American (EA) GIA (OR:1.19, CI: [1.11, 1.28]),

Hispanic/Latin American (HL) GIA (OR:1.21, CI: [1.12, 1.31]), and East Asian American

(EAA) GIA groups (OR: 1.18, CI: [1.06, 1.31]). TUD-PGS was not associated with TUD

in individuals of African American (AA) GIA group (OR: 1.04, CI: [0.93, 1.17]). (Supp

Table 1)

To evaluate the risk stratification provided by TUD-PGS for tobacco use disorder,

we evaluated PGS effect sizes across PGS quintiles.  When compared to the quintile

with the lowest score, the quintile with the highest polygenic scores demonstrated an

OR = 1.69 (CI: [1.51, 1.88]) in EA, and 1.71 (CI: [1.36, 2.14]) in HL. The TUD-PGS

offered strong risk stratification for individuals of EA GIA and for the top two risk

quintiles in HL. Risk stratification was weaker and inconsistent in the EAA, (OR = 1.60,

CI = [1.15, 2.24]) and AA ancestry groups (OR = 1.02, CI = [0.71, 1.47]).  (Fig1, Supp

Table 2)

TUD-PGS replicated clinically observed phenotypic associations with TUD in PGS-

PheWAS

In a PheWAS of the TUD-PGS across 1847 phecodes (Supp Fig 1a),

meta-analyzed across 4 GIAs, we found 17 significant associations at

Bonferroni-adjusted P < 0.05 after adjusting for age, sex, first 5 principal components,

and health insurance information. The top phecodes associated with the TUD-PGS

were ‘morbid obesity’, ‘obstructive chronic bronchitis’, ‘substance addiction and

disorders’, and ‘ischemic heart disease’ (P = 1.38E-09, 2.73E-09, 4.45E-08, 1.61E-07)
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(Fig 2a). Phecode groups with multiple associations were circulatory (n=5), respiratory

(n=3), neurological (n=2), and metabolic (n=2) phenotypes (Supp Table 3)

TUD-PGS associated with alcohol use and obesity phecodes in the absence of smoking

behavior in PGS-PheWAS

We repeated the PGS-PheWAS association analysis, restricting to

“never-smokers” in individuals of EA ancestry - i.e. individuals who reported to their

provider that they have never smoked tobacco (Supp Fig 1b). In this analysis, the

TUD-PGS demonstrated associations with obesity, alcohol-related disorders, cancer of

the esophagus, and hypertension (P = 3.54E-07, 1.61E-06, 3.05E-06, 2.62E-05)

(Figure 2b, Supp Table 4).

In an evaluation of the trends of obesity and alcohol-related disorders across

quintiles of the TUD-PGS, we observed higher ORs among never-smokers when

compared to ever-smokers for obesity and alcohol-related disorders. TUD-PGS offered

inconsistent risk stratification for obesity and alcohol-related disorders in ever-smokers

(Figure 3). In contrast, a reverse trend is noted in lung cancer, an established trait

associated with smoking behavior, where we observed higher ORs in ever-smokers

compared to never-smokers. (Supp figure 2)

Mendelian randomization analysis finds evidence of causality in the association

between obesity and tobacco use

To evaluate if the association between obesity and tobacco use is causal, we

performed Mendelian randomization (MR) analysis between two quantitative measures

of obesity and tobacco use using the phenotypes “waist circumference” and “cigarettes

smoked per day”. From the results of multiple MR methods, we observed that the
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exposure - ‘waist circumference’ demonstrated significant positive causal associations

with the outcome - ‘cigarettes smoked per day’ across all methods used to test this

association. (MR Egger, Weighted median, Inverse variance weighted, Simple mode,

Weighted mode with P = 2.39E-03, 1.50E-32, 1.49E-46, 8.22E-05, 2.05E-08

respectively). A second MR analysis of ‘body mass index’ and ‘cigarettes smoked per

day’ provided validation for this causal association - (MR Egger, Weighted median,

Inverse variance weighted, Simple mode, Weighted mode P = 2.65E-03, 8.34E-33,

1.17E-45, 8.23E-06, 5.78E-07). Supp Figure 3 presents causal effect estimates and

confidence intervals.

Discussion

In this study, we examined the predictive performance and risk stratification of a

publicly available, European ancestry PGS for tobacco use disorder in a multi-ancestry

EHR-linked biobank.  Our results demonstrated that this TUD-PGS predicts TUD and

risk-stratified European American GIA and Hispanic/Latin GIA groups. However,

inconsistent prediction and risk stratification was noted in the East Asian American and

African American GIA groups.

Based on these results, we anticipate two issues if TUD-PGS is used clinically to

identify individuals at high risk for tobacco use. First, the risk stratification offered only to

certain ancestry populations does not allow for equitable translation of genetic research.

Second, the application of these PGS to individual-level clinical decisions must proceed

with caution with additional extensive validation with clinical history. At present, we do

not recommend interventions solely based on being classified as “high risk” by

15



TUD-PGS due to large uncertainty in imputed polygenic scores at an individual level38

and inconsistent performance in non-European populations.

Next, we evaluated the potential pleiotropic effects of TUD predisposing variants

using the PGS to conduct a phenome-wide association analysis. Additionally, we

repeated this analysis in a subgroup of participants without a reported history of

smoking behavior, to evaluate the systemic associations of a genetic predisposition to

tobacco use in the absence of tobacco use behavior. The PGS-PheWAS meta-analysis

demonstrated significant associations with respiratory and cardiovascular phenotypes,

both of which have robust clinical and biological evidence39,40. Other significant

associations were in the category of psychiatric disorders, including associations with

anxiety disorders and substance addiction disorders. These psychiatric disorder

associations have been consistently reported in past genetic studies of smoking and

tobacco use41.

In the analysis of ‘never-smokers’, phenotypes associated with tobacco use

behaviors, namely, respiratory and cardiovascular phecodes, did not demonstrate

statistical significance. Instead, we observed associations with psychiatric phecodes

including alcohol-related disorders, and metabolic phecodes such as obesity. The MR

analysis results suggest a causal association between tobacco use and adiposity, in line

with other published literature with similar directionality and effect sizes42. Together, the

associations between tobacco use, obesity, and alcoholism are suggestive of shared

genetic architecture between these traits, likely originating from the biological regulation

of impulsivity and addictive behaviors43.
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Clinically, these findings will have implications for patients with tobacco use

disorder: in the presence of a genetic propensity for TUD, we demonstrate that the

individual may be at risk for obesity and alcohol use disorder even if tobacco use

behavior is absent. For patients in the high-risk genetic propensity to TUD group, these

findings would shift the focus of the therapeutic strategy from tobacco cessation to a

more comprehensive regulation of biological pathways that underlie addiction and

impulsivity.

A major strength of this study is that we evaluated TUD-PGS in an

information-rich biobank across multiple genetically inferred ancestry groups. The rich

phenotypic information available in the biobank allowed us to test associations across

the phenome in a hypothesis-free manner, allowing for discovery. Another strength of

the paper is that we accounted for possible confounding bias introduced by

participation/access to healthcare bias, which can arise from using data from a

hospital-based biobank, by using an insurance class variable as a proxy marker for

participation and access.

While our study included individuals from 4 GIAs, we suffer from lower sample

sizes in non-European ancestries for certain analyses. With continued enrollment in the

UCLA ATLAS biobank, we hope to increase our non-European sample sizes and

evaluate differential genetic effects in these ancestries. Next, phecodes are derived

from ICD codes which are billing codes and may not always capture the entire picture of

the individual’s disease history. The interpretations of our analyses are within the

limitations of these data. We note that the risk of having a phecode in the electronic

health record does not accurately reflect the risk of having the disease. The former
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comes with biases, including access to healthcare. We have attempted to address this

bias introduced by healthcare access by including an insurance class information

variable. Nevertheless, this difference must be considered when applying these results

to the general population.

Conclusions

The results of our study have implications for public health and clinical

approaches to the treatment of tobacco use disorder. A genetic propensity to tobacco

use might also signal an increased risk of obesity and alcohol use disorders,

necessitating a more comprehensive preventive and therapeutic strategy for such

individuals. Given the growing evidence on health risks associated with obesity and

tobacco use, our results suggest possible shared genetic etiology between these two

risk factors, strengthening the argument that public health approaches must consider

this shared risk while formulating interventions.
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Tables and Figures

Table 1

Baseline characteristics of ATLAS participants included in this study

Overall

n 26517

Patient Age, median [Q1, Q3] 62.0 [47.0,72.0]

Sex, n (%) Female 14425 (54.4)

Male 12092 (45.6)

Insurance Class, n (%) Private 16207 (61.1)

Public 9469 (35.7)

Self-Pay 841 (3.2)

Tobacco Use Disorder, n (%) Controls 17850 (67.3)

Cases 8667 (32.7)

Genetically Inferred Ancestry,

n (%) African American (AA) 1563 (5.9)

Hispanic/Latin

American (HL) 4599 (17.3)

East Asian American (EAA) 2603 (9.8)

European American (EA) 17752 (66.9)
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Figure 1 TUD-PGS correlates with TUD phecode in EA, HL, and EAA ancestries

across risk quintiles

The X-axis represents the top 4 quintiles grouped according to TUD-PGS. Y axis represents effect sizes

represented by odds ratios. The red line indicates OR = 1. Effect sizes between TUD-PGS and TUD

phecode vary across PGS-quintiles in 4 genetically inferred ancestry groups with strong risk stratification

noted in EA and HL and inconsistent risk stratification in AA and EAA groups.
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Figure 2a

TUD-PGS-PheWAS plot across 1847 phecodes (cross-ancestry meta-analysis)

Associations between TUD-PGS and 1847 phecodes across the phenome, meta-analyzed across 4 GIA

groups with significant associations labeled. The X-axis represents the Z value (beta/SE). Each color

represents a phecode category and each dot represents a phecode. Phenome-wide significance is

represented by the red dashed line at a Z value = 4.2 which corresponds to a P value of 2.57e-5 (1847

tests/0.05). Top associations were noted in circulatory, metabolic, mental and respiratory phenotype

categories.

Figure 2b

TUD-PGS-PheWAS plot across 1847 phecodes in never-smokers of EA ancestry

group

Associations between TUD-PGS and 1847 phecodes across the phenome in never-smokers of EA

ancestry with significant associations labeled. The X-axis represents the Z value (beta/SE). Each color

represents a phecode category and each dot represents a phecode. Phenome-wide significance is

represented by the red dashed line at a Z value = 4.2 which corresponds to a P value of 2.57e-5 (1847

tests/0.05). In TUD-PGS-PheWAS restricted to ‘never smokers’, top associations were obesity and

alcohol-related disorders.
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Figure 2A.

Figure 2B.
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Figure 3

TUD-PGS associations with Alcohol-related disorders and Obesity among all vs

ever vs never-smokers across TUD-PGS quintiles

Associations between TUD-PGS quintiles and Alcohol-related disorders (phecode = 317.0) and Obesity

(phecode = 278.1). The X-axis represents the top 4 quintiles grouped according to TUD-PGS. Y axis

represents effect sizes represented by odds ratios. The red line indicates OR =1. TUD-PGS risk-stratifies

for the phecodes for alcohol-related disorders and obesity in ‘never smokers’ but not in ‘ever smokers’.
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