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Abstract 

 
 
Objective : There is a growing interest in functional near-infrared spectroscopy (fNIRS) 
among researchers due to its remarkable advantages such as ease of use, being inexpensive 
and less tolerance to motion artifacts compared to other neuroimaging modalities. Also, its 

interaction with machine learning (ML) approaches was inevitable like other neuroimaging 
modalities for different purposes such as diagnostic classification of diseases or prediction of 
disease severity due to the lack of robust and objective biomarkers. A review of literature is 
carried out to understand the evolution of biomarker research on clinical populations and 
clinical states by combining fNIRS and ML. 
 
Approach : In this review, article search was carried out in accordance with the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) standard and 62 
studies were evaluated and we provided a general overview by using fNIRS, particularly in 
clinical populations and some clinically relevant conditions on healthy populations. Also, 
potential biomarkers that were found in these studies and some popular ML algorithms that 
had been used for the prediction or classification of fNIRS data were discussed. 
 
Main Results : There is an increasing trend to perform ML applications on fNIRS data on 
biomarker research related to different clinical fields. Among these studies, few were able to 
have a notable number of participants for classification and clinical state prediction. Oxy-
hemoglobin was used more than deoxy-hemoglobin in ML-based studies as a potential 
feature source. 
 
Significance : Using ML on fNIRS data might be a promising approach to revealing specific 
biomarkers for either diagnostic classification of diseases or prediction of clinical conditions. 
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1. Introduction 

 
Functional neuroimaging approaches are used to understand functional responses either 
against a stimulus or during resting-condition. However, in recent years, their usage as a 
diagnostic tool is widely discussed (Henderson et al., 2020). In this perspective, functional 
neuroimaging approaches such as Functional Magnetic Resonance Imaging (fMRI), 
Electroencephalography (EEG), Magnetoencephalography (MEG), Positron Emission 

Tomography (PET), Functional Near Infrared Spectroscopy (fNIRS) provide functional brain 
data that can be utilized to discriminate diseases that have common symptoms and diseases 
from healthy individuals (Gao et al., 2018).   
 
There is a strong interest in recent years in machine learning applications in neuroimaging. 
Previous reviews that cover a combination of ML techniques for the prediction of several 
diseases by using EEG (see review (Craik et al., 2019)), resting-state fMRI (see review (Khosla 
et al., 2019)) and PET (see review (Duffy et al., 2019)) showed that neuroimaging techniques 
might have a future on individual diagnosis with ML. Machine learning applications in 
neuroimaging allow researchers to investigate clinical populations or clinical conditions from 
different perspectives. Because, compared to conventional statistical approaches such as t-
test, ANOVA, Kruskal-Wallis or Friedman test. Machine learning provides us individual or 
trial-level answers rather than average sense. This is quite remarkable in medicine. Because, 
(i) Many diseases/disorders/syndromes have common symptoms that make them 
complicated to distinguish each other (ii) While diagnosing them, self-reporting of patients 
which is the conventional approach and also gold-standard for diagnosis of many disorders, 
might provide unreliable results due to having the potential to be easily manipulated. 
Therefore, there is a great necessity to reveal robust and objective biomarkers that provides 
individual accurate diagnosis (iii) In general, vast majority of behavioral and neuroimaging 
studies that focus on differences between patients and healthy individuals show these 
differences in average sense. However, these differences might not be valid for some 
individual cases due to huge variability across participants. At this point, the combination of 
neuroimaging approaches and ML techniques plays an important role to provide us some 
answers related to individual diagnoses rather than populations. 
 
Among these functional neuroimaging techniques, fNIRS is relatively new and promising 
approach due to its advantages (see reviews (Baskak, 2018; Ehlis et al., 2014; Gao et al., 
2018; Irani et al., 2007)) and it has almost a contemporary history with artificial intelligence 
applications in medicine. However, due to lack of data and computational cost, ML usage in 
fNIRS studies was limited until recent years. After overcoming these limitations, ML usage 
has increased greatly through the last decade among fNIRS researchers. Compared to other 
neuroimaging modalities such as fMRI and PET, it is less expensive, portable, easy to apply 
and has more tolerance to motion artifacts. When compared to EEG, it has higher spatial 
resolution that allows the researchers to focus on a specific region of interest (ROI). In 

addition to these advantages, it also provides information about concentration changes of 

oxy-hemoglobin (ΔHbO), deoxy-hemoglobin (ΔHb) and total-hemoglobin (ΔHbT= ΔHbO + 

ΔHb) by using at least two different wavelengths. These advantages feature fNIRS as a 
potential alternative tool for the diagnosis of psychiatric diseases. It has widely been 
preferred by researchers and clinicians from many different fields such as infant 
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development, cognition, anesthesia, motor control and psychiatric disorders (see review 
(Boas et al., 2014)).  
 
 
Systematically, an fNIRS-based ML system consists of several components as it is shown in 
Figure 1. A specific task or a resting-state procedure is conducted for data acquisition via a 
multi or single-channel fNIRS system. After data acquisition, a pre-processing step is carried 
out. In pre-processing step, several types of artifacts such as physiological noise (heartbeat, 

respiration, mayer waves (Fekete et al., 2011a)), motion artifacts and very low-frequency 
noise (<0.1 Hz) need to be filtered out. For this purpose, band-pass filtering, signal 
detrending and motion artifact algorithms (Brigadoi et al., 2014) are used. Having carefully 
filtered the data, feature extraction is carried out. Feature extraction step directly affects the 
performance of classifiers. Due to this reason, a priori knowledge in either temporal or 
spatial behavior of hemodynamic response might be essential. Depending on the type of 
data (resting-state or task), extracted feature types might be different. Feature selection 
should also be carried out if the number of features is high. This may lead to a 
dimensionality problem which may cause an overfitting or underfitting problem. In this step, 
there are several algorithms that might be used such as Principal Component Analysis (PCA), 
Least Absolute Shrinkage and Selection Operator (LASSO), t-test and Recursive Feature 
Elimination (RFE). Cross-validation types (Hold-Out, Leave-one-out (LOOCV) and K-fold) are 
generally selected depending on the amount of data. In some studies, hyperparameter 
optimization techniques such as grid-search, random-search or Bayesian are used to 
improve the performance of classifiers or predictors. For classification or prediction, 
methods such as Support Vector Machine (SVM), K-nearest neighborhood (KNN), linear 
discriminant analysis (LDA), Gaussian process classifier (GPC), Random Forest (RaF), Linear 
regression (LR) and Convolutional Neural Network (CNN) as a deep learning model are used.  
 

 
Figure 1. A framework for Classification or Prediction of Clinical Populations or Clinical Conditions using fNIRS 
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Our primary objective to review fNIRS-based ML studies is to emphasize the potential of 
fNIRS for developing new clinical biomarkers. We also provide insights into the potential 
problems for diagnostic usage of fNIRS and suggest questions for further studies. This review 
includes a general overview of these applications on clinical populations, applications for 
clinical conditions such as pain and anesthesia monitoring, also some popular methods being 
used in these studies and discussion about the future of fNIRS in biomarker research. To our 
best knowledge, this is the first review that covers machine learning studies focusing on 
biomarker research using fNIRS. There is a recent review focusing on deep learning 

(Eastmond et al., 2022), however, as we stated above we also discussed the regions and 
potential biomarkers used as a feature that provides high diagnostic accuracy. 
 

2. Methodology 

 
The present study was performed according to the “Preferred Reporting Items for 
Systematic reviews and Meta-Analyses” (PRISMA) statement (Page et al., 2021), shown as a 
schema in Figure 2. The search procedure was initiated by using Web of Science and 
PubMed databases. We used the keywords (“Functional Near Infrared Spectroscopy” OR 
“Near Infrared Spectroscopy” OR “Diffuse Optical Imaging”) AND (“Machine Learning” OR 
“Prediction” OR “Classification”) that describe in Table 1 in detail. Original research papers 
published from starting 2010 until end of September 2022 were included. A total of 1350 
(Pubmed: 727, Web of Science:679) search results that were published in Science Citation 
Indexing and Science Citation Indexing-Expanded, were reached. After removing the 
duplicate results, 1350 articles were left. Articles Conference proceedings and reviews 
excluding, 1314 articles were left. We also excluded the non-clinical studies and brain-
computer interface (BCI) studies and studies closely related to BCI such as motor and mental 
arithmetic tasks since it has been extensively reviewed by Naseer and Hong (Naseer & Hong, 
2015).  
 
 

----- Add Figure 2 Here---- 
 

----- Add Table 1 Here---- 
 
We scanned and reported 62 articles that were suitable for our context. All included studies 
are summarized in Table 2. Extracted data types from publications were first author and year 
of the publication, populations, objective of the study, experiment type (task/resting), used 
fNIRS system, region of interest with 10-20 position if available, sample size, used features to 
train and test the model, used machine learning algorithm, cross-validation technique, 
hyperparameter optimization type, obtained the highest accuracy, other classification scores 
and comments related to the study. Studies were grouped according to the focused clinical 
population or clinical condition. Some studies include two or more clinical populations. For 
these studies, we included them in the related section.  

 
----- Add Table 2 Here---- 

 

 

3. Clinical Populations 
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In this review, we considered studies from many different clinical populations such as 
Attention Deficit and Hyperactivity Disorder (ADHD), Alzheimer’s Disease (AD), Autism 
Spectrum Disorder (ASD), Amyotrophic Lateral Sclerosis (ALS), Depressive Disorder (MDD), 
Epilepsy, Fibromyalgia (FM), Mild Cognitive Impairment (MCI), Parkinson’s Disease (PD), 
Schizophrenia (SCZ), Somatic Symptom Disorder (SSD), Stuttering and Traumatic Brain Injury 
(TBI). Among those clinical populations, the vast majority of studies are related to ADHD and 
SCZ populations. While explaining the studies, we focused on five main points related to the 
studies. These points are; 

• Experimental design: We focused on the experimental paradigm due to inducing the 
specific response that leads to discriminate the clinical population or condition. 

• The number of participants: It is one of the most critical factors of the reliability of the 
study. 

• Extracted features on the fNIRS signal: Depending on the performance of the classifier, 

extracted features might be considered as a potential biomarker related to the 
clinical population or clinical condition. 

• Focused Region/s: Related region/s that features were extracted from, to involve in the 
model. 

• ML algorithm: Preferred ML algorithm to develop the diagnostic or predictive model. 

• Model Performance: Result depends on all the factors above. 
 
 

3.1. Attention Deficit and Hyperactivity Disorder (ADHD) 
3.1.1. ADHD vs Healthy Controls (HC) 

ADHD is a highly prevalent disorder particularly among children populations. It is mainly 
represented by lack of attention, excessive activity and impulsivity and its prevalence were 
reported as 3.6 % according to the DSM-V (American Psychiatric Association, 2013). ADHD 
patients are generally treated by medication (Chan et al., 2016; Geffen & Forster, 2018), 
psychotherapy (Gentile & Atiq, 2006) and neurofeedback systems (Razoki, 2018). In general, 
all these methods are used as complementary to each other. However, the underlying 
reason is still unclear. Previous, fNIRS studies proposed that Right Pre Frontal Cortex (R PFC) 
can be an objective biomarker in ADHD (Jourdan Moser et al., 2009; Monden et al., 2012). 
Considering this information, input data for classifiers were mainly extracted from the 
frontal region (Crippa et al., 2017; Gu et al., 2018; Ishii-Takahashi et al., 2015; Sutoko et al., 
2019; Yasumura et al., 2017). Studies have generally low sample sizes (min-max: 44-50) 
except for Yasumura and colleagues (Yasumura et al., 2017). This study is a multi-center 
study performed to validate the reliability of a classifier. It includes the highest number of 

subjects (Training data; ADHD: 108, HC: 108. Validation data; ADHD: 62, HC: 37) among all 
ADHD classification studies using fNIRS. fNIRS data that was acquired from PFC via a reverse 
Stroop task from different centers were used as input data with behavioral and physiological 
features. 86.25 % accuracy was found by using Radial Basis Function (RBF)-SVM and reverse 
stoop task-induced PFC activation was suggested as a critical biomarker for ADHD diagnosis.  
 
Among other ADHD studies, Ishii-Takahashi and her colleagues first tried to use the fNIRS to 
predict the efficiency of methylphenidate (MPH) on ADHD-diagnosed children by measuring 
inferior frontal cortex (IFC) during a stop signal task (SST) and they could be able to classify 
the groups that were previously separated according to the Clinical Global Impressions-
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Severity (CGI-S) score (CGI-S >4 & CGI-S <3) after 4-8 weeks of MPH administration with 81% 
accuracy by using LDA (Ishii-Takahashi et al., 2015). 
 
Crippa and his colleagues used both ∆Hb and ∆HbO data together for ADHD classification 
(Crippa et al., 2017). In this study, a visuospatial N-back task was performed and multi-modal 
measurements were obtained including clinical measures, neurophysiological data and fNIRS 
signals (∆Hb and ∆HbO) from frontotemporal areas. The surprising result was that ∆Hb-
based features were significantly effective in classifying ADHD participants. By using SVM, 

classification accuracy of only ∆Hb and only ∆HbO-based features was 78 % and 57 % 
respectively. When features of both responses were fused classification accuracy was 
reported as 72 %. This finding is quite interesting since ∆HbO was generally preferred as a 
dependent variable for fNIRS analysis due to its high signal-to-noise ratio (SNR) relative to 
∆Hb (Homae et al., 2010; Montero-Hernandez et al., 2018; Niu et al., 2011; Zhang et al., 
2010). 
 
Different strategies for feature extraction such as MVPA were also studied in ADHD research 
using fNIRS (Gu et al., 2018). 40 participants (20 ADHD, 20 HC) were included. Using N-back 
task-induced mean ∆HbO values extracted from bilateral dorsolateral prefrontal cortex 
(DLPFC), inferior middle frontal cortex (IMFC), right posterior prefrontal cortex (PPFC) and 
right temporal cortex (TC) were given to Multi-Voxel Pattern Analysis (MVPA) to reveal the 
hemodynamic patterns as input for SVM classifier. Maximum accuracy was found as 86 %. 
Except for frontal regions that we addressed before, ∆HbO activity in TC might be used as an 
efficient biomarker for ADHD classification. 
 
On the other hand, the first fNIRS/EEG multimodal study to classify ADHD patients was 
performed by Güven and her colleagues (Güven et al., 2020). Model development was 
performed on 44 participants (23 ADHD, 21 HC) and the integral value of pre-frontal ∆HbO 
induced by the oddball paradigm was used. Maximum accuracy was found as 77.27 via naïve 
Bayes classifier. The best performance was obtained by combining ∆HbO and EEG/ERP 
features which yield 93.18 % accuracy. 
 

3.1.2. ADHD vs ASD 
 
ADHD vs ASD classification is also a challenging problem since both have higher prevalence 
compared to other neurodevelopmental disorders (Hansen et al., 2018) and it was suggested 
that both have the same origin and share common symptoms which make the discrimination 
harder (Kern et al., 2015). Two fNIRS studies focused on ADHD / ASD classification. One of 
those studies focused on hemodynamic biomarkers in the occipital region induced by a face-
familiarity task, however, their sample size is relatively quite small (N=17, ADHD=9, ASD=8) 
compared to other ADHD classification studies (Ichikawa et al., 2014). They found 84 % 
accuracy by using SVM. The other study focused on MPH medication and hypothesized that 
hemodynamic response after MPH medication can be a discriminative biomarker between 

ADHD and ASD (Sutoko et al., 2019). 32 subjects were recruited (ADHD=21, ASD=11) and the 
Go/No-Go task-induced ∆HbO and ∆Hb activation of the right middle frontal gyrus (MFG), 
right angular gyrus (AG) and right precentral gyrus (PreCG) was used as input for classifiers. 
After pooling results of six different classifiers (Simple, AND, OR, LDA, quadratic discriminant 
analysis, SVM), 82 % accuracy with 93 % sensitivity and 86 % specificity was found and the 
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most optimum feature was reported as increased MPH–evoked ∆HbO response in ADHD 
group and decreased activation in the right hemisphere in ASD group.   
 

3.2. Alzheimer’s Disease (AD) 
AD is one of the subpopulations of dementia and the vast majority of the dementia 
population (>70 %) are of this population (Alzheimer’s Association, 2019). It has a prevalence 
among populations over 60-year-old aged between 4-6.4 % (Mayeux & Stern, 2012). 
Cognitive impairment and depression are the most common symptoms (Bature et al., 2017). 

Several functional neuroimaging studies tried to focus on diagnostic biomarkers of AD (see 
reviews (Ruan et al., 2016; Varghese et al., 2013)). Particularly, several fNIRS studies were 
published to understand the underlying mechanism of AD (Arai et al., 2006; Araki et al., 
2014; Herrmann et al., 2008; Hock et al., 1997; R. Li et al., 2018). However, few ML 
applications were performed by using fNIRS on AD populations. Among all AD classification 
studies, Ho and colleagues’ study has the highest number of participants and they proposed 
a deep learning framework for sub-population classification of AD (T. K. K. Ho et al., 2022). 
140 subjects including 53 HC, 28 asymptomatic AD, 50 prodromal AD and 9 AD dementia 
attended an fNIRS session focusing on prefrontal cortex activation during Oddball, 1-back 
and VFT. The highest accuracy that was reached in this study was 90% ± 1.2% when the CNN-
LSTM classifier was used and raw data was selected as inputs of architecture. 
 
On the other hand, two fNIRS/EEG study focusing on AD was reported in 2021. One includes 
four clinical groups with 29 participants in total (MCI=6, mild AD=8, moderate/severe AD=8, 
HC=7) (Cicalese et al., 2020). Random digit encoding-retrieval task-induced mean ∆HbO and 
∆Hb were used for classification using linear discriminant analysis (LDA). While fNIRS-based 
features and EEG-based features were separately giving 58.62 % and 65.52 % accuracy 
respectively, using fNIRS and EEG-based features together resulted as 79.31 % accuracy. 
Cortical regions including the right PFC and left parietal area was the most discriminative 
hybrid features that were found in this study. A similar multimodal EEG-fNIRS approach to 
classify Alzheimer's disease was introduced by Chiarelli and colleagues (Chiarelli et al., 2021). 
35 participants (17 AD, 18 HC) were attended to a resting state experiment and average 
concentrations of ∆HbO and ∆Hb were used as features. A multivariate regression analysis 
was used to classify AD and control subjects by using EEG, fNIRS and Neurovascular 
uncoupling metrics and 90.5% accuracy was reported. 
 
Another study that tried to classify AD, MCI and HC subjects was conducted by Kim and 
colleagues (E. Kim et al., 2021). In this study 60 participants( 18 AD, 11 MCI and 31 HC) 
attended fNIRS recording sessions during two different working memory tasks including 
Delayed Match-To-Sample (DMTS) task and Digit Span Test (DST). Functional connectivity 
maps from PFC were calculated using ∆HbO. FC values were used as input of artificial neural 
network (ANN) classifier to classify disease state and found the highest accuracy was 93.7%. 
 
 

3.3. Autism Spectrum Disorder (ASD) 
According to the DSM-5, ASD is a neurodevelopmental disorder characterized by troubles 
with communication and social interaction with people, limited interests, persistent 
behaviors and difficulties that affect social and work life (American Psychiatric Association, 
2013). It has a prevalence of 2.6 % and the ratio between males and females in the general 
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population are 2.6:1 (Y. S. Kim et al., 2011). Autism Diagnostic Observation Schedule (ADOS) 
is admitted as the gold standard approach for ASD diagnosis (Lord et al., 2000). Previous 
studies on determining ASD biomarkers focused on biochemical and clinical signatures 
(Bridgemohan et al., 2019), structural MRI (Pagnozzi et al., 2018) resting-state fMRI (Chen et 
al., 2019) and genetics (Goldani et al., 2014).  
 
All reported ASD classification studies were done by using a similar dataset. In this dataset, 
47 children (Typical developing  (TD)=22, ASD = 25) were recruited and an 8 min of resting-

state measurement from bilateral temporal regions was performed. In the first study, 
researchers utilized resting state functional connectivity and power spectra (RSFC) as 
measures for both ∆HbO and ∆Hb (J. Li et al., 2016). 81.6 % sensitivity and 94.6 % specificity 
were found by using a linear SVM classifier. There are also two critical findings in this study. 
First, weaker RSFC and second higher ∆HbO and ∆Hb power spectra values in the ASD group. 
Both findings were suggested as discriminative biomarkers. 
 
A re-analyzed version of this data was reported in another study (Cheng et al., 2019). In 
addition to the features used in the previous study, a specific frequency of interest for both 
∆HbO (0.02 Hz) and ∆Hb (0.0267 & 0.0333 Hz) in TC was also added as a feature and used as 
an input for an SVM classifier. With this new feature set, 92.7 % accuracy was found. The 
major difference between the two groups was reported as in the frequency band of 0.02-
0.03 Hz. Also, a recent study on resting state-based classification of ASD individuals used 
sample entropy as a feature (Xu, Hua, et al., 2020). Using k-means classification, 97.6 % 
accuracy was found. After performing machine learning studies, two deep learning studies 
on similar data were recently reported (Xu et al., 2019; Xu, Liu, et al., 2020). In the first study 
(Xu et al., 2019), a convolutional neural network (CNN) with a gate-recurrent unit (GRU) was 
trained and tested via hold-out cross-validation and 92.2 % accuracy with 85 % sensitivity 
and 99.4 % specificity was found. In the other study (Xu, Liu, et al., 2020), CNN and long-
short term memory (LSTM) were trained and tested via hold-out cross-validation and 95.7 % 
accuracy was reported. Compared to conventional machine learning approaches, deep 
learning approaches (CNN + LSTM) outperformed previously reported machine learning 
scores. The last study using the same dataset was reported in 2021 (Xu et al., 2021). From 
raw data, they found 90.6 % sensitivity and 97.5 % specificity by using LSTM with an 
attention mechanism. These studies also show the efficiency of deep learning approaches in 
classifying fNIRS signals.  
 
Dahan and colleagues conducted a study to classify Autism Spectrum Quotient (AQ) patients 
according to their severity (Dahan et al., 2020). In this purpose, 26 ASD patients were 
attended to the synchronization task. Portable 23-channel fNIRS device (Brite 23 Artinis 
Medical Systems) was used to acquire fNIRS signals. ℇ-complexity coefficients of signals 
were extracted and used as inputs of classification algorithms. SVM and Random Forest 
algorithms were used as classification algorithms. As validation techniques 5-fold cross-
validation and Leave one out cross validation were used for SVM and only k-fold cross-

validation technique for RF. The highest accuracy that was reached in this study was 
reported as 96.3% when RF was used as a classifier. 
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3.4. Amyotrophic Lateral Sclerosis (ALS) 
 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by 
the loss of upper and lower motor neurons of corticospinal tract, brain stem and spinal 
anterior horns (Proudfoot et al., 2018). In addition to applicability of fNIRS to decode signals 
from ALS patients (Borgheai et al., 2020),  Deligani and colleagues proposed a classification 
framework by using multimodal EEG-fNIRS imaging technique to classify ALS patients 
(Deligani et al., 2021). For this purpose, multimodal data acquisition was done during a 

visuo-mental task from 18 participants (9 ALS, 9 HC). Peak value and AUC of ∆HbO were used 
as features for SVM classifier. 60.19% and 62.64% accuracies were found by using only 
fNIRS-based features. These accuracies increased to 87.32% and 87.51% for multimodal 
approach. 
 

3.5. Major Depressive Disorder (MDD) 
MDD is a highly prevalent (%7 in the U.S.) psychiatric disorder (American Psychiatric 
Association, 2013) which is characterized by abnormal affect and mood change with several 
physiological disturbances in sleep, appetite, and psychomotor agitation (Belmaker & Agam, 
2008). It is generally diagnosed by psychiatric assessment which is accepted as the “gold 
standard” method, however, the reliability of this approach and self-reporting is quite 
controversial (Davison et al., 2009). Due to this reason, strong biomarkers are needed to 
classify this process (Kennis et al., 2020). For MDD classification, several studies have been 
reported and in the first study, a physical rehabilitation task was applied to 31 participants 
(14 HC and 17 MDD) (Zhu et al., 2020). Ten features were extracted from ∆HbO of DLPFC 
and VLPFC and five of those features (∆HbO variance from left DLPFC, mean ∆HbO from left 
VLPFC, FWHM of ∆HbO from medial PFC, mean ∆HbO from right VLPFC and Kurtosis of ∆HbO 
from right DLPFC) gave the highest accuracy for both XG Boost (92.6 %) and Random Forest  
(91.13 %) classifiers. 
 
Another study for MDD classification was conducted by Chao and colleagues (Chao et al., 
2021). 32 participants (16 MDD and 16 HC) attended to emotional sound test. Statistical-
based features such as mean, standard deviation, AUC and slope were calculated from ∆HbO 
signals. Besides these features, 4 vector-based features were calculated using ∆Hb and 
∆HbO orthogonal plane vectors. These are Cerebral Blood Volume (∆CBV), Cerebral Oxygen 
Change (∆COE), angle K which represents the ratio of ∆COE to ∆CBV, degree of oxygen 
exchange and the magnitude of L that represents change in 4 hemoglobin indices ∆Hb, 
∆HbO, ∆COE and ∆CBV. Four simple neural networks architecture such as multilayer neural 
network (MNN), feedforward neural network (FNN), cascade forward neural network (CFNN) 
and recurrent neural network (RNN) were performed to classify MDD and HCs groups. 
Highest accuracies achieved using only statistical-based features were reported as 89.74% 
for fear emotion when researchers used RNN and 99.86% was reported for only vector-
based features and used CFNN classifier for fear emotion. Also, this study claimed that AUC 
and angle K of fNIRS signals recorded from the prefrontal cortex (PFC) are specific 

neurological biomarkers for detecting MDD. 
 
In the study performed by Wang and colleagues (Wang et al., 2021), 96 subjects (79 MDD 
and 17 HC subjects) attended 3 tasks including the before-task silent session (30 s), the on-
task session (60 s) and after task silent session (60 s). Channel selection step was done 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.07.23285578doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.07.23285578
http://creativecommons.org/licenses/by-nc-nd/4.0/


according to SNR and t-test results. In addition to raw data and correlation maps of 
channels, 67 features from three indicators of ∆HbO, ∆Hb and ∆HbT were calculated and 
used as input for deep recognition framework. RestNet18, AlexNet and machine learning 
algorithms like gradient boosting decision tree and SVM were used as classifiers. In this 
study highest accuracy of 90% was achieved when correlation maps were used as input and 
AlexNet was selected as classifier. 
 
Two studies used verbal fluency task (VFT) in MDD classification studies. VFT is a popular 

task in MDD research to reveal potential differences between MDD and HC groups (Henry & 
Crawford, 2005). First of these studies was performed by Li and colleagues  (Z. Li et al., 
2022). Also, among all these reported studies for MDD classification, the highest number of 
participants were reported in this study. 363 participants (177 MDD and 186 HC) were 
applied to verbal fluency task (VFT). Extracted features were based on integral and centroid 
values of ∆HbO obtained from the pre-frontal region. By using features, SVM classifier 
achieved the highest accuracy of 75.6% ± 4.7. 
 
Another study that used VFT was done by Ho and colleagues (C. S. Ho et al., 2022). In 
addition to fNIRS data, they used clinical and demographic information of 133 subjects (65 
MDD and 68 HC) that attended to verbal fluency task. 14 time domain features FC Pearson’s 
correlation coefficients that were calculated from fronto-temporo-parietal based ∆HbO and 
∆Hb. SVM was used as classifier and the highest accuracy was reached with an 87.98 ± 8.84 
rate when clinical, demographic and features given as inputs to SVM algorithm. 
 

3.6. Epilepsy 
 Epilepsy is one of the most common neurological diseases that more than 70 million people 
worldwide are suffering (Thijs et al., 2019). It was characterized as one or more seizures with 
a relatively high recurrence risk (Fisher et al., 2014; St Louis & Cascino, 2016). EEG is the 
most popular and widely known technique for the diagnosis of epilepsy and MRI is also 
critical to understand the etiology and localization of seizures (St Louis & Cascino, 2016). 
fNIRS has recently emerged as an alternative tool for both these techniques for epileptic 
seizure prediction (Binder & Haut, 2013).  
 
Three studies focus on the prediction of epileptic seizures using fNIRS. The first study used 
fNIRS signals acquired with EEG data with a deep learning approach to predict epileptic 
seizures, however by only using fNIRS data (Rosas-Romero et al., 2019). Detection of ictal, 
pre-ictal and inter-ictal seizures was performed by using a convolutional neural network 
(CNN) for five epilepsy patients due to showing epileptic seizures during the measurement. 
Input data was three-dimensional tensors that were created by using ∆HbO and ∆Hb via 
more than 100 fNIRS channels that cover the fronto-temporo-parietal region. For all 
patients, classification accuracy varies between 96.9-100 %. Both fNIRS and EEG were also 
used by using deep learning (long-short term memory -LSTM) to predict the epileptic 
seizures (Sirpal et al., 2019). In this study, 40 patients with 89 epileptic seizures were tried to 

detect by using three-dimensional tensors created using ∆HbO and ∆Hb. Accuracies were 
found as 97.6 % and 97.0 % by using only EEG and only fNIRS, respectively. Using both 
modalities slightly increased the accuracy to 98.3 %.  
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Unlike the previous studies, the most recent study on epileptic seizure detection was 
performed by using conventional machine learning algorithms such as Multi-layer 
Perceptron (MLP) and SVM (Guevara et al., 2020). To classify only the pre-ictal state which 
corresponds to the stage before the onset of the seizure, similar EEG, ∆HbO and ∆Hb time 
series in a previous study (Rosas-Romero et al., 2019) were used to train these algorithms 
with seven different combinations (EEG, ∆HbO, ∆Hb, EEG + ∆HbO, EEG + ∆Hb, ∆HbO + ∆Hb, 
EEG +∆HbO + ∆Hb). Among those feature combinations, EEG-based features resulted an 
accuracy between 58.3-82.75 % by using MLP and between 90-97.1 % by using SVM. 

However, using ∆HbO and ∆Hb-based features gave accuracy between 98.05 -100 % and 
90.16 -100 % respectively by using MLP and SVM. Other feature combinations reached 100 
% accuracy in both classifiers. However, the most critical finding was that fNIRS-based 
classification performance outperformed the classification using EEG data which is generally 
considered as the “gold standard” for epileptic seizures (Shellhaas, 2015).  
 
 

3.7. Impulsive 
 

Despite not being a specific disorder or disease, impulsivity is a critical trait that is used in 
the diagnosis of psychiatric disorders (Moeller et al., 2001). Therefore, its existence might 
provide support to clinicians in the diagnostic decision. The gold standard of impulsivity 
diagnosis is behavioral questionnaires and clinical interviews that are highly subjective. To 
overcome this problem, Erdogan and colleagues proposed a computer-based decision 
support algorithm (Erdogan et al., 2021)using fNIRS signals that were recorded from 71 
participants (38 impulsive adolescents and 33 HC) during a Stroop task. Connectivity-based 
features were extracted from fNIRS signals and fused with behavioral features. SVM and 
ANN were used as classifiers to classify impulsive adolescents from HC subjects in this study. 
Accuracies of SVM and ANN for behavioral, clinical test and fNIRS features were both above 
90%, but SVM performed better accuracy (92.2%). 
 

3.8. Fibromyalgia (FM) 
FM is a widely known disease that can be identified by chronic and widespread pain, 
tenderness and several cognitive dysfunctions with has 2-8 % prevalence in the population 
(Clauw, 2014). Several systemic conditions have similar symptoms to FM (Hochberg et al., 
2003). Patients with FM can usually have irritable bowel syndrome, functional 
gastrointestinal disorders, chronic fatigue, somatoform disorders and other regional pain 
diseases (Clauw, 2014). There are several classification studies for individual diagnosis of 
Fibromyalgia using structural MRI (Robinson et al., 2015), resting state fMRI (Sundermann et 
al., 2014) and pain task-induced fMRI (Lopez-Sola et al., 2017). To our best knowledge, there 
is only one fNIRS study for the classification of FM disease (Gokcay et al., 2019). In this study, 
36 participants (19 FM and 17 HC) were recruited and three different experimental 
paradigms for both hands were performed (i) finger tapping, (ii) median nerve stimulation 
task using transcutaneous electrical nerve stimulation (TENS) and (iii) painful stimulation 

with TENS. Extracted features were functional connectivity values using correlation 
coefficients and mean ∆HbO from the six regions including postcentral gyrus (Post CG), 
middle frontal gyrus (MFG), precentral gyrus (Pre CG), superior parietal gyrus (SPG), 
supramarginal gyrus (SMG) and angular gyrus (AG). After selecting the statistically significant 
features using a t-test, several different classifiers SVM, K-nearest neighborhood (KNN), and 
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Linear Discriminant Analysis (LDA) with different parameters were trained and tested. A 
decision-based-fusion model using the results of different classifiers was also proposed in 
this study. After fusing the decision, 100 % accuracy was found. It was also suggested that 
such a decision-level framework by using fNIRS data can also be used for diagnostic 
classification purposes. 
 

3.9. Mild Cognitive Impairment (MCI) 
 

MCI is a syndrome that is defined as cognitive decline that is associated to aging (Lopez, 
2013). It is a phase before AD that the treatment might reduce its further effects (Yeung et 
al., 2016). Due to this, its early identification and predicting conversion to AD is quite critical. 
Several fMRI (Hojjati et al., 2017, 2018; A. Khazaee et al., 2016; A Khazaee et al., 2017) and 
PET (Cabral et al., 2015) studies are mainly focused on these two critical points. Until now, 
only two studies were reported for MCI classification using fNIRS. The first study on MCI 
classification using fNIRS and machine learning was performed by Yang and colleagues (Yang 
et al., 2019). 24 participants (15 MCI: 9 HC) were recruited for this study and three task (N-
back, Verbal Fluency and Stroop) were applied to these participants. Extracted features were 
mean, slope, peak, skewness and kurtosis of ∆HbO & ∆Hb with t-map and correlation maps 
of all channels from left, middle and right PFC. T-map and correlation maps were used to 
train and test a CNN and other features were used to train an LDA. CNN resulted as a 90 % 
accuracy using t-maps from the N-back task and LDA resulted as 76.67% using N-back and 
Stroop-task. 
 
The other study that used a deep learning approach to diagnose MCI was conducted by (D. 
Yang & Hong, 2020). In this study, 15 MCI patients and 9 HC subjects attended resting state 
sessions with 9 different durations (30s, 60s, 90s, 120s, 180s, 210s and 240s). Mean, 
standard deviation and variance of both ∆Hb and ∆HbO were calculated besides functional 
connectivity matrices for all time intervals. Mean, standard deviation and variance of both 
∆Hb and ∆HbO were calculated besides functional connectivity coefficients for all time 
intervals. The highest accuracy that was reached in this study was 97.01% when the 
classification-based transfer learning method using the VGG19 pre-trained CNN model with 
30s time duration. 
 
 

3.10. Parkinson’s Disease (PD) 
PD is a neurological disorder that is characterized by a noticeable tremor in hands and non-
motor symptoms (Kalia & Lang, 2015). It has a prevalence of 1% among the population 
above 60 years (Tysnes & Storstein, 2017). Its diagnosis was performed by considering a 
comprehensive history and physical examination (DeMaagd & Philip, 2015). Neuroimaging 
studies using MRI have revealed some biomarkers such as basal ganglia connectivity and 
substantia nigra morphology (see review(He et al., 2018)). fNIRS has also recently gained 
importance in PD research (see review (Stuart et al., 2018)). In addition to this, the first PD 

classification study using fNIRS and EEG was recently published (Abtahi et al., 2020). 18 
participants (PD:9, HC:9) were recruited and fNIRS measurements were conducted during 4 
different tasks that were bilaterally applied (Right and left-hand finger tapping, right and 
left-hand flipping, right and left arm movement, right and left foot stomping). Mean block 
average ∆HbO and mean power on EEG theta, alpha, beta frequency bands and activity-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.07.23285578doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.07.23285578
http://creativecommons.org/licenses/by-nc-nd/4.0/


based sensor data were used as features. SVM was preferred as a classification algorithm 
with Linear, Polynomial and RBF kernels. By using only fNIRS based, EEG based, fNIRS + EEG 
based, fNIRS + EEG + Sensor based features, 81.23 %, 92.79 %, 92.27 %, 93.40 % accuracy 
were found respectively. Compared to other scenarios, classification using fNIRS-based 
features resulted as lower accuracy. Delay in response was suggested as a potential reason 
for this classification. 
 

3.11. Schizophrenia (SCZ) 

SCZ is a severe mental illness that is characterized by symptoms such as hallucinations and 
delusions with severe cognitive problems such as working memory impairment 
(McCutcheon et al., 2019). It has a prevalence of %1-2 (Saha et al., 2005). The vast majority 
of previous biomarker research on SCZ mainly focused on neuroimaging, genetic and protein 
biomarkers (Rodrigues-Amorim et al., 2017). Among neuroimaging studies, EEG (Johannesen 
et al., 2016; Sabeti et al., 2009; Shim et al., 2016) and structural and functional MRI-based 
biomarkers have promising results (de Filippis et al., 2019). 
 
SCZ is the most studied population with ADHD using fNIRS (Koike et al., 2013). In addition to 
conventional experimental studies since 1994 (Okada et al., 1994), eleven machine learning 
studies have been performed by utilizing fNIRS since 2010. The vast majority of those studies 
focused on the prefrontal cortex (PFC) based on differences between two populations. The 
first one was performed by recruiting 120 participants (SCZ =60, HC =60) and four different 
experimental paradigms were carried out; VFT, Tower of Hanoi, Sternberg and Stroop task 
(Azechi et al., 2010). Among these 120 participants, 60 of them (30 HC, 30 SCZ) were used 
for training the LDA classifier and the remaining participants (30 HC, 30 SCZ) were used for 
testing. Mean ∆HbO from the frontal region and task performance data were used as 
features. Classification results by using only fNIRS measurements showed a 78.3 % accuracy 
for the training group. For the testing group, 65 % accuracy was observed. By including task 
performance, 88.3 % accuracy was observed for the training group and 75 % accuracy was 
observed for the testing group. This study showed that combining fNIRS and task measures 
increases the diagnostic success rate of SCZ. 
 
Another study, that focused on frontal region-based biomarkers was performed by utilizing a 
probabilistic method for classification (Hahn et al., 2013). Compared to other studies, prior 
information of a class (such as the prevalence of disease) was taken into account in this 
study because PPV and NPV of disease were stated as more important measures for 
diagnosis which are sensitive to prior class probability. In this study, the N-back task was 
applied to 80 participants (SCZ =40, HC=40). Whole ∆HbO response from the frontotemporal 
region was used as input for Gaussian Process Classifier (GPC). As a result, 76% accuracy with 
was found. 
 
Chuang et al. also focused on both PFC-based biomarkers in SCZ, however, tried to classify 
them using a k-means classification (Chuang et al., 2014). In this study, 99 participants (SCZ 

=53, HC=46) were recruited and mean value of ∆HbO response was extracted from 52 
channels located in the bilateral PFC and temporal lobe by performing a verbal fluency task. 
The highest accuracy was found as 71. 72 % with 77 % sensitivity and 65 % specificity by 
using 6 channels located on left IFG (5 of them) and right IFG (one of them). 
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In addition to the efficiency of PFC biomarkers, performance comparison of different 
classifiers is also another open question. Li et al. performed a verbal fluency task by focusing 
on the frontotemporal region (Z. Li et al., 2015). In this study, 240 participants (SCZ=120, 
HC=120) were recruited and four different classifiers (LDA, SVM, KNN, GPC) were trained 
using the mean value of ∆HbO. The highest accuracy was found by using Radial Basis 
Function (RBF) SVM (83.37 %).  
 
PFC oriented specific channel selection approach was also used to classify the SCZ (Einalou et 

al., 2016). In this study, 27 participants (SCZ:16, HC :11) was recruited and participants were 
requested to complete stroop task. By using wavelet transform, 0.003-0.11 Hz frequencies 
were found critical for classification and genetic algorithm was used to select channels in 
PFC. Using SVM, they found 83.59 % accuracy. 
 
fNIRS-based functional connectivity was also used as a biomarker in SCZ discrimination (Song 
et al., 2017). In this study, a one-back working memory task was applied to 76 participants 
(SCZ =42, HC=34) and activity from the frontotemporal region was recorded. After creating 
connectivity matrices for ∆HbO, ∆Hb and ∆HbT, eigenvectors extracted from the degree of 
node, clustering coefficient, local efficiency and global efficiency of three concentration 
changes were extracted as features and given as input to RBF – SVM classifier. Higher 
accuracies were reported by using ∆HbO and ∆Hb (85.5 %) compared to ∆HbT (80.3 %). 
Sensitivity scores were similar for all three concentration changes (92.8 %). However, the 
specificity score of ∆HbT (64.7 %) was found lower than ∆HbO and ∆Hb (76.5 %).  
 
There is another study that distinguishes SCZ from other psychiatric disorders using fNIRS 
and ML (Koike et al., 2017). In this study, four different populations including 143 
participants (ultra-high risk psychosis (UHRP) =47, First episode psychosis (FEP)=30, Chronic 
Schizophrenia (SCZ)= 34, healthy controls (HC)=33) were recruited and after a 12 month of 
follow-up, another measurement was performed on 34 UHRP, 21 FEP and 33 healthy 
participants. Two different markers were used; integral and centroid values. Integral value is 
the sum of ∆HbO signal change during task period and centroid value is the time value of 
hemodynamic response that corresponds to half of the integral value after the stimulus 
onset. By using discriminant analysis,  
 
A recent study on SCZ classification by using fNIRS was performed by utilizing wavelet-based 
decomposition (WBD) (Dadgostar et al., 2018). 27 participants (HC=11, SCZ =16) were 
recruited and fNIRS measurement was performed during a color-word matching Stroop task. 
∆HbO wavelet-based energy values for 0-0.108 Hz were extracted using WBD for 16 
channels and channel selection was performed by using a genetic algorithm and this input 
was given an RBF-SVM classifier. By using all channels, 74.31 % accuracy was reported, 
however, 87.31 % accuracy was reported by using only 6 channels. 
 
In addition to Song et al. (Song et al., 2017) , another functional connectivity-based SCZ 

classification study was performed by using fNIRS (Ji et al., 2020). 200 SCZ patients and 100 
HC were recruited for this study and a Chinese verbal fluency task was applied during the 
measurement. Seed-based functional connectivity was used as an input for the RBF-SVM 
classifier. Accuracy, sensitivity and specificity results were found as 89.67 %, 93.00 % and 
86.00 % respectively.  
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Chou and colleagues proposed an algorithm to classify and detect first episode 
Schizophrenia patients (Chou et al., 2021). In this study, 67 participants (33 first episode SCZ 
and 34 HC) attended to VFT session during the fNIRS recording. Integral and centroid values 
of oxyhemoglobin changes were computed from fNIRS signals. SVM and DNN were used as 
classifiers. DNN reached better accuracy than SVM, with 79.9% while SVM accuracy was 
68.8%. 
 

In another study, fNIRS measurements were performed on 200 participants (100 SCZ and 
100 HC) during a VFT task (J. Yang et al., 2020). Data was collected from bilateral prefrontal 
and temporal regions. FC matrices were calculated as features. LDA, GPC, KNN and SVM 
classifiers were used in this study. The highest accuracy that was reached in this study was 
84.67%. This accuracy was reached when FC matrices from three channels on the medial 
prefrontal and left ventrolateral prefrontal cortices were used as inputs of the classifier. 
 
SCZ and BP groups were also comparatively classified with HC by Eken and colleagues (Eken 
et al., 2022). In this study, 83 participants (23 SCZ, 30 BP and 30 HC) attended to fNIRS 
recording session during reading the mind in the eyes (RMET) task. ∆HbO time series that 
used to calculate dynamic functional connectivity maps using sliding window correlation 
method from bilateral frontopolar area, bilateral Broca’s area, bilateral dorsolateral 
prefrontal cortex, bilateral inferior frontal gyrus, bilateral premotor cortex bilateral middle 
temporal gyrus and left superior temporal gyrus regions. As a machine learning strategy, one 
vs one technique was used to classify groups from each other. SVM, DA and KNN classifiers 
were used to classify BP & SCZ, BP & HC and SCZ &HC groups. In BP & HC and SCZ & BP 
classification problems highest average accuracy reached in SVM algorithm with 0.825 ± 
0.051 and 0.755 ± 0.066 ratios. In SCZ & HC classification problems highest average accuracy 
was reached in DA with 0.790 ± 0.064.  This study also is one of the rare studies that try to 
investigate comparative biomarkers between different psychiatric disorders. 
 
Erodoğan and colleagues were conducted a study that try to classify 4 classes including HC, 
SCZ, OCD and migraine patients (Erdogan et al., 2021). In this purpose 13 HC subjects and 67 
patients were attended to stroop task session when their prefrontal hemodynamic response 
was recorded by ARGES-CEREBRO fNIRS device. Cognitive and functional connectivity 
features were used as inputs of classification algorithms.10 run 10-fold CV was used to split 
data. NB, SVM and LDA algorithms were to classify groups. SVM method shown the highest 
performance with accuracy 85.1 ± 1.77%, sensitivity 84 ± 1.7%, specificity 95 ± 0.5% rates. 
 
 

3.12. Somatic Symptom Disorder (SSD) 
 
Somatic symptom disorder (SSD) or somatization disorder is a collection of medically 
unexplained symptoms that causes distress and discomfort. According to the DSM-5, it 

includes a group of disorders such as illness anxiety disorder, conversion disorder, factitious 
disorder and it has a prevalence of 5-7 % in the population (American Psychiatric 
Association, 2013). Previous studies proposed several neuroimaging biomarkers to identify 
SSD such as the right insula and left superior occipital gyrus (Pan et al., 2019) and MPFC – 
Anterior Cingulate Cortex (ACC) connection (Ou et al., 2018). fNIRS has previously been used 
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in SSD research (Ren et al., 2017) and the first ML study using fNIRS was performed by Eken 
et al. (Eken et al., 2019). In this study, 40 participants (HC=21, SSD = 19) were recruited and 
fNIRS measurement was performed during two different painful stimulation task (Individual 
pain threshold level painful stimulation and constant level painful stimulation) with a brush 
stimulation as a control condition that was presented in both tasks. Dynamic functional 
connectivity using sliding window correlation (Sakoglu et al., 2010) was used to reveal the 
task-related connectivity changes. LDA and SVM classification was performed and 82 % 
accuracy with 81 % sensitivity and 85 % specificity were found using the data obtained by 

applying pain in levels of individual pain threshold and using connections right superior 
temporal – left angular gyri, right middle frontal – left supramarginal gyri and right middle 
temporal – left middle frontal gyri as input to an SVM classifier. Compared to only an fMRI 
study that utilizes ML (Ou et al., 2018), similar accuracy results were obtained. 
 

3.13. Stuttering 
Stuttering, which is mentioned as “Childhood-Onset Fluency Disorder” in DSM-5 (American 
Psychiatric Association, 2013) is a highly prevalent (5-8% among children (Månsson, 2000)) 
speech disorder that causes disturbances in fluently speaking (Perez & Stoeckle, 2016) and 
can be observed in every age. Its pathophysiology is still unclear. There are several 
functional neuroimaging studies that aimed to understand this disorder (see review (Etchell 
et al., 2018)) and several fNIRS studies (Jackson et al., 2019; Tellis et al., 2015; Walsh et al., 
2017). Previous fMRI- ML studies using intrinsic brain connectivity (Qiao et al., 2017) and 
speech task-based hemodynamic response (J. Jiang et al., 2012) showed notable accuracy 
values for classifying patients suffering from the stuttering disorder. 
 
To our best knowledge, there is only one stuttering study that combines fNIRS and ML 
(Hosseini et al., 2018). In this study, 32 children (stuttering:16, HC: 16) with an additional 
test group that includes 16 children who recovered from stuttering were recruited. fNIRS 
data were collected during a speech production task for three groups. Statistical (mean, 
variance, skewness, kurtosis) and morphological features (curve length, number of peaks, 
zero-crossings) with Normalized Area Under Signal (NAUS), Hjorth Mobility, Hjorth 
Complexity, Autocorrelation, Bicorrelation were used as input to SVM, LDA, KNN, decision 
tree and ensemble classifiers. The highest accuracy was found using SVM as 87.5 %.  
 

3.14. Traumatic Brain Injury (TBI) 
 
TBI is the condition of brain damage that may cause death or disability (Ghajar, 2000). It 
generally occurs in car accidents, sports injuries or assaults. It can be sub-grouped as mild, 
moderate and severe. There is only published research that focused on the classification of 
TBI using fNIRS (Karamzadeh et al., 2016). In this study,  61 participants (TBI =30, HC =31) 
were recruited and fNIRS measurement was performed during an event-related complexity 
task (Krueger et al., 2009). After collecting data, statistical features of averaged ∆HbO 
activity such as mean, variance, kurtosis, area under curve (AUC), Full-Width Half Maximum 

(FWHM) with Discrete Fourier Transform coefficients were extracted. Among SVM, LDA and 
decision tree classifiers, the highest accuracy was found as 84 % by using AUC, DFT 
coefficients and FWHM of ∆HbO activity. 
 

3.15. Tinnitus 
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Tinnitus is relevance symptom that basically defined as the hearing of sounds in one or both 
ears when there is no evident in environment (Han et al., 2009).  According to our 
knowledge first study that was tried to classify tinnitus and HC subjects was conducted by 
Shoustarian and colleagues (Shoushtarian et al., 2020). 25 tinnitus patients and 21 HC 
subjects were attended to visual and auditory task sessions besides resting state tasks. 
Subjects NIRS signals was acquired by multi-channel continuous wave NIRScout device. 
Connectivity measures and evoked response amplitudes derived from both HbO and HbR 

were used as inputs of classification algorithms. 4 Different classification algorithms 
including  Naïve Bayes, KNN, Rule introduction and ANN were used as classifier and 10-fold 
cross validation technique was used to split data. In classification case of patients and HC, 
the highest accuracy 78.3% (sensitivity 72.33% and specificity 64.25%)  was reached when 
auditory response features were used in Naïve Bayes method. In predicting severity of 
tinnitus case, the highest accuracy 87.32% (sensitivity 51.23% and specificity 95.12%) was 
reached when functional connectivity features were used in ANN method. 
 

4. Clinical Conditions 

 

In this review, we also included studies that consist of clinically relevant conditions to 
understand the efficiency of fNIRS while separating from each other. Under this title, we 
provided an overview of studies that aims to distinguish different clinical conditions (e.g. 
stress vs non-stress, high-pain vs low-pain) and non-clinical populations. 
 

4.1. Anesthesia Monitoring 
 
During surgical operations, anesthesia monitoring is a vital topic to detect sudden changes. 
Two studies were reported to classify the anesthesia phases. In the first study, fNIRS data 
collected under different anesthesia conditions from 19 patients under surgery was used for 
analysis (Hernandez-Meza et al., 2017). In this study, anesthesia conditions were identified 
as maintenance (MC) and emergence (EC). 248 (MC=229, EC=29) maintenance and 
emergence conditions were extracted and classified using RBF-SVM. Used features were 
local mean of ∆HbO, standard deviation of ∆HbO, local minimum of ∆Hb and ∆HbO and 
range of ∆Hb and ∆HbO. 94.8 % accuracy with 94.8 % sensitivity, 94.7 % specificity, 99.5 % 
PPV and 60 % NPV were found. The second study also used a similar paradigm with similar 
features except for different number of MC and EC conditions (MC =19, EC=19) from 19 
patients under surgery (Hernandez-Meza et al., 2018). Using similar features like the 
previous study, LDA and RBF-SVM classifiers were trained. RBF-SVM gave the highest 
classification score as 94.7 accuracy. Both studies showed that automatic anesthesia phase 
detection was carried out by using fNIRS-based features with high classification scores. 
 

4.2. Pain 
 

Pain perception is a complex function that several brain regions are involved and its 
mechanism includes affective, sensory and cognitive processing networks in the brain. 
According to the International Association for the Study of Pain (IASP), pain is defined as “an 
unpleasant sensory and emotional experience associated with actual or potential tissue 
damage or described in terms of such damage” (Treede, 2018). Pain perception in the brain 
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has been investigated for several years via several neuroimaging modalities such as fMRI 
(Apkarian et al., 2005) and fNIRS (L. Becerra et al., 2009; L. Becerra et al., 2008; Franceschini 
et al., 2003; Koch et al., 2010). There are several regions related to pain perception and 
processing such that the primary somatosensory cortex (SI), secondary somatosensory 
cortex, ACC and insula (Bornhovd et al., 2002; Buchel et al., 2002; Bushnell et al., 1999; 
Coghill et al., 1999; Derbyshire et al., 1997; Moulton et al., 2005; Poineau et al., 2012; Porro 
et al., 2003; Ringler et al., 2003). Also, PFC is found to be closely related to pain processing 
(L. Becerra et al., 2008; L. R. Becerra et al., 1999; Derbyshire et al., 1997). Functional 

neuroimaging of pain perception was generally conducted in terms of painful and non-
painful stimuli comparison (Apkarian et al., 1999; L. R. Becerra et al., 1999; K. Li et al., 2002; 
Lui et al., 2008). Pain perception mechanisms were also analyzed using fNIRS, but due to the 
physical limitations, only SI and PFC were considered as a region of interest (L. Becerra et al., 
2008). fNIRS studies that compare painful and non-painful stimuli show that there are 
significant bilateral SI activation and contralateral activation was found greater than 
ipsilateral one (L. Becerra et al., 2009; L. Becerra et al., 2008; Franceschini et al., 2003). A 
recent study focusing on this comparison of 11 healthy participants showed that responses 
for both stimuli were easily distinguished (Yucel et al., 2015). 
 
For the classification of pain using fNIRS, the first study was published by Pourshoghi et al. 
(Pourshoghi et al., 2016). In this study, the main objective was to classify painful and non-
painful heat stimulation conditions as low-pain and high-pain. To achieve this, a cold pressor 

test that includes four different temperatures (0-5-10-15 C°) was applied to 19 healthy 
control participants and acquired hemodynamic responses from the prefrontal region were 
grouped as high-pain and low-pain according to the self-reporting pain scores. Finally, 61 
trials were classified and Functional Data Analysis (fDA) (Ramsay et al., 2009) framework was 
used to extract the features. 94 % accuracy was found by using SVM.  
 
Two more studies focused on classifying four different painful stimuli (low-hot, low-cold, 
high-hot and high-cold) (Fernandez Rojas et al., 2017, 2019). In both studies, fNIRS signals 
collected during a heat-based painful stimulation paradigm from the SI region were used. In 
the study (Fernandez Rojas et al., 2017), wavelet coefficients were used as an input to both 
KNN and SVM and in the other study (Fernandez Rojas et al., 2019) peak time, mean value 
and Fourier coefficients were used in addition to wavelet coefficients as an input to LDA, 
SVM (linear, RBF, polynomial kernels) and KNN. In the first study, the highest accuracy was 
found as 92.08% with KNN and 91.25 % using SVM. However, in the second study a slightly 
lower accuracy 89.44 % was found by using RBF – SVM. These high accuracies revealed that 
fNIRS might provide discriminative biomarkers for identifying painful conditions. 
 

4.3. Stress and Anxiety Prediction 
 
First study focused on anxiety level prediction using fNIRS was published by Sato et al. (Sato 
et al., 2013). In this study, 19 participants aged between 19-24 were recruited and fNIRS 
signals collected from PFC during a 3-min resting state were used as input to a Bayesian 
approach to predict the State-Trait Anxiety Inventory (STAI) score. Mean values, all 
combinations of covariance and correlation coefficient of ∆HbO and ∆Hb of R and L PFC were 
used. Average prediction error was found lower than 5 that STAI scores vary between 20-80. 
A similar study was also performed on older (61-79 age) population including 17 participants 
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(Y. Fukuda et al., 2014). Using the same paradigm and feature sets, average prediction error 
of STAI values was found 5.27.  
 
In addition to anxiety level prediction, stress-based studies have recently become popular. 
Four studies were reported related to the classification of stress conditions. First study was 
published by Al-Shargie et al. (Al-Shargie et al., 2017b). In this study, 20 healthy participants 
were recruited and both fNIRS and EEG measurements were performed during a Montreal 
Imaging Stress Task that includes a control condition (mental arithmetic task without any 

time restriction) and a stress condition (a mental arithmetic task with time restriction). 
Mean ∆HbO and mean power of alpha band (8-12 Hz) from DLPFC, ventrolateral PFC (VLPFC) 
and Frontopolar area were used as input. Using RBF-SVM, two classifiers (one for fNIRS 
features and one for EEG features) were separately run and resulting decisions were fused. 
Only using fNIRS-based features resulted as 87 % accuracy. However, fusing both classifiers 
resulted as 96.48 % accuracy. Also, a similar study, carried out on 25 participants was 
performed by utilizing the same paradigm and ROIs (Al-Shargie et al., 2017a). In this study, 
mean ∆HbO and wavelet coefficients of EEG alpha band (8-12 Hz) were used together as 
potential stress markers. The highest classification accuracy was found as 97.7 % in channels 
located in VLPFC by fusing the EEG and fNIRS features and VLPFC was suggested as a 
potential ROI in stress detection.  
 
Another study focusing on acute stress with mental workload was published by Parent and 
colleagues (Parent et al., 2019). In this study, a working memory task (N-back) and an 
auditory stress task were conducted on 18 healthy participants. During the task, 
simultaneous fNIRS on the frontal region and electrocardiography (ECG) measurement for 
assessing heart rate variability (HRV) were performed. For classification, mean and slope of 
∆HbO & ∆Hb and HRV features were extracted from fNIRS and ECG respectively. However, 
only the classification of stress conditions could slightly exceed the chance rate (50%). Using 
fNIRS-based features, HRV-based features and both, stress conditions were classified with 63 
%, 53 % and 62 % accuracy respectively.  
 
Also, a recent study using both hemodynamic response and heart rate-based features for 
stress detection was reported by Hakimi and his colleagues (Hakimi et al., 2020). Using 
Montreal Imaging Stress Task (MIST), 20 right-handed participants were measured using 
fNIRS. From the fNIRS signal, both heart rate and hemodynamic response-based features 
were extracted and given as input to CNN, dense neural network, SVM and RF. The highest 
accuracy was found by using heart rate-based features as 98.69 % using CNN and in general, 
classification results using heart rate-based features outperformed the classification results 
using fNIRS-based features.  
 

4.4. Surgical Skill Assessment 
 
Surgical training has vital importance for patient safety and to understand the training level, 

objective measures are strongly needed (Dawe et al., 2014). To overcome this problem, a 
recent study on an objective assessment of surgical training using fNIRS and ML was 
published (Nemani et al., 2019). The main objective was to automatically classify virtually 
(VST) or physically trained (PST) medical students from untrained medical students (UMS). In 
this study, 18 medical students were recruited and grouped into three. 5 of them were never 
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trained, 7 of them were trained by Fundamentals of Laparoscopic Surgery Trainer (FLS) 
which is a physical simulator and 6 of them were trained by virtual basic laparoscopic skills 
trainer (VBLaST) which is the replication of FLS pattern cutting task on a computer. Both 
trained groups attended training for 12 consecutive days. After this period, fNIRS 
measurement was conducted on all groups during a surgical transfer task. Mean ∆HbO 
values were extracted from bilateral PFC, Supplementary Motor Area and Primary Motor 
Cortex (MI) and used as features with performance metrics of FLS and VBLaST. Using LDA 
classifier, the classification of PST vs UMS resulted in 97.8 % sensitivity and 97.3 % 

specificity. For VST vs UMS classification, 91.1 % sensitivity and 90.9 specificity % were 
found. Surgical skill assessment is a new field to show the efficiency of fNIRS. 
 
Another study related to surgical skill assessment was published by (Keles et al., 2021).33 
participants (11 surgeons, 5 surgery residents and 17 medical students) were applied to two 
FLS tasks (Peg transfer and Threading) and these participants were sub-grouped according to 
their NASA-TLX score (High vs Low) which is a subjective multi-dimensional scale that 
provides mental workload level score during the task and skill levels (Student vs Attending 
surgeon). Windowed standard deviation in each channel was extracted as features and given 
to linear SVM as input. For both classification tasks, ~90% accuracy was found and fNIRS 
showed great efficiency in determining surgical levels and surgical complexity. 
 
 

5. Machine Learning in fNIRS 

 

Machine learning usage by utilizing fNIRS data allows the researchers to focus on 
multivariate patterns that are hard to detect by using conventional statistical approaches. In 
this section, we will only mention the supervised learning approaches and the two most 
popular algorithms, SVM and LDA.  
 

5.1. Supervised Learning 

 
Supervised learning is a type of machine learning approach that provides information about 
the type of input and output. For instance, considering fNIRS, while training a classifier, input 
data occurs with different features such as mean ∆HbO, variance and its output is also 
labeled as a patient or healthy control (also can be patient from group 1 or patient from 
group 2). If this labeling was done according to the distinct classes, the procedure that is 
conducted is called “Classification”. Or if the labels were numerical values such as a disease 
severity score, this procedure is called “Prediction”. In supervised learning, the main 
objective is to create a model that maps input and output responses by using as much data 
as possible. 
 

5.2. Algorithms 

 

Many different machine learning algorithms were used in fNIRS studies. These algorithms 
were reported in Figure 4. Support Vector Machine (SVM) and Linear Discriminant Analysis 
(LDA) are the most preferred ones among all. SVM is a robust supervised learning algorithm 
that aims to discriminate the input data by creating a hyperplane with maximum margin 
according to their previously defined labels as we addressed in the section 5.1 (Vapnik, 
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1995). It was the most preferred classifier among fNIRS studies (Abtahi et al., 2020; Al-
Shargie et al., 2017b; Cheng et al., 2019; Crippa et al., 2017; Dadgostar et al., 2018; Einalou 
et al., 2016; Eken et al., 2019; Fernandez Rojas et al., 2017, 2019; Gokcay et al., 2019; Gu et 
al., 2018; Guevara et al., 2020; Hernandez-Meza et al., 2018; Hernandez-Meza et al., 2017; 
Hosseini et al., 2018; Ichikawa et al., 2014; Karamzadeh et al., 2016; J. Li et al., 2016; Z. Li et 
al., 2015; Naseer & Hong, 2015; Pourshoghi et al., 2016; Song et al., 2017; Sutoko et al., 
2019; Xu et al., 2019; Yasumura et al., 2017). The data points that are used to define this 
margin are called Support Vectors. This hyperplane can either be a linear kernel or a non-

linear kernel (such as polynomial or gaussian (also known as radial basis function)). For an 

input � � �� � � , for a single observation �� and its associated class ��  is represented as; 
 

����� � �� � ����� � �	1, �1
�       �1� 
 
For this association, -1 and +1 represents binary classes. An ideal decision hyperplane can be 
written as by using a linear kernel. 
 

��� � � � 0       �2� 
 
In this equation, � is the orthogonal weight vector to the hyperplane, � is input and � is 
represented as bias. For the best separable case of both classes, optimal margin should be 

�

�	�
. By using quadratic programming, this margin is maximized. � and � are used for this 

purpose. So, the objective function becomes in Eq. 3, subject to ������ � �� � 1 	 ��  and 
�� � 0. 
 

min

,�,
�

1
2 ���� � � � ��

�

���

          �3� 

 
In Eq. 3, � is the weight matrix, � is the regularization parameter. � is used to avoid 
overfitting. If C value become larger, SVM classifier assigns less support vectors, however, 

this causes a long training duration. �� represents the slack variables that SVM uses them to 
penalize the data points that if ith sample exceeds the margins. If �� � 0, it means ith sample 
did not exceed the margin. Otherwise, it becomes �� � 0. Algorithm uses the Lagrangian 
multipliers to find the optimum values. If �� , �� … … . , �� are the Lagrangian coefficients, Eq. 
4 should be minimized according to the these coefficients subject to Karush-Kuhn-Tucker 
rule for separable case  ∑ !��� � 0 , !� � 0, and non-separable case ∑ !��� � 0 , 0 " !� " � 
for linear SVM. 
 

min
��,……��

� !� 	 1
2 � � !�!�������

���

���

          �4� 

 
The score function can be estimated according the Eq. (4). 
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In Eq. 5, �% is bias estimate, �$�  is the ith estimate of  �$ vector. For non-linear SVM, instead of 
the variables ��

���, a non-linear function K is involved into equation and the SVM function is 

minimized subject to Karush- Kuhn-Tucker rule for non-separable case ∑ !��� � 0 , 0 " !� "
� as shown in Eq. 6. 
 

min
��,……��

� !� 	 1
2 � � !�!�����

���

'(�� , ��)    �6� 

 
Score function is shown in Eq. 7. 
 

�$ � � �$�

�

���
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For polynomial kernels, , as degree of polynomial and - as a constant, '(�� , ��) �
�- � �� .���� and for radial basis kernels as /� is the variance of kernel, RBF kernel is 

represented as '(�� , ��) � 0�
��������

	

	
	 �
. 

 
Another popular algorithm is LDA. LDA is also a quite popular supervised learning algorithm 

and it is also widely used for fNIRS based classification studies (Azechi et al., 2010; Cicalese 
et al., 2020; Eken et al., 2019; Fernandez Rojas et al., 2019; Gokcay et al., 2019; Hernandez-
Meza et al., 2018; Hosseini et al., 2018; Ishii-Takahashi et al., 2015; Karamzadeh et al., 2016; 
Z. Li et al., 2015; Nemani et al., 2019; Sutoko et al., 2019; Xu et al., 2019; Yang et al., 2019). 
Simplicity and low computation cost are the greatest advantages of LDA. Unlike SVM, the 
hyperplane is estimated by projecting the data via maximizing the distance between classes. 
LDA can be used for both dimensionality reduction and classification. In LDA, if we assume 
that data in every class is normally distributed, as Σ is the common covariance matrix and 2 
is the class, our multivariate normal density equation for class 2 becomes; 
 
 

3��|2� � 1
�25��/�|Σ|�/�

0�
�
�

������������������ 

 
our linear discriminant function is; 
 

6���� � ��Σ��7� 	 1
2 7�

�Σ��7� � 89:3� 

 
In this equation 7� is the mean value of every class and 3� is the prior probability of every 
class. According to this equation, linear discriminant classifier function ����� is; 
 

����� � arg max
�

6���� 

 
5.3. Feature Engineering 
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Feature engineering is a general term that represents the process to create highly predictive 
features from raw data using domain knowledge. It plays an important role while identifying 
a biomarker. In this review, we will focus on two important parts of feature engineering; 
Feature extraction and feature selection or reduction. In conventional machine learning 
approaches except for deep learning methods, feature extraction is the initial step that 
domain knowledge is strongly involved. A priori information related to data is strongly 
essential. Therefore, relevant features that can increase the prediction or classification 
accuracy are extracted. After completing the Feature Extraction step, performing feature 

selection or feature reduction is dependent on dataset dimensions. Although there isn’t any 
rule of thumb about determining an ideal dimension of a feature vector -except for the 
number of sample sizes >> the number of dimensions-, it is remarkable to use feature 
selection methods to avoid overfitting due to high dimensionality in neuroimaging datasets. 
There are several feature selection (or reduction) methods such as Principal Component 
Analysis (PCA), t-test, t-distributed stochastic neighbor embedding (t-SNE), Least Absolute 
Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996), Recursive Feature Elimination 
(RFE), ReliefF (Kenji & Larry, 1992).  
 
For fNIRS studies, feature types can be grouped under two different categories; Features 
extracted from task-based hemodynamic response and functional connectivity-based 
features. After excluding deep learning-based studies that generally do not require any 
feature engineering steps, the vast majority of those studies used mean ∆HbO as a feature 
from different cortical regions depending on the research question. As we mentioned above, 
∆HbO is the main dependent variable for fNIRS analysis due to its high SNR compared to ∆Hb 
(Homae et al., 2010; Montero-Hernandez et al., 2018; Niu et al., 2011; Zhang et al., 2010). It 
is also preferred in BCI studies (Naseer & Hong, 2015). However, some surprising results can 
be encountered such as finding higher accuracy by using ∆Hb than using ∆HbO (Crippa et al., 
2017; Xu et al., 2019). This is a controversial issue. Although there are some exceptional 
cases (Strangman et al., 2002), common agreement is that decrease in ∆Hb is highly 
correlated with blood-oxygenation-level-dependent (BOLD) signal (Mehnert et al., 2013; 
Steinbrink et al., 2006). 
 
Connectivity-based features have also emerged as another alternative input for ML 
algorithms. Due to its nature, resting-state-based classification studies using fNIRS utilize 
these features (Cheng et al., 2019; J. Li et al., 2016; Xu et al., 2019; Xu, Liu, et al., 2020). In 
addition to this, some task-based studies also use connectivity-based features (Eken et al., 
2019; Gokcay et al., 2019; Song et al., 2017; Yang et al., 2019).  
 

5.4. Optimizing Hyperparameters 

 

To improve the performance of classifiers, optimizing hyperparameters using different 
approaches is an option. Among 62 fNIRS studies, only 17 of them utilized hyperparameter 
optimization. Vast majority of these studies used Grid-search parameter optimization 

(Fernandez Rojas et al., 2019; Z. Li et al., 2015; Yang et al., 2019; Yasumura et al., 2017) and  
Bayesian optimization (Eken et al., 2019; Hosseini et al., 2018; Parent et al., 2019). The grid-
search algorithm creates all combinations of parameters and trains the classifier by using 
these parameters. After training all, it gives the optimum parameter set that provides the 
lowest validation error. Grid- search is computationally expensive both for time and space. 
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Also, as the number of parameters increases, computational complexity becomes high. On 
the other hand, Bayesian optimization is a sequential iterative optimization process that 
aims to find the global optimum set of parameters using minimum iterations. Compared to 
grid search, it uses less training time but, considers fewer options. For deep learning studies, 
Adam (adaptive moment estimation) optimizer is the most popular method for parameter 
optimization and is generally preferred in several fNIRS-based deep learning studies (Xu, Liu, 
et al., 2020; Yang et al., 2019).  
 

5.5. Cross-Validation Techniques 

 

Cross-validation (CV) is the resampling approach to generalize the ML results. Three main CV 
techniques are used in ML studies. Leave-one-out cross-validation (LOOCV), Hold-Out CV and 
K-fold CV. In LOOCV, only a single observation from data is used for the test and the rest is 
used for training. This operation was done for every observation. Therefore, you have n test 
scores and then the average score is estimated. It provides less bias since all data is used for 
testing. However, for the same reason, variation is high in scores. Also, for larger samples 
(e.g. > 100-1000) computational cost is high. For hold-out CV, data is separated as training 
and test set. Percentages vary around for training 60-90 % and test 10-40 %. Training and 
testing are done only once. This is ideal for a large dataset that requires more computational 
power and time. However, results are highly biased due to less generalization because 
training and testing samples might not represent the whole data. Among analyzed studies, 
few of them used hold-out validation  
 
K-fold CV is the most popular CV method. In this method, observations are divided into K 
number of training and test folds that both training and test folds were stratified. For every 
fold, a classifier is trained by using training fold and tested by using test fold. This is done by 
K times. After having a classification score from every classifier, all these scores were 
averaged. It is ideal for moderate-sized (e.g.�? @ 50 	 100�� datasets. However, for larger 
datasets, it causes computational complexity.  
 
For some cases, nested CV is also used (Crippa et al., 2017; Eken et al., 2019). Nested CV 
consists of two nested loops. The outer loop is always for generalization of ML models and 
the inner loop is either for hyperparameter optimization or rarely feature selection 
(Parvandeh et al., 2020). It is used for having an unbiased estimate of classification scores. 
To optimize classification results with unbiased results, nested CV is a highly reliable 
approach. 
 

6. Biomarker Research on fNIRS 

 
Biomarker identification for a disease has always been a challenging topic for researchers 
and clinicians. According to the Biomarkers Definitions Working Group, biomarker is defined 
as “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, or pharmacologic responses to an intervention” (Biomarkers Definitions 
Working, 2001). Weickert et al addressed three features of a biomarker; 1) Diagnostic 
(ability to classify the disease) 2) Prognostic (ability to predict the progress of the disease), 3) 
Theranostic (ability to predict a treatment pathway) (Weickert et al., 2013). Biomarkers 
should also have some additional features such as interpretability, deployability and 
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generalizability (Woo & Wager, 2015). As Huss stated, depending on several criteria, 
biomarkers can be classified as either imaging biomarkers such as MRI, PET, Computed 
Tomography, EEG or molecular biomarkers such as genetic variations, mutations, proteins 
and lipids (Huss, 2015). Interpretable biomarkers in neuroimaging should be meaningful and 
associated to other parameters such as genetic or clinical. For this review, few studies 
include correlation or regression analysis between selected features for ML and clinical or 
genetic parameters 
 

For ML studies, the vast majority of the studies reported performance results by utilizing 
∆HbO. However, notable number studies also considers about ∆Hb as a critical feature 
source (Cheng et al., 2019; Chiarelli et al., 2021; Cicalese et al., 2020; Crippa et al., 2017; Y. 
Fukuda et al., 2014; Guevara et al., 2020; Hernandez-Meza et al., 2018; Hernandez-Meza et 
al., 2017; Koike et al., 2017; J. Li et al., 2016; Parent et al., 2019; Rosas-Romero et al., 2019; 
Sato et al., 2013; Sirpal et al., 2019; Song et al., 2017; Sutoko et al., 2019; Xu et al., 2019; Xu, 
Hua, et al., 2020; Xu, Liu, et al., 2020; Xu et al., 2021; Yang et al., 2019; D. Yang et al., 2020). 
In some cases, depending on the measure, ∆Hb might provide better classification 
accuracies compared to ∆HbO (Eken, 2021).  
 

6.1. Current Problems in ML Applications On fNIRS 
 
As we stated in the Introduction section, ML applications have a growing popularity in 
healthcare and particularly in diagnostic imaging (F. Jiang et al., 2017). Among these studies 
that we reviewed, we noticed that fNIRS provided us promising results about the usage of 
ML for diagnosis. In fact, in 2014, the Ministry of Health, Labour and Welfare in Japan 
approved fNIRS for health insurance as a supportive tool in laboratories for differential 
diagnosis of the depressive state of BP and SCZ from that of major depression (M. Fukuda, 
2015). This approval was received after a multi-center study was carried out on patients with 
depressive state (Takizawa et al., 2014). However, this decision was strictly criticized 
afterward and it was stated that fNIRS is still immature to provide such a diagnosis due to 
less scientific evidence (Kato et al., 2017). At this point, lack of data diminishes the reliability 
of these studies. After having enormous amount of high-quality data with accurate and 
precise spatial information, it will be possible to develop more accurate ML models for 
diagnostic purposes. A very common problem in low sample size and high dimension 
datasets is; they tend to cause overfitting or underfitting. Low sample size in neuroimaging 
studies led to several problems in replicability (Turner et al., 2018) and cause high variance 
(Mumford, 2012). Low sample size with circular analysis cause higher classification 
accuracies which is possibly a misleading signature for diseases such as ADHD (see review 
(Pulini et al., 2019)). Also, cross-validation will cause a large error bias when the sample size 
is low (Varoquaux, 2018). Previous studies reported that low sample size-based classification 
studies reach higher accuracy when higher sample sizes lead lower accuracies (Schnack & 
Kahn, 2016).   
 

Related to the sample size problem, lack of databases for fNIRS prevents to create big 
sample cohorts. Compared to fNIRS, there are several fMRI and MRI databases such as 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2008), openfMRI (Poldrack et 
al., 2013; Poldrack & Gorgolewski, 2017). That allows data sharing among research groups 
which is critical for reaching big data cohorts. However, it is necessary to standardize some 
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critical procedures such as anatomical positioning, and data acquisition parameters on 
common templates such as MNI (Tsuzuki et al., 2007) to achieve this. At this point, either 
utilizing MRI data of subjects or using 3D digitizers can be considered valid options to 
perform an accurate channel localization (Tsuzuki & Dan, 2014). Also, to assess regional 
biomarkers for every individual, cortical ROIs should be precisely defined and corresponding 
coordinates of this ROI should be reported. Some toolboxes provide anatomical information 
of channels by using MRI or 3D optode coordinate data such as AtlasViewer (Aasted et al., 
2015), NIRS-SPM (Ye et al., 2009), NAP(Fekete et al., 2011a, 2011b) and fOLD (Zimeo Morais 

et al., 2018). This also will gain insight into further studies particularly comparing the results. 
Like databases, more multi-center studies should also be performed to generalize the 
performance of ML for diagnostic purposes. Until now, only two multi-center studies were 
reported for ADHD (Yasumura et al., 2017) and depression (Takizawa et al., 2014).  
 
To reach more data, datasets with a standard near-infrared data format (.snirf) that includes 
spatial information are necessary. Therefore, not only the studies related to specific diseases 
or disorders but also meta-analyses related to these disorders might be published. Like fMRI, 
resting-state is a critical measurement technique in fNIRS (Niu & He, 2014). Also, several 
fNIRS-ML studies utilize resting-state measurements (Cheng et al., 2019; J. Li et al., 2016; Xu 
et al., 2019; Xu, Hua, et al., 2020; Xu, Liu, et al., 2020).  
 
Another critical point is the pre-processing of fNIRS signals. A recent study that compares 
different pre-processing approaches revealed that ignoring the removal of task-evoked 
physiological noise led to different statistical results (Pfeifer et al., 2017). Also, a recent 
review showed that there is high variability among pre-processing methods carried out in 
fNIRS studies (Pinti et al., 2018). Standard pre-processing pipelines that cover all potential 
noise sources should be developed.  
 
 

6.2. What should the further steps be to improve the biomarker research using 
fNIRS and ML? 

 
Biomarkers can be classified as imaging and molecular biomarkers. The vast majority of 
fNIRS research mainly focuses on trying to associate the brain and behavior (or clinical 
measures). However, reliability of behavioral measures such as psychiatric paper-based test 
scores, and experimental responses is quite controversial. While defining a biomarker, one 
of the most critical criteria is to be subject-independent. A strong association between an 
objective feature with another one can be a valid indicator about the reliability of this 
biomarker. For instance, genetic features to associate with hemodynamic response can be 
used in addition to clinical variables (Ohi et al., 2011; Ohi et al., 2009; Reif et al., 2011; 
Takizawa, Hashimoto, et al., 2009; Takizawa, Tochigi, et al., 2009).  
 
Multimodal approaches such as using EEG can also increase the classification accuracy like in 

BCI (see review (Naseer & Hong, 2015)). On the other hand,  Diffuse Correlation 
Spectroscopy (DCS) which is the close cousin of fNIRS and allows us to measure cerebral 
blood flow (CBF) has recently been active in functional studies (see reviews (Durduran et al., 
2010; Durduran & Yodh, 2014)) and recent studies reported that it has a three times higher 
brain to scalp sensitivity compared to fNIRS (Selb et al., 2014). Also, it was reported that an 
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approximate 2 % change in Hb/HbO corresponds to 40 % change in blood flow (Durduran et 
al., 2004). Simultaneous measurement of CBF with Hb and HbO allows us to measure the 
cerebral metabolic rate of oxygen (CMRO2). Although there are several fNIRS-based ML 
studies focused on clinical purposes, only two DCS-based ML studies are available and these 
studies both focused on predicting intracranial pressure using CBF data on non-human 
primates (Ruesch et al., 2020) and humans (Fischer et al., 2020). Not only neuroimaging-
based measures but also other physiological measures such as ECG might also help to 
increase classification scores (Parent et al., 2019). As functional studies using DCS are gaining 

popularity and showing promising results for clinical approaches, ML applications will also be 
started to talk about DCS or its combination with fNIRS. 
 

7. Conclusion 

 

In this paper, we have reviewed the fNIRS-based ML studies that focus on biomarker 
research. Studies related to more than 15 different clinical populations and conditions were 
reviewed. It is widely known that fNIRS has several challenges such as data standardization, 
lack of data, and preprocessing problems. However, despite these pitfalls, there is a growing 
interest to understand the potential biomarkers to be used as discriminative parameters for 
different populations or conditions via fNIRS by utilizing ML approaches.   
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