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Abstract

Early case detection is critical to preventing onward transmission of COVID-19 by
enabling prompt isolation of index infections, and identification and quarantining
of contacts. Timeliness and completeness of ascertainment depend on the
surveillance strategy employed. We use rapid prototype modelling to quickly
investigate the effectiveness of testing strategies, to aid decision making. Models
are developed with a focus on providing relevant results to policy makers, and
these models are continually updated and improved as new questions are posed.
The implementation of testing strategies in high risk settings in Australia was
supported using models to explore the effects of test frequency and sensitivity on
outbreak detection. An exponential growth model is firstly used to demonstrate
how outbreak detection changes with varying growth rate, test frequency and
sensitivity. From this model we see that low sensitivity tests can be compensated
for by high frequency testing. This model is then updated to an Agent Based
Model, which was used to test the robustness of the results from the exponential
model, and to extend it to include intermittent workplace scheduling. These
models help our fundamental understanding of disease detectability through
routine surveillance in workplaces and evaluate the impact of testing strategies
and workplace characteristics on the effectiveness of surveillance. This analysis
highlights the risks of particular work patterns while also identifying key testing
strategies to best improve outbreak detection in high risk workplaces.
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Introduction
Accurate and timely case detection is a key pillar of COVID-19 monitoring and

management, particularly for countries that have aimed for zero community preva-

lence of SARS-CoV-2. Australia is an example of a country that had a ‘strong

suppression’ policy until vaccines were widely distributed throughout 2021. Until

that time, COVID-19 spread was prevented by proactive management of borders,

active case finding and follow up with strict isolation and quarantine requirements

for cases and contacts, and through liberal access to PCR testing in both high

risk settings and the general community. Arriving international travellers posed

the greatest risk of imported infection, leading to imposition of mandatory hotel

quarantine arrangements on the 28th of March that were maintained through to

late 2021 [1]. Repeated SARS-CoV-2 incursions to the community, despite strin-

gent arrivals procedures, prompted refinement of the design of testing strategies for

travellers and workers in quarantine settings. Testing was one of a suite of layered

infection prevention and control interventions to minimise the risk of community
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outbreaks.

Accuracy and completeness of case detection is influenced by multiple factors

including: the dynamics of host-pathogen interaction, test performance (sensitivity

and specificity), and test frequency. PCR tests are seen as the ‘gold standard’ in

testing practices, although their performance varies over the course of the infec-

tion [2], with many individuals remaining PCR-positive after they are no longer

infectious. For the purposes of outbreak detection, PCR tests suffer from their

slow turnaround time (typically days) [2]. On the other hand, Rapid Antigen Tests

(RATs) typically have a turnaround time of 15 minutes. However, they have lower

sensitivity and specificity than PCR tests [3]. Similar to PCR tests, test sensitivity

varies depending on the stage of infection, and whether infection is symptomatic

or asymptomatic [3, 4]. Existing work suggests that these issues can be overcome

by increasing the frequency of testing, implying that RATs can still be practically

useful despite their limitations [5, 6].

In early 2021, Australia was seeking to improve testing strategies in workplaces,

with the primary objective of detecting new outbreaks quickly. However, the differ-

ences in performance characteristics between different tests made it challenging to

develop a robust workplace testing strategy. In addition to test performance, there

were also questions about how the emergence of variants of concern, with differing

characteristics such as transmissibility or severity, would affect outbreak detection.

In this work, we describe the methods and results applied to rapid prototyping of

testing strategies that were used to guide the Australian Government response of

COVID-19 in 2021.

Rapid prototype modelling is a model development approach that aims to provide

rapid insights while laying the foundations for more detailed modelling [7]. Models

developed should be simple yet still convey complexities and subtleties of a problem

to decision makers [8]. Problem identification at each step drives prototyping, and

as questions are revised and improved, models are updated to reflect new scenarios

[7, 9]. Rapid response modelling has been crucial in developing policy for COVID-

19, allowing key hypotheses and assumptions to be tested in real-time as public

health policy is implemented [10].

To provide timely advice on the principles underlying a robust workplace test-

ing policy we took a rapid prototypic approach. We estimated the sensitivity of

alternative surveillance strategies using models of differing granularity. The first

is the ‘exponential model’, which we developed to give timely insight into testing

efficacy, prompted by the emergence of the Alpha variant, which was both more

transmissible and more pathogenic than antecedent viruses [11]. The model is de-

fined by exponential growth of disease prevalence in the workplace, and allows us to

quickly understand the interactions between test sensitivity, frequency and growth

rate (Reff) on outbreak detection. The second model developed is an agent based

model (ABM) which allows us to investigate the interaction between scheduled

testing frequency and shift work patterns in determining the overall sensitivity of
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the surveillance system. The ABM builds on assumptions made by the rapidly de-

veloped exponential model to probe and update its results to answer new, emerging

questions for an updated situation (i.e. intermittent work scheduling). These two

models were developed as tools to provide answers to specific questions posed by

policy makers about designing effective testing practices in workplaces.

We present our two models and results in the sequence they were developed, start-

ing with the exponential model, which we use to explore the effects of growth rate

(Reff), test sensitivity and test frequency on the probability of detecting outbreaks

in workplaces. We then consider the Agent Based Model (ABM), using it to probe

the results of the exponential model and also to explore the impact of more complex

work schedules on the probability of outbreak detection. For both the exponential

model and the ABM, we define an outbreak occurring when at least one employee is

infected. An outbreak is detected when a positive case is identified, either through

testing or symptom onset.

Exponential model
Our initial model for the probability of detecting a COVID-19 outbreak in a work-

place assumes exponential growth of active cases. In the exponential model disease

prevalence on day i+ 1 (denoted Pi+1) is given by:

Pi+1 = Pi(Reff)
1
g , (1)

where Pi is the disease prevalence on day i, g is the generation interval and Reff

is the effective reproduction number. We assume a generation interval of 4.7 days,

and that an outbreak begins on the first day with one active infection [12]. With

these assumptions, we calculate the expected number of active cases through time

under different values of Reff.

Using our model of prevalence, we then calculate the probability of detecting

at least one case within a week under different testing strategies. We vary test-

ing strategies by considering different test sensitivities and test frequency, i.e. the

number of days per week testing occurs. In our results we consider scenarios where

testing occurs once per week, three times per week and daily. We assume that on

days when testing occurs, the entire workforce is tested. This testing framework is

suitable for high importation risk, such as quarantine hotels.

The one-week detection probability is defined as the probability a truly infected

individual returns a positive test within a week of the initial infection. Let Pi be the

prevalence on testing day i, and s the test sensitivity. We assume tests have 100%

specificity. The probability an outbreak is not detected on day i (given everyone is

tested) is:

Pr(no detection on day i) = Pr(all infected people test negative) (2)

= (1− s)Pi . (3)
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Let T be the set of testing days in a given week, i.e. days where everyone is tested.

The probability of detection in a week is therefore given by:

Pr(detection in a week) = 1− Pr(no detection on all testing days) (4)

= 1−
∏
i∈T

Pr(no detection on day i) (5)

= 1−
∏
i∈T

(1− s)Pi . (6)

Exponential model results

(a)

(b)

Figure 1: Probability of detection within a week using the exponential model as

we vary growth rate (Reff) and test sensitivity (Figure 1a), and test sensitivity

and testing schedule (Figure 1b). We assume a generation interval of 4.7 days

and a workplace size of 50 people for both Figures 1a and 1b. For Figure 1a

we assume testing occurs only once per week and for Figure 1b we assume a

conservative growth rate of Reff = 1.1.
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The probability of detection within a week increases with both test sensitivity and

Reff (Figure 1a). With testing occurring once per week, there is a large difference

between whether there is low (0.65) or high (0.95) test sensitivity. However, the

difference in the probability of outbreak detection between low and high sensitivity

decreases with increasing Reff. As Reff increases the outbreak spreads faster, mean-

ing more infected people are tested within a week, increasing the likelihood that at

least one is detected.

Increasing test sensitivity and frequency both increase the probability of out-

break detection within a week (Figure 1b). Most notably, daily testing results in a

high probability of detection within a week (> 95%), for all test sensitivities. This

demonstrates that low-sensitivity tests, such as RATs, are still useful for outbreak

detection — their shortcomings can be overcome by more frequent testing.

Agent based model
We develop an agent based model (ABM) to represent additional complexities of the

quarantine setting not captured in the exponential model. The ABM incorporates

further complexity and allows us to ask more detailed questions about workplace

testing. We start by setting up the ABM using the same set of assumptions as the

exponential model. In replicating the exponential model results using the ABM, we

can be confident that the ABM generalises the earlier results.

Each agent in our model follows an susceptible–exposed–infectious–recovered dis-

ease progression. Agents begin each simulation susceptible, and once infected become

exposed. An exposed agent is neither infectious nor detectable. Exposed agents will

transition to an incubating phase, where they become both infectious and detectable

by testing. In the incubating phase, agents are either symptomatic or asymptomatic.

Both infection states are detectable by testing, but symptomatic infection is also

detected at the moment of symptom onset. When their infection ends, agents be-

come recovered, and immune to reinfection. Further modelling details, including

parameter values, can be found in the supplementary material.

For each simulation, outbreaks are seeded via a single infection in the workplace.

As for the exponential model, we assume there are no cases imported into the work-

place. An outbreak is detected when a positive test result is returned (assuming

100% specificity as for the exponential model) or symptom onset occurs. Under the

ABM assumptions, we assume that two thirds of infectious people are symptomatic.

To reproduce results from the exponential model, we assume all infected agents are

asymptomatic, i.e. there will be no outbreak detection via symptom onset. For

each model simulation, we estimate the probability of detecting at least one case

within a week over 5000 simulation instances, each of which is subject to stochastic

variation. We discard simulations instances in which all infected individuals recover

before any are detected.

We define test frequency by specifying the number of testing days per week. As in

the exponential model, on days when testing occurs, everyone attending the work-
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place is tested.

To extend the exponential model results, we consider the effects of intermittent

work schedules on outbreak detection. We define these work schedules by specifying

the proportion of the workplace working 1, 3, 5 or 7 days a week. Employees are

then randomly assigned work days in accordance with the number of days they are

scheduled to work. We assume people are only tested at work, but outbreaks may

be detected through symptom onset at any time, regardless of whether the unwell

individual is present in the workplace.

Agent Based Model Results

In this section, we present results from the ABM. We start by reproducing results

from the exponential model to see how the ABM aligns with previous results. We

then update our assumptions to consider the impact of intermittent workplace at-

tendance on the probability of outbreak detection within a week of the introduction

of the virus.

Comparing the exponential and agent based models

In line with the process of rapid prototyping, Figure 2 compares the exponential

model behaviour to that of the ABM. Under identical sets of assumptions, the ABM

results closely follow those of the exponential model (Figure 2a), although the ABM

produces slightly more optimistic estimates of detection probability. However, when

we change assumptions of the ABM (Figure 2b), the results begin to diverge. Under

the new assumptions, the results from the ABM produce much higher probabilities

of outbreak detection than the exponential model. This is explained by the addi-

tional mode of detection, by symptom onset. The additional assumptions we use

here cannot be built into the exponential model due to its simplicity, so the devel-

opment of the ABM allows us to explore the impact of these infection and testing

characteristics on outbreak detection.

Intermittent workplace attendance

A strength of the ABM is that it can be used to explore the implications of more

complex patterns of workplace attendance. We introduce an intermittent work

schedule, where some proportion of workers work 1, 3, 5 and 7 days a week —

though we assume that disease progression happens independently of this schedule.

Analogously to the testing assumptions of the exponential model, we assume that

when testing occurs, everyone in the workplace on that day is tested. We consider

the following intermittent work schedules defined by the proportion of the workforce

working 1, 3, 5 or 7 days a week:

1 100% 7 days/week,

2 100% 5 days/week,

3 60% 5 days/week, 40% 3 days/week,

4 60% 5 days/week, 30% 3 days/week, 10% 1 day/week.

As observed in the exponential model, increasing test frequency and sensitivity

increases the probability of detecting an outbreak (Figure 3). In a similar way, the
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Figure 2: Probability of detection within a week as calculated by the exponen-

tial and agent based models as we vary growth rate, test sensitivity and test

frequency. Figure 2a compares the ABM results to the exponential model under

the same assumptions, i.e. no latent infection period, no asymptomatic infection

and no detection via symptom onset. Figure 2b shows the ABM results under

different assumptions to the exponential model, i.e. a latent infection period (1

day), asymptomatic infection and detection via symptom onset.

detection probability is higher when employees work more frequently. Notably, even

for a sparse work schedule, low test sensitivity can be compensated for with higher

testing frequency. If we increase test frequency, employees are more likely to be

tested in a given week as they are more likely to be at work on a testing day. This

compounds the benefits of frequent testing observed in the exponential model.

The ABM includes the assumption that outbreaks can be detected by symptom

onset, which imposes an upper bound on the time to detection. Since disease pro-

gression occurs outside the workplace, outbreaks can be detected even when the
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Figure 3: Probability of detecting an outbreak within a week under various in-

termittent working schedules as we vary test sensitivity and frequency for (a)

testing three times per week and (b) testing daily. See text for details of testing

schedules.

infected workers are at home. This bound increases the seven-day detection proba-

bility compared to the exponential model.

Discussion
Pandemic policies need to be adaptable in the face of emerging epidemic intel-

ligence, including changes in circulating pathogen characteristics, host-pathogen

interactions and diagnostic modalities [13]. By reassessing and updating our proto-

type models to examine new questions posed, we can aid decision makers by sup-

porting evidence–based decisions as new scenarios arise. The development of the

exponential model and the ABM demonstrates how a rapid prototyping approach

is useful to for informing disease-management policy. While simple by design, the

exponential model was quickly able to show that lower sensitivity tests can be
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useful when combined with high frequency testing, and that variants with higher

R0 may be more readily detected in outbreak settings than less transmissible strains.

Answering these early questions naturally led to more nuanced questions, and we

developed our second model in response to this. The ABM explores how the inter-

action between shift patterns and routine surveillance testing frequency determines

the effective testing rate across the workforce. In our model, a high symptomatic

proportion (> 60%) and perfect compliance with testing requirements mitigated

identified risks associated with gaps in surveillance due to non-work days. These

assumptions were valid in context of an unvaccinated population, circulation of

the Alpha variant and strict public health orders mandating testing requirements.

Assumptions must be updated in light of population and pathogen characteristics.

For example in the case of COVID-19, by late 2022 a much lower symptomatic

proportion would be expected given high levels of population vaccine coverage in

Australia and emergence of the less pathogenic Omicron variant.

To answer questions around testing strategies in workplaces, our modelling aimed

to model the decision problem at hand rather than simulate an outbreak as realis-

tically as possible. Therefore, it is important to note that when designing models

using a rapid prototyping approach, we cannot guarantee that the model will be

suitable outside the scope of the question it is designed to answer. That is, it is not

necessary that the models we use are good models for the system, but that they are

instead suitable for the given questions. The exponential model is not considered

a “good” model for understanding the spread of disease in workplaces, but, when

focusing on a short time frame, it is useful for questions about outbreak detection.

When new questions arise requiring nuance in the initial growth rate or longer term

analysis, we need to turn to different models. In our context, the limitations of the

exponential model led us to develop the agent based model. Despite the exponen-

tial model limitations, our understanding of the model allowed us to be confident

in our results, and exploring a simple model gives us general insights about the

decision problem. It also provides a solid foundation for further exploration with

more complex models.

While Australia’s COVID-19 risk environment is continually evolving, both our

modelling and the rapid prototyping framework can still provide useful insights. In

contrast to the COVID-19 landscape in early 2021, Australia now has widespread

COVID-19 transmission, meaning there are fewer workplaces where we actively seek

to detect new outbreaks [14]. However, there remain workplaces, for example aged

care facilities, where there is a high chance of severe outcomes from COVID-19, and

so we would still seek to detect new outbreaks quickly to put in place mitigation

measures. Furthermore, our models are fairly general, so our results are not spe-

cific to COVID-19. The exponential model assumes that we are aiming to detect

something that is increasing in prevalence through time, and the only COVID-19

specific assumption is about the generation interval. Similarly, the ABM is quite

general and these models could be readily adapted for other pathogens.
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Our study shows the utility of taking a rapid prototyping approach to model devel-

opment in epidemiology, starting by developing simple models and then building in

additional complexity. Rapid prototyping has been used effectively for environmen-

tal management as part of Structured Decision Making (SDM) approaches [7, 9],

but has not been used formally in epidemiology. Like ecological fields, epidemiology

is well-suited for rapid prototyping due to its range of well-known simple models,

e.g. SIR type models. In our example of workplace outbreak detection, the expo-

nential model results provide a pessimistic estimate for the probability of outbreak

detection. With updated information, the ABM provides a more realistic estimate

of the probability of outbreak detection. Here, rapid prototyping allows us to pro-

vide a quick, conservative estimate to policy makers which can then be updated as

more information becomes available.

The COVID-19 pandemic has highlighted the importance of model-generated ev-

idence in decision making. With a short time-frame in which to answer questions,

and a rapidly changing set of circumstances, flexible models which can be updated

to new questions have an important role. The rapid prototyping process we de-

scribe is well suited to informing policy in a quickly evolving situation. While the

importance of gaining quick insights for policy is clear, an additional benefit is

that rapid prototyping models provide direction for development of more complex

models. Simple models can provide useful insights to inform strategic thinking, and

more detailed models are able to incorporate important real world complexities to

refine tactics for surveillance and response.
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