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Abstract 

Incorporating historical information in clinical trials has been of much interest recently because 

of its potential to reduce the size and cost of clinical trials. Data-conflict is one of the biggest 

challenges in incorporating historical information. In order to address the conflict between 

historical data and current data, several methods have been proposed including the robust meta-

analytic-predictive (rMAP) prior method. In this paper, we propose to modify the rMAP prior 

method by using an empirical Bayes approach to estimate the weights for the two components of 

the rMAP prior. Via numerical calculations, we show that this modification to the rMAP method 

improves its performance regarding multiple key metrics.  

 

Keywords: historical control; dynamic borrowing; empirical Bayes; clinical trials; mixture 

distribution 

 

1. Introduction 

Randomized controlled trials (RCTs) have been used as the gold standard for years to establish 

the efficacy and safety of an investigational medical product. However, RCTs usually take a long 
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time and are of high cost. Patient recruitment could be difficult for indications of rare diseases, 

pediatrics, and certain targeted sub-groups, which unduly delays development and market access 

of treatment for these indications. On the other hand, patient data from real world use such as 

registries, electronic health records, and historical clinical trials, have become more and more 

accessible. This has motivated the use of external historical data to enrich the control arm in 

RCTs.  

Using historical data to aid RCTs is not a new idea (Pocock 1976). However, the regulatory 

agencies’ engagement in recent years has advanced this field considerably. FDA has released a 

series of guidance documents related to use of external and historical data in regulatory settings 

(FDA 2017; FDA 2019 a, b, c; FDA 2021). Use of historical controls is already quite common in 

medical device trials (CDRH 2021). EMA also published a draft guideline on registry-based 

studies to enhance the use of registry-based studies as a source of real-world evidence (EMA 

2021).  

One of the biggest statistical challenges in incorporating historical data is prior-data conflict 

which means that the true distribution of parameter of interest underlying the historical data 

could be different from that of the current control data. Dynamic borrowing methods have been 

proposed to handle the prior-data conflict, including the test-then-pool method (Viele et al. 

2014), the power prior method (Ibrahim et al. 2000; Ibrahim et al. 2015), the commensurate prior 

method (Hobbs et al. 2011) and the meta-analytic-predictive (MAP) prior method 

(Neuenschwander et al. 2010). 

In particular, this article focuses on the robust MAP prior method (Schmidli et al. 2014). The 

robust MAP (rMAP) prior is a mixture prior with two components – the first component derived 

from historical data and the second component to ensure robustness against prior-data conflict. 
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However, it was not very clear how to assign weights to the two components in the mixture 

prior. In this paper, we propose to use an empirical Bayes (EB) method to derive the weight for 

the MAP prior, i.e. the component obtained from historical data, in the mixture rMAP prior.  

We organize this paper as follows. Section 2 delineates the proposed new method (EB-rMAP). 

Operating metrics based on the new method are evaluated for binomial data via numerical 

calculations and are compared with those based on competing methods in section 3. The 

proposed method is applied to real clinical data in section 4. We present the summary and 

discussions about the use of our method in section 5.  

 

2. Method 

In clinical studies, binary outcomes, e.g. response to a study drug or not, are often of interest. In 

this paper, we consider a binary outcome 𝑋~𝐵𝑖𝑛𝑜𝑚(𝑛, 𝜃) with parameter 𝜃 ∈ [0, 1]. For 

example, 𝑋 could be the number of responders observed out of a total of 𝑛 subjects, and 𝜃 could 

be the true response rate to a study drug.   

2.1 The Robust Meta-Analytic-Predictive (rMAP) Prior 

(Neuenschwander et al. 2010) proposed using an MAP prior for incorporating historical data. As 

its name indicated, the MAP prior is estimated via meta-analysis of multiple historical studies. 

By applying the Bayes’ Theorem, the posterior distribution can then be derived and inferences 

will be conducted based on the posterior distribution.  

(Schmidli et al. 2014) proposed to use a mixture of conjugate priors to approximate the MAP 

prior and to add a vague conjugate prior on top of the MAP prior to make it more robust, i.e.  

𝑓0,𝑟𝑀𝐴𝑃(𝜃) = 𝑤𝑓0,𝑀𝐴𝑃(𝜃) + (1 − 𝑤)𝑓0,𝑅(𝜃)    (1) 
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where 𝑓0,𝑀𝐴𝑃(𝜃) is the MAP prior derived from historical data, 𝑓0,𝑅(𝜃) is a vague prior, and 

𝑓0,𝑟𝑀𝐴𝑃(𝜃) is the robust MAP prior. Moving forward in this article, we’ll use ‘MAP prior’ to 

denote the prior distribution based on historical data, i.e. 𝑓0,𝑀𝐴𝑃(𝜃), while ‘rMAP prior’ refers to 

𝑓0,𝑟𝑀𝐴𝑃(𝜃) in (1). The weight w impacts how quickly historical data are discounted with 

increasing prior-data conflict. In general, it was suggested that the weight 𝑤 should be based on 

the degree of confidence in the relevance of the historical data (Schmidli et al. 2014). However, 

there was no clear guidance on how to quantify 𝑤 yet. 

It can be shown that in general the posterior distribution corresponding to the mixture prior 

distribution 𝑓0,𝑟𝑀𝐴𝑃(𝜃) is still a mixture of two distributions, however with different weights 

compared with those weights in the prior distribution:  

𝑓𝑟𝑀𝐴𝑃(𝜃|𝐷) = 𝑤̃(𝑥)𝑓𝑀𝐴𝑃(𝜃|𝐷) + (1 − 𝑤̃(𝑥))𝑓𝑅(𝜃|𝐷)    (2) 

where 𝐷 stands for observed data and 𝑓. (𝜃|𝐷) is the posterior distribution corresponding to the 

prior distribution 𝑓0, . (𝜃). In general, 𝑤̃(𝑥) ≠ 𝑤. Using data that follows binomial distribution 

and its conjugate prior distribution as an example, it’s easy to show that  

𝑤̃(𝑥) =  

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤)𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

    (3) 

𝑓𝑀𝐴𝑃(𝜃|𝐷) = 𝐵𝑒(𝜃|𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥) 

𝑓𝑅(𝜃|𝐷) = 𝐵𝑒(𝜃|𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥) 

given a mixture prior distribution 

𝑓0,𝑟𝑀𝐴𝑃(𝜃) = 𝑤𝐵𝑒(𝜃|𝑎1, 𝑏1) + (1 − 𝑤)𝐵𝑒(𝜃|𝑎2, 𝑏2).     

Here 𝐵𝑒(𝜃|𝑎, 𝑏) is the Beta distribution for  𝜃 with parameters 𝑎 and 𝑏, and 𝐵(𝑎, 𝑏) is the Beta 

function with parameters 𝑎 and 𝑏. A common choice for 𝑎2 and 𝑏2 is that 𝑎2 = 𝑏2 = 1, i.e. the 

uniform distribution is selected as the vague prior 𝐵𝑒(𝜃|𝑎2, 𝑏2). Without loss of generalizability, 
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we assume that 𝑓0,𝑀𝐴𝑃(𝜃) in (1) consists of one Beta distribution, i.e. 𝐵𝑒(𝜃|𝑎1, 𝑏1). The above 

results can be easily extended to the case when the MAP prior consists of a mixture of Beta 

distributions (See Supplementary Material S1). It can be shown that when there’s large prior-data 

conflict, 𝑤̃(𝑥) will be shrunk compared with its counterpart 𝑤 in the mixture prior distribution 

(See Supplementary Material S1; Schmidli et al. 2014). In other words, the MAP prior will 

barely contribute to the posterior distribution in cases where there’s large prior-data conflict. 

2.2 Empirical Bayes-based Robust MAP Prior (EB-rMAP) 

In this paper, we propose to use an empirical Bayes method to quantify the weight w for the 

rMAP prior. In particular, assume that the estimate (e.g. the maximum likelihood estimate) of the 

parameter of interest based on the current control data is 𝜃𝐶(𝑥), then the following probability is 

used as the weight of the MAP prior in the mixture prior in (1), i.e. 

𝑤(𝑥) = 𝑝(𝜃𝐶(𝑥)) = 2 ∗ min(𝑃[𝜃 ≥ 𝜃𝐶(𝑥)], 𝑃[𝜃 < 𝜃𝐶(𝑥)])

= 2 ∗ min (∫ 𝑓0,𝑀𝐴𝑃(𝜃)𝐼[𝜃 ≥ 𝜃𝐶(𝑥)]𝑑𝜃 , ∫ 𝑓0,𝑀𝐴𝑃(𝜃)𝐼[𝜃 < 𝜃𝐶(𝑥)]𝑑𝜃)    (4) 

where 𝜃 denote the parameter of interest, and 𝑓0,𝑀𝐴𝑃(𝜃) is the MAP prior distribution. By 

replacing 𝑤 in (1) and (2) with 𝑝(𝜃𝐶(𝑥)), we get a modified robust MAP prior 𝑓0,𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃) 

and the corresponding posterior distribution 𝑓𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃|𝐷), 

𝑓0,𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃) = 𝑤(𝑥)𝑓0,𝑀𝐴𝑃(𝜃) + (1 − 𝑤(𝑥))𝑓0,𝑅(𝜃)    (5) 

𝑓𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃|𝐷) = 𝑤̃(𝑥)𝑓𝑀𝐴𝑃(𝜃|𝐷) + (1 − 𝑤̃(𝑥))𝑓𝑅(𝜃|𝐷)    (6) 

Given a mixture of Beta prior distributions, 𝑓0,𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃) = 𝑤(𝑥)𝐵𝑒(𝜃|𝑎1, 𝑏1) +

(1 − 𝑤(𝑥))𝐵𝑒(𝜃|𝑎2, 𝑏2), 

𝑤̃(𝑥) =  

𝑤(𝑥)𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝑤(𝑥)𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤(𝑥))𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

.   (7) 
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Notice that the only difference between (7) and (3) is that 𝑤(𝑥) in (7) is a function of observed 

data as specified by (4) whereas 𝑤 was a fixed number in (3). 

The idea behind this EB approach is similar to p-value used in the hypothesis testing, where p-

value measures how likely observing more extreme data than the currently observed data is, 

given the null hypothesis is true. In other words, p-value indicates how similar the distribution 

behind the current data to the null hypothesis distribution. Notice that 𝑤(𝑥) is calculated in the 

same way as p-value is calculated in a 2-sided test if the MAP prior was taken as the distribution 

under the null hypothesis. So, similar to p-value, 𝑤(𝑥) or 𝑝(𝜃𝐶(𝑥)) measures the similarity 

between the current observed data and the MAP prior distribution. A small 𝑤(𝑥) or 𝑝(𝜃𝐶(𝑥)) 

indicates that the parameter distribution behind the current observed data is dissimilar to the 

MAP prior distribution. This is the rationale that 𝑝(𝜃𝐶(𝑥)) is used as the weight for the MAP 

prior in the mixture prior distribution.  

 

3. Operating Metrics 

We evaluated the performance of the EB-rMAP method and did comparisons with the rMAP 

method with different fixed 𝑤 using the example historical data in (Viele et al. 2014) where 

there’re 65 responders among 100 patients. Accordingly, the beta distribution with parameters 65 

and 35, i.e. Be(65, 35), was selected as 𝑓0,𝑀𝐴𝑃. The Uniform distribution, or Be(1, 1) was used as 

𝑓0,𝑅 in (1) and (4). In other words, 𝑎1 = 65, 𝑏1 = 35, 𝑎2 = 1, 𝑏2 = 1 in the mixture prior 

distribution through section 3. In the current study, assume that there’re two arms, one control 

arm and one treatment arm, each with sample size 𝑛 =100. The number of responders obtained 

in current control arm and current treatment arm are models as, 

𝑋~𝐵𝑖𝑛𝑜𝑚(𝑛, 𝜃𝐶), 
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𝑋𝑇~𝐵𝑖𝑛𝑜𝑚(𝑛, 𝜃𝑇), 

where 𝜃𝐶  and 𝜃𝑇 are true response rate in current control arm and current treatment arm, 

respectively. The objective of this study is to compare 𝜃𝑇 with 𝜃𝐶  to determine whether the 

treatment has higher response rate than the control, with the null hypothesis 𝐻0: 𝜃𝑇 ≤ 𝜃𝐶 . Let 𝜃𝐶  

varies from 0.5 to 0.85.  

Prior distributions for each method are list out in table 1. 

Table 1 Weight in prior distributions 

 Prior Distribution 𝑓0(𝜃𝐶) 𝑤  

MAP 

𝑤𝐵𝑒(𝜃𝐶|𝑎1, 𝑏1) + (1 − 𝑤)𝐵𝑒(𝜃𝐶|𝑎2, 𝑏2) 

1 

rMAP given fixed 𝑤 ∈ [0, 1] 

EB-rMAP 𝑤(𝑥)𝐵𝑒(𝜃𝐶|𝑎1, 𝑏1) + (1 − 𝑤(𝑥))𝐵𝑒(𝜃𝐶|𝑎2, 𝑏2) 𝑤(𝑥) defined by (4) 

 

3.1 𝒘̃ in the posterior distribution 

By (3) and (7), 𝑤̃(𝑥)for different methods are shown in table 2. 

Table 2 Weight in posterior distributions  

 𝑤̃(𝑥) 

MAP 1 

rMAP 𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤)𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

 

with given fixed 𝑤 
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EB-rMAP 𝑤(𝑥) ∗ 𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝑤(𝑥) ∗ 𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤(𝑥)) ∗ 𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

 

with 𝑤(𝑥) defined by (4) 

The mean of 𝑤̃ is calculated as  

𝑤̅̃ = ∑ 𝑤̃(𝑥)𝑝(𝑥|𝜃𝐶)

𝑛

𝑥=0

 

where 𝑝(𝑥|𝜃𝐶) refers to the binomial probability mass function. The relationship between 𝑤̅̃ and 

true 𝜃𝐶  for different methods are shown in Figure 1. For the MAP method without 

robustification, 𝑤̅̃ always equal to 1. For the rMAP and the EB-rMAP method, 𝑤̅̃ decreases when 

the true parameter 𝜃𝐶  differs from 𝜃, which is 0.65 in this case, based on historical data. In 

particular, when 𝜃𝐶 = 0.8 on average 𝑤̃ can still be as high as 0.61 given 𝑤=0.8. Considering 

that the true parameter 𝜃𝐶=0.8 indicates substantial data conflict between current data and 

historical data (𝜃𝐶=0.65), assigning a weight as high as 0.61 to the historical data seems too high. 

On the contrary, EB-rMAP has 𝑤̅̃ as low as 0.03 on average. When 𝜃𝐶 = 0.65, i.e. no data 

conflict, the 𝑤̃ is around 0.73 on average based on EB-rMAP. This is not as high as the  𝑤̅̃ based 

on rMAP with 𝑤=0.8, which indicates that EB-rMAP is relatively conservative in borrowing 

historical information. However, the conservativeness of the EB-rMAP method provides 

safeguard against borrowing too much from historical data when there’s data conflict as 

discussed above.   
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Figure 1 Weight in the posterior distribution based on MAP, rMAP, and EB-rMAP methods for historical 

data 
𝑥0

𝑛0
= 0.65 

3.2 Effective historical sample size 

Effective historical sample size (EHSS) is an important metric to measure how much information 

is borrowed from historical data. In this article, EHSS is calculated by comparing the precision 

of the parameter estimates before and after incorporating historical data (Hobbs et al. 2013), i.e.  

𝐸𝐻𝑆𝑆 = ∑ 𝑛 (
𝑉𝑉𝑎𝑔𝑢𝑒[𝜃𝐶|𝑥]

𝑉[𝜃𝐶|𝑥]
− 1) 𝑝(𝑥|𝜃𝐶)

𝑛

𝑥=0

    (8) 

where n is the sample size of the control arm in the current study, 𝑉𝑉𝑎𝑔𝑢𝑒[𝜃𝐶|𝑥] is the variance of 

𝜃𝐶  regarding a posterior distribution derived based on a vague prior e.g. Be(0.01, 0.01), and 

𝑉[𝜃𝐶|𝑥] refers to the variance of 𝜃𝐶  regarding to the posterior distributions derived based on 

priors listed in table 1 for different methods. More specifically, as the observed number of 
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responders 𝑋 in the control arm follows a binomial distribution, i.e. 𝑋~𝐵𝑖𝑛𝑜𝑚(𝑛, 𝜃𝐶), the 

posterior distribution for 𝜃𝐶  is 𝐵𝑒(𝑥 + 0.01, 𝑛 − 𝑥 + 0.01). It follows that 

𝑉𝑉𝑎𝑔𝑢𝑒[𝜃𝐶|𝑥] =
(𝑥 + 0.01)(𝑛 − 𝑥 + 0.01)

(𝑛 + 0.02)2(𝑛 + 1.02)
.     

Since usually 𝑛 ≫ 0.01, 

𝑉𝑉𝑎𝑔𝑢𝑒[𝜃𝐶|𝑥] ≈
𝑥(𝑛 − 𝑥)

𝑛3
    (9). 

As for 𝑉[𝜃𝐶|𝑥], the posterior distribution for 𝜃𝐶  is a mixture of two other distributions as shown 

in (2). It’s easy to show (See Supplementary Material S2) that  

𝑉[𝜃𝐶|𝑥] = 𝑤̃𝑉𝑀𝐴𝑃[𝜃𝐶|𝑥] + (1 − 𝑤̃)𝑉𝑅[𝜃𝐶|𝑥] + 𝑤̃(1 − 𝑤̃)(𝜇𝑀𝐴𝑃(𝜃𝐶|𝑥) − 𝜇𝑅(𝜃𝐶|𝑥))
2

, 

where 𝜇𝑀𝐴𝑃(𝜃𝐶|𝑥), 𝜇𝑅(𝜃𝐶|𝑥), 𝑉𝑀𝐴𝑃[𝜃𝐶|𝑥] and 𝑉𝑅[𝜃𝐶|𝑥] are the mean and variance of 𝜃𝐶  

regarding the posterior distribution 𝑓𝑀𝐴𝑃(𝜃𝐶|𝑥) and 𝑓𝑅(𝜃𝐶|𝑥), respectively.  

Figure 2(A) shows the EHSS for each method. Note that as EHSS’s are estimated, they could be 

negative. Using the MAP method, EHSS is around 100 when 𝜃𝐶  is less than 0.65 and decreases 

to 58 when 𝜃𝐶  increases to 0.85. This decrease trend is driven by the numerator 𝑉𝑉𝑎𝑔𝑢𝑒[𝜃𝐶|𝑥] of 

(8), which achieves its maximum when 𝜃𝐶=0.5 (see (9)) and decreases when 𝜃𝐶  shifts away from 

0.5. Unlike the MAP method which resulted in a maximum EHSS when 𝜃𝐶=0.55, both the rMAP 

method and the EB-rMAP method achieve its maximum EHSS when 𝜃𝐶=0.65, i.e. when current 

data is congruent with the historical data. When 𝜃𝐶  differs from the observed 𝜃 (0.65) based on 

historical data, EHSS’s based on both the rMAP method and the EB-rMAP method decrease. 

This illustrates the robustness of these two methods in handling data conflict. More specifically, 

when 𝜃𝐶 = 0.65 EHSS is approximately 70 using the EB-rMAP method. This is close to the 

EHSS of using the rMAP method with 𝑤 = 0.5.  

3.3 Bias 
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By definition,  

𝐵𝑖𝑎𝑠 = 𝐸[𝜃𝐶] − 𝜃𝐶     (10) 

In Bayesian framework, 𝜃𝐶  is taken as the mean of the posterior distribution of 𝜃𝐶 , i.e. 

𝜃𝐶(𝑥) = 𝑤̃(𝑥)𝜃𝐶,𝑀𝐴𝑃(𝑥) + (1 − 𝑤̃(𝑥))𝜃̂𝐶,𝑅(𝑥)    (11) 

where 𝑤̃(𝑥) takes values shown in table 2 for each method. In cases where observed data follows 

Binom(𝑛, 𝜃) distribution, and 𝑓0(𝜃) = 𝑤 ∗ 𝐵𝑒(𝜃|𝑎1, 𝑏1) + (1 − 𝑤) ∗ 𝐵𝑒(𝜃|𝑎2, 𝑏2), then  

𝜃𝐶,𝑀𝐴𝑃(𝑥) =
𝑎1 + 𝑥

𝑎1 +  𝑏1 + 𝑛
,   

and 

𝜃𝐶,𝑅(𝑥) =
𝑎2 + 𝑥

𝑎2 +  𝑏2 + 𝑛
.    

Given the probability mass function 𝑝(𝑥|𝜃𝐶) for observed data, 

𝐸[𝜃𝐶] = ∑ 𝜃𝐶(𝑥)𝑝(𝑥|𝜃𝐶)

𝑛 

𝑥=0

    (12) 

By substituting (11) and 𝑤̃(𝑥) in table 2 into (12), 𝐸[𝜃𝐶] can be calculated for each method. Bias 

for each method is then calculated by applying (10) and is plotted in figure 2(B). It can be seen 

that compared with other methods, the EB-rMAP method results in smaller bias consistently 

across wide range of true 𝜃𝐶 . 

3.4 Mean squared error (MSE) 

By definition,  

𝑀𝑆𝐸 = 𝐸[(𝜃̂𝐶 − 𝜃𝐶)2]  

Similar to 𝐸[𝜃𝐶], given the probability mass function 𝑝(𝑥|𝜃𝐶) for observed data, 

𝐸[(𝜃̂𝐶 − 𝜃𝐶)2] = ∑(𝜃𝐶(𝑥) − 𝜃𝐶)2𝑝(𝑥|𝜃𝐶)

𝑛 

𝑥=0

.  
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Figure 2(C) shows the MSE versus the true 𝜃𝐶  for different methods. For the EB-rMAP method, 

MSE is relatively larger than other methods mainly due to the variability introduced by making 

the weight 𝑤 in the prior distribution a random variable instead of a fixed number. However, EB-

rMAP controls the MSE level better when there’s data conflict, e.g. when 𝜃𝐶  is below 0.55 or 

above 0.75 compared with other methods because of the smaller bias of using the EB-rMAP 

method.   

3.5 Type-I error and power 

𝑃[𝑅𝑒𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠] =  ∑ ∑ 𝑝(𝑥|𝜃𝐶)𝑝(𝑥𝑇|𝜃𝑇)𝐼(𝜃𝐶 ≤ 𝜃𝑇)

𝑛

𝑥𝑇

𝑛

𝑥

    (13) 

where  𝐼(𝜃𝐶 ≤ 𝜃𝑇) = 1 when 𝜃𝐶 ≤ 𝜃𝑇  or 0 otherwise. For ease of calculations, 𝐼(𝜃𝐶 ≤ 𝜃𝑇) is 

approximated by randomly generating 1000 data points from the posterior distribution of 𝜃𝐶  and 

𝜃𝑇 given observed 𝑥 and 𝑥𝑇 . The posterior distribution for 𝜃𝑇 was obtained by assuming a vague 

prior 𝐵𝑒(0.01, 0.01). 

Type-I error and power are then calculated by substituting 𝜃𝑇 with 𝜃𝐶  and 𝜃𝐶 + 0.2 respectively 

into (13). Figure 2(E) and 2(F) illustrate the type-I errors and powers using different methods. 

Due to the bias introduced by historical data, type-I errors based on the MAP method, the rMAP 

method and the EB-rMAP method are all below the nominal level 0.025 when the true 𝜃𝐶  is 

below 0.65. Type-I errors could be above 0.025 when the true 𝜃𝐶  is above 0.65. However, there’s 

clear decrease in type-I error using the EB-rMAP method when the true 𝜃𝐶  is beyond 0.75, 

which shows the control of type-I error when using this method. On the contrary, the MAP 

method and the rMAP method show less control over type-I error. Especially when the true 𝜃𝐶  is 

0.8, type-I error based on the MAP method could be as high as 0.25, the type-I error based on the 

rMAP method with 𝑤=0.8 could be as high as 0.1.  
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Similar to the trend of type-I errors, powers using all three methods are below 90% when the true 

𝜃𝐶  is below 0.6, with the EB-rMAP method gives the highest power across all methods 

considered. When the true 𝜃𝐶  is above 0.6, the powers using all three methods are above 90%, 

with the EB-rMAP method gives relatively lower power. These observations are consistent with 

the relative smaller bias of using the EB-rMAP method across the whole range of the true 𝜃𝐶  

considered.      

3.6 Coverage probability 

Coverage probability of a 95% credible interval for 𝜃𝐶  is calculated as 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝜃𝐶) =  ∑ 𝑝(𝑥|𝜃𝐶)𝐼(𝑙(0.025, 𝑥) ≤ 𝜃𝐶 ≤ 𝑢(0.025, 𝑥))

𝑛

𝑥=0

 

where 𝑙(0.025, 𝑥) and 𝑢(0.025, 𝑥) are the lower and upper 2.5% percentile of the posterior 

distribution of 𝜃𝐶 . Figure 2(D) compares the coverage probabilities of the 95% credible intervals 

based on different methods. The common trend observed is that coverage probability is higher 

when 𝜃𝐶  is around the observed 𝜃, i.e. 0.65 based on historical data. This is because 

commensurate historical data enhances the precision of the estimate of 𝜃𝐶 .  Coverage 

probabilities then decrease when 𝜃𝐶  shifts away from 0.65 due to the increased bias caused by 

data conflict. However, the coverage probability based on EB-rMAP will go back to around 0.95 

when 𝜃𝐶  approaches 0.5 or 0.85, whereas coverage probabilities based on MAP or rMAP with 

𝑤 = 0.8 could be as low as below 0.4 or 0.8, respectively. This again shows that the EB-rMAP 

method is more robust than other the MAP method and the rMAP method. 
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Figure 2 Performance metrics of MAP, rMAP, and EB-rMAP methods for historical data 
𝑥0

𝑛0
= 0.65 and 

varying true parameter 𝜃𝐶. (A) Effective historical sample size. (B) Bias. (C) Mean squared error. (D) 

Coverage. (E) Type I error. (F) Power to detect 0.2 difference in response rate. 

 

4. Application to Clinical Studies 

To illustrate the application of the EB-rMAP method, we used 2 clinical trials (Rubinstein et al. 

2001; Wunderink et al. 2003; and Gravestock et al. 2017) comparing two drugs for the treatment 

of nosocomial pneumonia as an example. Table 3 shows the results of the 2 trials for cure rate in 

the clinically evaluable subset of patients.  

Table 3 Cure Rates in Example Clinical Studies 
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Study Cure rate 

Rubinstein (2001) 62/91 (68.1%) 

Wunderink (2003) 111/171 (64.9%) 

The earlier study (Rubinstein 2001) is selected as the historical study, and the (Wunderink 2003) 

study is selected as the ‘current’ study. As it’s observed that 62 patients were cured out of the 

total 91 patients in the historical study, the Beta(62, 29) distribution is chosen as the prior 

distribution (𝑓0,𝑀𝐴𝑃(𝜃)) based on historical data.  

In the current study, there’re 111 patients cured out of the total 171 patients. So, the estimated 

cure rate is 𝜃𝐶 = 0.649. By plugging this into (4), we get 

𝑤 = 𝑝(𝜃𝐶) = 2 ∗ min(𝑝𝑏𝑒𝑡𝑎(0.649, 62, 29), 1 − 𝑝𝑏𝑒𝑡𝑎(0.649, 62, 29)) = 0.50 

where 𝑝𝑏𝑒𝑡𝑎(𝑥, 𝑎, 𝑏) is the cumulative probability function for the Beta(a, b) distribution. 

Let 𝑓0,𝑅(𝜃) = 𝐵𝑒𝑡𝑎(1, 1) as suggested in (Schmidli et al. 2014), then by (5) 

𝑓0,𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃) = 0.50 ∗ 𝐵𝑒𝑡𝑎(62, 29) + 0.50 ∗ 𝐵𝑒𝑡𝑎(1, 1) 

By (6) and (7), the posterior distribution is 

𝑓𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃) = 𝑤̃𝐵𝑒𝑡𝑎(173, 89) + (1 − 𝑤̃)𝐵𝑒𝑡𝑎(112, 61), 

where 

𝑤̃ =  

𝑤 ∗ 𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝑤 ∗ 𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤) ∗ 𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

=

0.5 ∗ 𝐵(62 + 111, 29 + 171 − 111)
𝐵(62, 29)

0.5 ∗ 𝐵(62 + 111, 29 + 171 − 111)
𝐵(62, 29)

+
0.5 ∗ 𝐵(1 + 111, 1 + 171 − 111)

𝐵(1, 1)

= 0.85. 

Inferences about parameter 𝜃 can then be performed based on its posterior distribution 

𝑓𝐸𝐵−𝑟𝑀𝐴𝑃(𝜃) = 0.85 ∗ 𝐵𝑒𝑡𝑎(173, 89) + 0.15 ∗ 𝐵𝑒𝑡𝑎(112, 61).  
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Since the effective historical sample size, 𝐸𝐻𝑆𝑆(𝑥) depends on the current observed data, a 

natural application of the EB-rMAP method is in adaptive designs, where the interim data from a 

current study can be used to estimate 𝐸𝐻𝑆𝑆(𝑥), and the sample size for the post-interim part of 

the current study can be adjusted according to 𝐸𝐻𝑆𝑆(𝑥). More specifically, at the interim 

analysis, by applying the observed data into (8), the effective sample size (𝐸𝐻𝑆𝑆(𝑥)) contributed 

by the historical data can be calculated. Assume 𝑛𝐶  was the original planned sample size for the 

control arm, then the total sample size for the control arm can be reduced to 𝑛𝐶 − 𝐸𝐻𝑆𝑆(𝑥). 

Depending on the sample size 𝑛𝐶,𝐼𝐴  in the control arm by interim analysis, the post-interim 

sample size for the control arm can be calculated as max(0, 𝑛𝐶 − 𝐸𝐻𝑆𝑆(𝑥) − 𝑛𝐶,𝐼𝐴). 

 

5. Discussions 

Robust meta-analytic-predictive priors provide a convenient approach to borrow information 

from historical control data while taking care of data-conflict between historical control data and 

current control data. However, it was not clear how much weight should be assigned to each 

component in the robust MAP priors. In this article, we borrowed the idea of p-value in the 

hypothesis testing setup and proposed an EB approach to estimate this weight by comparing the 

parameter estimate based on current data versus the MAP prior distribution for the parameter of 

interest.  

On the one hand, this EB-rMAP method complemented the original rMAP method by providing 

an interpretable choice for the weight parameter in the mixture prior distribution. More 

importantly, we have shown that using the EB-rMAP method, the bias caused by data conflict 

can be further reduced compared with using the robust MAP priors or the MAP priors. As a 

result, type-I errors are better controlled using the EB-rMAP method. A downside of using this 
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EB approach is that when the data-conflict is subtle, the EB-rMAP method resulted in relatively 

larger MSE. This is caused by extra variability introduced by making the weight vary along with 

observed data instead of fixed. Considering that controlling type-I errors is of most concern in 

borrowing historical data in a regulatory setting and the power is comparable or higher using the 

EB-rMAP method compared with using other competing methods, this tradeoff in larger MSE is 

acceptable.  

It’s worth to notice that the proposed p-value like approach is not the unique choice of the weight 

for the rMAP prior. However, weight in our proposed method shares a similar interpretation as 

that of the well-known p-value concept, so it would be easier to be accepted by a wider group of 

practitioners. Compared with other methods, e.g. the elastic MAP prior method (Jiang et al. 

2021), our method is more straightforward and computationally less complex. 

In addition, in this article the EB-rMAP method was illustrated using binary endpoint that 

follows binomial distribution. However, it is readily generalizable to endpoints follow other 

distributions e.g. normal distribution.  
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Supplementary Materials 

S1. 

Assume 𝑋~𝐵𝑖𝑛𝑜𝑚(𝑛; 𝜃); prior distribution for 𝜃 is 𝑓0(𝜃) = 𝑤𝐵𝑒(𝜃|𝑎1, 𝑏1) + (1 − 𝑤)𝐵𝑒(𝜃|𝑎2, 𝑏2), 

then posterior distribution for 𝜃 will be: 

𝑓(𝜃|𝑋 = 𝑥) =
𝑓0(𝜃)𝐿(𝑥|𝜃; 𝑛)

∫ 𝑓0(𝜃)𝐿(𝑥|𝜃; 𝑛)𝑑𝜃
 

=
[𝑤𝐵𝑒(𝜃|𝑎1, 𝑏1) + (1 − 𝑤)𝐵𝑒(𝜃|𝑎2, 𝑏2)]𝐿(𝑥|𝜃; 𝑛)

∫[𝑤𝐵𝑒(𝜃|𝑎1, 𝑏1) + (1 − 𝑤)𝐵𝑒(𝜃|𝑎2, 𝑏2)]𝐿(𝑥|𝜃; 𝑛)𝑑𝜃
 

=

𝑤
𝐵(𝑎1, 𝑏1)

𝜃𝑎1+𝑥−1(1 − 𝜃)𝑏1+𝑛−𝑥−1 +
1 − 𝑤

𝐵(𝑎2, 𝑏2)
𝜃𝑎2+𝑥−1(1 − 𝜃)𝑏2+𝑛−𝑥−1

𝑤
𝐵(𝑎1, 𝑏1) ∫ 𝜃𝑎1+𝑥−1(1 − 𝜃)𝑏1+𝑛−𝑥−1𝑑𝜃 +

1 − 𝑤
𝐵(𝑎2, 𝑏2) ∫ 𝜃𝑎2+𝑥−1(1 − 𝜃)𝑏2+𝑛−𝑥−1𝑑𝜃

 

=

𝑤
𝐵(𝑎1, 𝑏1)

𝜃𝑎1+𝑥−1(1 − 𝜃)𝑏1+𝑛−𝑥−1 +
1 − 𝑤

𝐵(𝑎2, 𝑏2)
𝜃𝑎2+𝑥−1(1 − 𝜃)𝑏2+𝑛−𝑥−1

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤)𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

 

=

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝐵𝑒(𝜃|𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥) +
(1 − 𝑤)𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)
𝐵𝑒(𝜃|𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤)𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

, 

where  

𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)
, 

and 𝐵𝑒(𝜃|𝑎, 𝑏) is the Beta distribution with parameters a and b for 𝜃. 

Let  

𝑤̃ =  

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

𝑤𝐵(𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥)
𝐵(𝑎1, 𝑏1)

+
(1 − 𝑤)𝐵(𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥)

𝐵(𝑎2, 𝑏2)

, 

then the posterior distribution of 𝜃 can be re-written as 

𝑓(𝜃|𝑋 = 𝑥) = 𝑤̃𝐵𝑒(𝜃|𝑎1 + 𝑥, 𝑏1 + 𝑛 − 𝑥) + (1 − 𝑤̃)𝐵𝑒(𝜃|𝑎2 + 𝑥, 𝑏2 + 𝑛 − 𝑥). 
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As an example, given 𝑛 = 30, 𝑎1 = 65, 𝑏1 = 35, 𝑎2 = 1, 𝑏2 = 1, 𝑤 = 0.3, 0.5, and 0.8, plot of 𝑤̃ versus 

𝑥/𝑛 is as below.  

 

 

In general, when the prior distribution is a mixture of K (K ≥ 2) distributions, e.g. 𝑓0(𝜃) =

∑ 𝑤𝑘
𝐾
𝑘=1 𝐵𝑒(𝜃|𝑎𝑘 , 𝑏𝑘), then  

𝑓(𝜃|𝑋 = 𝑥) = ∑ 𝑤̃𝑘
𝐾
𝑘=1 𝐵𝑒(𝜃|𝑎𝑘 + 𝑥, 𝑏𝑘 + 𝑛 − 𝑥), with 

𝑤̃𝑘 =  

𝑤𝑘𝐵(𝑎𝑘 + 𝑥, 𝑏𝑘 + 𝑛 − 𝑥)
𝐵(𝑎𝑘 , 𝑏𝑘)

∑
𝑤𝑘𝐵(𝑎𝑘 + 𝑥, 𝑏𝑘 + 𝑛 − 𝑥)

𝐵(𝑎𝑘 , 𝑏𝑘)
𝐾
𝑘=1

. 

 

S2.  

By (2) in main body of this article, 

𝑓𝑟𝑀𝐴𝑃(𝜃|𝑥) = 𝑤̃𝑓𝑀𝐴𝑃(𝜃|𝑥) + (1 − 𝑤̃)𝑓𝑅(𝜃|𝑥). 

By linearity of expectations, 

𝐸[𝜃|𝑥] = 𝑤̃𝜇𝑀𝐴𝑃
(𝜃|𝑥) + (1 − 𝑤̃)𝜇𝑅

(𝜃|𝑥), 

𝐸[𝜃2|𝑥] = 𝑤̃𝐸𝑀𝐴𝑃 [𝜃2
|𝑥] + (1 − 𝑤̃)𝐸𝑅 [𝜃2

|𝑥]. 
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By definition 𝑉[𝜃|𝑥], 

𝑉[𝜃|𝑥] = 𝐸[𝜃2|𝑥] − 𝐸[𝜃|𝑥]2. 

Substitute 𝐸[𝜃|𝑥] and 𝐸[𝜃2|𝑥] into the above formula, 

𝑉[𝜃|𝑥] = 𝐸[𝜃2|𝑥] − 𝐸[𝜃|𝑥]2

=  𝑤̃𝐸𝑀𝐴𝑃[𝜃2|𝑥] + (1 − 𝑤̃)𝐸𝑅[𝜃2|𝑥] − (𝑤̃𝜇𝑀𝐴𝑃(𝜃|𝑥) + (1 − 𝑤̃)𝜇𝑅(𝜃|𝑥))
2

= 𝑤̃𝑉𝑀𝐴𝑃[𝜃|𝑥] + 𝑤̃𝜇𝑀𝐴𝑃
2 (𝜃|𝑥) + (1 − 𝑤̃)𝑉𝑅[𝜃|𝑥] + (1 − 𝑤̃)𝜇𝑅

2 (𝜃|𝑥) − 𝑤̃2𝜇𝑀𝐴𝑃
2 (𝜃|𝑥)

− (1 − 𝑤̃)2𝜇𝑅
2 (𝜃|𝑥) − 2𝑤̃(1 − 𝑤̃)𝜇𝑀𝐴𝑃(𝜃|𝑥)𝜇𝑅(𝜃|𝑥)

= 𝑤̃𝑉𝑀𝐴𝑃[𝜃|𝑥] + (1 − 𝑤̃)𝑉𝑅[𝜃|𝑥] + 𝑤̃(1 − 𝑤̃)𝜇𝑀𝐴𝑃
2 (𝜃|𝑥) + 𝑤̃(1 − 𝑤̃)𝜇𝑅

2 (𝜃|𝑥)

− 2𝑤̃(1 − 𝑤̃)𝜇𝑀𝐴𝑃(𝜃|𝑥)𝜇𝑅(𝜃|𝑥)

= 𝑤̃𝑉𝑀𝐴𝑃[𝜃|𝑥] + (1 − 𝑤̃)𝑉𝑅[𝜃|𝑥] + 𝑤̃(1 − 𝑤̃)(𝜇𝑀𝐴𝑃(𝜃|𝑥) − 𝜇𝑅(𝜃|𝑥))
2
 

When 𝜃 = 𝜃𝐶 , 

𝑉(𝜃𝐶|𝑥) = 𝑤̃𝑉𝑀𝐴𝑃[𝜃𝐶|𝑥] + (1 − 𝑤̃)𝑉𝑅[𝜃𝐶|𝑥] + 𝑤̃(1 − 𝑤̃)(𝜇𝑀𝐴𝑃(𝜃𝐶|𝑥) − 𝜇𝑅(𝜃𝐶|𝑥))
2
  

In general, when  

𝑓𝑟𝑀𝐴𝑃(𝜃𝐶|𝑥) = ∑ 𝑤̃𝑖𝑓𝑖(𝜃𝐶|𝑥)

𝐾

𝑖=1

 

with ∑ 𝑤̃𝑖
𝐾
𝑖=1 = 1, 

then, 

𝑉[𝜃𝐶|𝑥] = ∑ 𝑤̃𝑖𝑉𝑖[𝜃𝐶|𝑥]

𝐾

𝑖=1

+ ∑ ∑ 𝑤̃𝑖𝑤̃𝑖′(𝜇𝑖(𝜃𝐶|𝑥) − 𝜇𝑖′(𝜃𝐶|𝑥))
2

.

𝐾

𝑖′=1,𝑖′≠𝑖 

𝐾

𝑖=1
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