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Abstract

This paper demonstrates how two different methods used to calculate population-level mobility

from Call Detail Records (CDR) produce varying predictions of the spread of epidemics

informed by these data. Our findings are based on one CDR dataset describing inter-district

movement in Ghana in 2021, produced using two different aggregation methodologies. One

methodology, “all pairs,” is designed to retain long distance network connections while the other,

“sequential” methodology is designed to accurately reflect the volume of travel between

locations. We show how the choice of methodology feeds through models of human mobility to

the predictions of a metapopulation SEIR model of disease transmission. We also show that this

impact varies depending on the location of pathogen introduction and transmissibility. For

central locations or highly transmissible diseases, we do not observe significant differences

between aggregation methodologies on the predicted spread of disease. For less transmissible

diseases or those introduced into remote locations, we find that the choice of aggregation

methodology influences the speed of spatial spread as well as the size of the peak number of

infections in individual districts. Our findings can help researchers and users of epidemiological

models to understand how methodological choices at the level of model inputs may influence

the results of models of infectious disease transmission, as well as the circumstances in which

these choices do not alter model predictions.

Author Summary

Predicting the sub-national spread of infectious disease requires accurate measurements of

inter-regional travel networks. Often, this information is derived from the patterns of mobile

device connections to the cellular network. This travel data is then used as an input to

epidemiological models of infection transmission, defining the likelihood that disease is

“exported” between regions. In this paper, we use one mobile device dataset collected in Ghana

in 2021, aggregated according to two different methodologies which represent different aspects

of inter-regional travel. We show how the choice of aggregation methodology leads to different

predicted epidemics, and highlight the conditions under which models of infection transmission

may be influenced by methodological choices in the aggregation of travel data used to

parameterize these models. For example, we show how aggregation methodology changes

predicted epidemics for less-transmissible infections and under certain models of human
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movement. We also highlight areas of relative stability, where aggregation choices do not alter

predicted epidemics, such as cases where an infection is highly transmissible or is introduced

into a central location.
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Introduction

The volume of travel between geographic locations is widely used as an input to epidemiological

models of disease transmission. Mobility data provides an approximate representation of the

travel of a population by recording the movement of a sample of individuals. This sample is

typically drawn from the users of a specific mobile network or application. Call Detail Records

(CDR) record mobile device connections to the cellular network and are a common type of

mobility data used in this context.

Metapopulation models (1) informed by CDR mobility data have been widely used to study the

dynamics of infectious diseases including influenza (2), rubella (3), malaria (4,5) cholera (6)

dengue fever (7) Ebola virus disease (8,9), HIV (10) and COVID-19 (11,12). Transmission

models informed by CDR mobility data are particularly useful in low and middle income

countries where there has been a widespread adoption of mobile devices. These data can

address a lack of prior knowledge about inter-regional patterns of travel and in turn, can build

greater capacity for disease surveillance and prediction. Understanding what factors influence

estimates of population mobility will allow for more accurate interpretation of the results of

infectious disease models which rely on human mobility data. In this paper, we focus on factors

introduced at the CDR aggregation stage, where individual records from mobile subscribers are

aggregated to describe population-level mobility.

CDR data used in infectious disease research is typically produced as an aggregated, censored

network describing the volume of travel between pairs of locations in a specified time period.

The aggregation of CDR data transforms sensitive individual-level data into a description of

population-level mobility, thereby reducing the risk of disclosing personally identifiable

information. Aggregation and censoring also reduces the size of a CDR dataset, making it

practical for use in models of population-level infectious disease transmission.

Censoring of aggregated CDR data, where pairs of locations exchanging only a small number of

travellers are removed, may create a sparse network where a significant proportion of the total

network connections are missing. In order to “fill in” these missing connections, mobility models

are trained using external information such as the population sizes and geographic distances

between locations. The parameters of these models are evaluated given observed patterns of

movement from empirical data.
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Modelled mobility informed by empirical CDR data is often used to parameterize metapopulation

models of infectious disease transmission (2). In a metapopulation model, individual epidemics

are modelled among sub-populations in discrete spatial units, with connections between

sub-populations defined by a mobility network. With this construction, the volume of mobility

defines the likelihood that disease will be exported between different locations as a result of

travel.

Previous research has demonstrated how estimates of infectious disease can be altered by the

movement model chosen to represent population mobility, although these movement models are

informed by the same input parameters (13). In our research, we investigate the impact of

differences at the level of inputs to movement models, as well as the influence of the choice of

movement model itself. We show how movement models are sensitive to empirical inputs and

how this sensitivity leads to differing predictions of infection dynamics by subsequent

epidemiological models.

Methodological choices about CDR data aggregation have important implications for the

reliability of infectious disease models informed by human mobility. In our research, we focus on

the extent to which methodological choices used when aggregating CDR data impact estimates

of population mobility (14). We show how, given identical CDR datasets, two common

methodological choices during the aggregation procedure produce different representations of

an empirical movement network. The first is the “all pairs” methodology which retains the long

distance network connections while inflating the number of reported travellers as a

consequence; while the second is the “sequential” methodology which was designed to

accurately reflect the volume of travel between locations but does not include long distance

connections. These methods are implemented because of their low computational complexity in

transforming large individual CDR datasets into useful representations of population-level

movement.

We use CDR data collected by Vodafone Ghana and processed by the Flowminder Foundation

using the open source FlowKit software (15) to investigate the impact of CDR aggregation

methods on estimates of human mobility and subsequently, on the results of modelled infectious

disease dynamics. This data is the result of a partnership between Ghana Statistical Service,
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Ghana Ministry of Health, Ghana Health Service, Vodafone Ghana, and the Flowminder

Foundation (16).

Results

Differences in estimated population movement

We found that the all pairs methodology recorded an average of 2.33 million daily trips while the

sequential methodology recorded 1.35 million trips (41% fewer trips) (Figure 1). Aside from a

higher overall volume of travel, the all pairs network was also more connected than the

sequential network, with 13,523 connections compared to 5,805, a 57% difference. The all pairs

network was also more dense (a comparison of the number of observed connections and the

number of possible connections) compared to the sequential network (0.18 compared to 0.08

for the sequential network) (Table 2). The higher density of the all pairs network is likely a result

of the increased number of trips and the uneven distribution of cell sites in Ghana

(Supplemental Figures 2, 3).

Figure 1. Aggregation methodology increases reported movement with identical
underlying CDR data. The number of recorded trips relative to a) district population and b) the
number of cell sites in a district. c) The all pairs movement network and d) the sequential
movement network.
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All pairs Sequential

Total Connections 13,523 5,805

Daily Trips 2,331,125 1,354,908

Average Degree of a

district

99.8 42.8

Network Density 0.18 0.08

Table 2. Differences in observed movement caused by aggregation methodology.
Differences between two movement networks computed from the same underlying CDR data.

Impact of aggregation on modelled human movement

Overall, each movement model reflected the differences in the empirical networks, with more

connections and daily trips between districts in the all pairs methodology. However, the size of

these differences varied based on the construction of the movement model (Figure 2, Table 2).

The power law gravity model produced a near-fully connected network based on both

aggregation methodologies but a large difference in the number of modelled trips (+46% more

trips in the all pairs network). The exponential gravity model produced a less connected network

overall, with greater differences in the number of connections (+39%), but somewhat smaller

differences in the number of modelled trips (+43%) in the all pairs network. The radiation model

produced smaller differences in the number of trips between aggregation methodologies (+38%

in the all pairs network), but produced a less connected network compared to the power law

gravity model or exponential gravity model (for sequential connections only).
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Figure 2. Empirical and modelled networks informed by different aggregation
methodologies. Comparison of the empirical movement networks (left) and modelled networks
for three types of movement models. Higher numbers of travellers in the all pairs network
translates into a higher number of modelled travellers for all models.

All pairs aggregation Sequential aggregation

Model Connections Daily Trips Connections Daily Trips

Gravity
(Exponential)

22,764 2,639,262 13,979 1,503,146

Gravity (Power) 73,170 3,958,835 73,168 2,137,533

Radiation
(Basic)

16,886 2,148,336 14,184 1,332,434

Table 3. Differences in travel network characteristics by movement model and
aggregation methodology. The difference in the number of modelled connections and daily
trips using different models of human movement. The difference between empirical networks is
reflected in predictions from each movement model.

We compared the modelled movement networks to the underlying empirical networks, finding

that the radiation model had the lowest overall Mean Absolute Percentage Error (MAPE) and

highest R2 values compared to other models, indicating closer fit with the empirical data, but

produced higher Root Mean Squared Error (RMSE) compared to the other models (Table 4).

This likely indicates that the radiation model had better overall fit but introduced large errors for

connections between certain locations. Because models were trained on different underlying
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empirical networks, these measures of model performance cannot be compared between

different aggregation methodologies.

All pairs aggregation Sequential aggregation

Model RMSE MAPE R2 RMSE MAPE R2

Gravity
(Exponenti
al)

764.44 1.72% 0.33 659.74 2.33% 0.24

Gravity
(Power)

742.73 1.21% 0.51 655.94 1.80% 0.41

Radiation
(Basic)

1,292.40 0.95% 0.65 725.92 0.91% 0.68

Table 4. Evaluation of movement models for different aggregation methodologies. The
Root Mean Squared Error (RMSE), Mean Average Percentage Error (MAPE), and R2 comparing
modelled movement to the empirical movement networks. Note that because models were
informed by different empirical networks created from different aggregation methodologies, the
evaluation cannot be compared between methodologies.

We compared the empirical networks and modelled networks, and calculated differences

between aggregation methodologies for both the empirical and modelled networks predicted by

each movement model (Figure 3, Supplemental Figures 4, 5, 6). Overall, we observe greater

difference in the number of travellers recorded by different aggregation methodologies with

respect to distance, as the length of connections increases, there is greater difference between

the empirical networks. For the predictions of movement models, the difference between

aggregation methodologies reflects the underlying construction of each model. This is especially

evident in both gravity models (Figures 3b and 3c, Supplemental Figures 4d and 5d), whereas

the difference in the radiation model (Figure 3d, Supplemental Figure 6d) more closely

approximates the difference observed in the empirical networks.
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Figure 3. Comparison of empirical and modelled travel networks by aggregation
methodology. The choice of aggregation methodology results in lower number of travellers in
the sequential network in a) the empirical network, b) the exponential gravity model, c) the
power law gravity model, and d) the radiation model, thereby leading to an underestimation of
the number of travellers compared to the all pairs network.

Results of aggregation methodology on an SEIR metapopulation model

We found that differences in aggregation methodology influenced the predictions of the

metapopulation model (Figure 4). In certain cases, the use of the all pairs aggregation

methodology resulted in an earlier epidemic peak and a higher peak number of infections

compared to the sequential network. The exponential gravity model, for example, produced

earlier epidemic peaks and a lower peak number of infections based on the all pairs aggregation

methodology compared to the sequential methodology (Figure 4, Supplemental Figure 7).

However, this finding was not consistent for all movement models: the power law gravity model

(Supplemental Figure 8) produced largely identical predicted epidemics irrespective of the

aggregation methodology, while the radiation model (Supplemental Figure 9) produced a

smaller difference in epidemics compared to the exponential gravity model. This difference likely

indicates the differing importance of connections and volumes of travel in the modelled

networks. The exponential gravity and radiation models had a large number of missing

connections compared to the power law gravity model - indicating that connections between
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locations are important for introducing the infection, where these introductions begin local

chains of transmission.

Figure 4. Comparison of modelled national epidemics by movement model. The difference

in the national epidemic modelled for different movement model constructions and different

values of . Epidemics were modelled 10 times for each combination of aggregation𝑅
0

methodology, movement model, and . Infection was introduced into the capital city of Accra.𝑅
0

We found that the difference between aggregation methodologies was highly sensitive to the

transmissibility and the location of infection introduction (Figure 5, Supplemental Figures 10, 11,

12). There was little difference between the timing and size of epidemics caused by aggregation

methodology when an infection was more transmissible or was introduced into central districts in

the middle and southern parts of Ghana, which include the largest cities in Ghana: Kumasi and

Accra respectively. However, the choice of aggregation methodology produced a greater

difference in the progression of the modelled epidemic as infections were introduced into more

rural locations, particularly in the Northern parts, or were less transmissible ( = 1.25, or =𝑅
0

𝑅
0

1.5).
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Figure 5. Difference between the peak timings of national epidemics for different
movement models. Comparison of epidemic progression between aggregation methodologies
for an epidemic with = 1.5 seeded in each district. Negative values indicate an earlier peak in𝑅

0
the model informed by the all pairs network. Epidemics informed by different models of human
movement show how differences in aggregation methodology vary spatially as a result of
aggregation methodology and because of the choice of movement model.

We found that the choice of movement model had a notable effect on the timing of national

epidemic peaks between aggregation methodologies. This reflects the differences in the

underlying construction of each movement model and their subsequent impacts on disease

exportation between districts. The exponential gravity model, for example, produced a more

sparse movement network than the power law gravity model, which led to a spatial regularity in

the timing of the epidemic peak because the effect of aggregation has been exaggerated by the

modelled travel networks. By contrast, the power law gravity model, which produced a more

connected network overall, produced more spatial heterogeneity in difference between epidemic

peaks, particularly for less transmissible infections ( = 1.25) (Supplemental Figure 11). The𝑅
0

arrival of infection based on the sequential aggregation methodology in certain districts may

reflect the greater degree of randomness in the exportation of infections in a well-connected

network. The radiation model showed less spatial heterogeneity, with delayed epidemics in the

Northern areas of Ghana and around Lake Volta for less transmissible infections ( = 1.25)𝑅
0

(Supplemental Figure 12).
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Discussion

In this paper, we demonstrate the way that choices in the aggregation of CDR data can

influence the results of models of human mobility and predictions of the spread of epidemics

informed by modelled human mobility. We show how two aggregation methodologies used to

respond to the COVID-19 pandemic produce different predicted epidemics in Ghana. The all

pairs methodology, which produces a more densely connected network with higher volumes of

travel, tends to produce an earlier epidemic with a higher peak number of infections. We show,

however, that the difference between methodologies is sensitive to the transmissibility of

infections, the location of infection introduction, and the choice of epidemic model. For a highly

transmissible infection ( = 3), or an infection introduced into an area of dense travel𝑅
0

connections, there is little difference between aggregation methodologies because infection is

spread rapidly between locations, beginning local chains of transmission which dominate the

dynamics of a predicted epidemic. However, for a less transmissible infection ( = 1.5 or 1.25),𝑅
0

or for infection introduced into areas poorly connected to the travel network, infections spread

more gradually, leading to a greater importance of the travel network and hence, greater

importance of the aggregation methodology used to create that travel network.

A large quantity of research has used CDR data as an input to transmission models for a range

of infectious diseases in different national contexts. COVID-19 provided a new challenge for the

use of CDR data because of the need to provide near-real time insights about population

movement in a way that used limited computational resources to produce aggregated estimates

of population movement. It is in this context that the aggregation methodologies considered in

this paper were developed, balancing the need to describe population movements with a need

for rapid, low-complexity methods for their generation (17). This need is particularly salient in

low and middle income country contexts where computational resources are often constrained

and there is limited capacity for disease surveillance.

The choice of CDR aggregation methodology is typically an initial step in modelling disease

transmission, and as such, there is little research concerning the impact of these apparently

minor methodological choices on the predictions of epidemiological models. Previously

published research has used a variety of methods to aggregate CDR data, from methods

aggregating call volumes between pairs of locations, as addressed in this paper, to methods
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detecting changes in home locations defined by common presence (7) or night-time location

(6,18). Other research has used hybrid methods, such as recording travel to all administrative

districts relative to device’s home location (19). Ultimately, the choice of aggregation

methodology, as well as the spatial and temporal units used for aggregation, should be chosen

based on a specific hypothesis in agreement with available understanding of underlying

mechanisms of disease transmission. Future research can help to identify the circumstances,

such as less transmissible infection or transmission in rural areas, under which methodological

choices at the stage of CDR aggregation can produce variations in the predictions of epidemic

models.

Because this is a novel study, we are unable to confirm the external validity of our findings

across other contexts. We therefore call for further studies that use the same methodology to

generate wider analysis of disease dynamics in sub-Saharan African countries other than

Ghana to assess whether the adoption of CDRs as inputs to epidemiological models will

produce similar challenges as those found in the present study. However, we argue that our

study is internally valid as extensive attempts were made to minimise any forms of systematic

error that could potentially occur in this modelling exercise by accounting for variations in

infection transmissibility, different models of human movement, and sensitivity to the location of

infection introduction.

This paper focuses on the impact of methodological choices during the aggregation of CDR

records. While these choices may result in important differences in observed patterns of

movement, there are many other factors which influence the quantity and structure of movement

captured by aggregated CDR data. These factors include uneven patterns of mobile phone

usage and differences in individual travel behaviour. Some factors, like access to mobile devices

or transportation may be further related to demographic characteristics like socio-economic

status.

Technical factors may also alter the set of mobile devices included in CDR data. One such

example is the uneven distribution of cell towers resulting in areas with minimal network

connection. Mobile devices in these areas may be omitted from CDR data or may have a lower

probability of generating CDRs regardless of the movement or activity of a given device. Cell

towers are unevenly distributed in Ghana, clustering in population centres and along
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transportation networks. Cell tower density is also correlated with population, meaning that

samples of CDR data may overrepresent devices located in more populous areas.

Despite the numerous factors which influence the movement behaviour represented by CDR

data, we consider that the accelerating number of travellers relative to cell tower density

observed in this study points to the influence of a considerably small methodological change on

the level of movement in our dataset. Other factors do not influence the difference between the

empirical networks or subsequent model outputs because both aggregates were produced from

the same underlying CDRs. The influence of the aggregation methodology on observed levels

of movement is further supported by the association between the observed volume of

movement and the theoretical prediction of movement volume.

We have shown that aggregation methodology impacts the results of movement and

epidemiological models informed by CDR data and that certain aspects of these models are

more sensitive to the effect of CDR aggregation. While our findings should increase

researchers’ caution when using CDR aggregates, this source of mobility data remains

invaluable for understanding patterns of human migration, particularly in low and middle income

countries like Ghana. Moreover, CDR aggregates are widely used in operational settings, as the

inputs to movement and epidemiological models and to inform government decision makers.

The task of human movement researchers will be to continue to improve understanding of how

these data can be used to reliably describe population movements, in spite of the shortcomings

of CDR data.

Materials & Methods

We used Call Detail Record (CDR) data from Vodafone Ghana, a mobile network operator

which collects CDRs from subscribers to calculate billing charges. All network transactions

(calls, text messages, data usage) are recorded by the CDR data, which capture the sim

identifier and the identifier of the cell tower to which a device is connected. The approximate

location of a device can be estimated using the known location of the connected cell towers.

“Movement” of devices is derived from the sequence of locations in which a mobile device

connects to a cell tower. We use CDR data aggregated to the level of districts (Administrative

Level 2). There is no information on the position of a mobile device if it does not connect to the

cellular network in a certain district during transit.
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CDRs are aggregated to preserve the privacy of individual mobile devices and to limit the

amount of storage and computational resources required to analyse CDR data. Processing

CDR aggregates requires efficient algorithms for reducing billions of records to usable estimates

of population movements. These algorithms rely on methodological choices that reduce the

computational overhead of aggregation and allow for efficient reduction of CDR data into

origin-destination (OD) matrices.

We compared one CDR dataset which was aggregated using two common aggregation

methodologies: “all pairs” and “sequential” aggregation (14). Given the movement of one device

between three locations A, B, and C, from A -> B, and B -> C, these methodologies produce a

different number of OD pairs (Table 1).

Aggregation Origin-Destination Pairs

All pairs (A -> B) (B -> C) (A -> C)

Sequential (A -> B) (B -> C)

Table 1. The results of different CDR aggregation methodologies. The OD pairs produced
for the movement of a single mobile device between three locations A, B, C from A -> B and B
-> C. The sequential methodology produces a linear number of OD pairs while the number of
pairs accelerates as the number of locations increases in the all pairs methodology.

In Table 1 the all pairs methodology records a greater number of network connections for travel

between a series of locations, which may overestimate the volume of travel in a network.

However, the all pairs methodology more accurately represents long distance connections

(journeys by a single individual passing through multiple locations).

Generally, using the all pairs methodology, the number of connections e in a network is a

nonlinear function of the number of locations n (eq. 1).

(eq. 1)𝑒 =  𝑛 (𝑛 − 1)
2

With the sequential methodology, the number of connections e is a linear function of the number

of locations n (eq. 2).
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(eq. 2)𝑒 =  (𝑛 −  1)

An increase in the number of locations n will accelerate the number of connections e (and

thereby increase the density of the network) in the all pairs network and will result in a constant

relationship between locations n and connections e in the sequential network.

CDR Mobility Data

We used CDR mobility data collected by Vodafone Ghana and aggregated by the FlowMinder

Foundation. This data was aggregated into districts (Administrative Level 2 – 271 districts). The

boundaries of districts were defined by the government of Ghana. CDRs were assigned to an

area based on the location of cell clusters within each region. A cell cluster is the location of a

cell tower or the centroid location of a “cluster” of cell towers. In areas with a high density of cell

towers, device connections may be “balanced” between multiple towers depending on network

traffic and signal strength (20). This may introduce uncertainty for devices connecting to the

cellular network on the boundaries of administrative areas.

We used two aggregated versions of the same underlying CDR dataset collected between

February 2021 and September 2021 which recorded the daily travel between a set of

origin-destination pairs (pi, pj) for each location p within a set of locations P. The number of

travellers between locations w was defined as the total number of connections between pairs of

locations. Pairs of locations with w less than 15 were removed prior to data sharing to prevent

identification of individual mobile devices. The matrix of OD pairs forms a weighted directed

acyclic graph of travel between locations (no information was recorded about the number of

devices remaining in a given location). We calculated the average number of travellers between

pairs of locations across the data collection period for use in our analysis.

Population Data

To define the population in administrative areas, we used 2020 population data from the

WorldPop project (21). WorldPop population data combines population counts from national

censuses with remote sensing data using ​​Random Forest-based dasymetric redistribution to

estimate the population count across a surface of 100m2 cells. We used constrained population
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estimates, meaning that population counts match population counts from the Ghana Statistical

Service, but were not adjusted to match UN national population estimates. We aggregated

population estimates to administrative areas in Ghana using a spatial intersection of

administrative boundaries with the population surface.

Movement Models

The empirical movement matrices used in this study included missing values where travel

between pairs of locations did not exceed the censoring threshold of 15 trips during the study

period. To fill in these missing connections between locations, we used two common

formulations of gravity models to model the movement network for connections between all

locations, and the radiation model. This comparison allowed us to assess sensitivity of our

findings to the choice of mobility model.

First, we used a power law gravity model defining the number of trips between locations i𝜆
𝑖,𝑗

and j as a function of the population size of the origin , the destination , and the distance𝑁
𝑖

𝑁
𝑗

between the origin and destination (eq. 3).𝑑
𝑖,𝑗

(eq. 3)𝜆
𝑖,𝑗

 =  𝜃 *  (
𝑁

𝑖
𝜔

1𝑁
𝑗
𝜔

2

𝑑
𝑖,𝑗

𝛾 )

In this model, travel between locations is defined by four parameters: a scaling parameter 𝜃, and

weight parameters , , and 𝛾, which alter the contributions of origin populations, destination𝜔
1

𝜔
2

populations, and distance respectively.

Second, we used an exponential gravity model defining the number of trips between𝜆
𝑖,𝑗

locations i and j using four parameters: a scaling parameter 𝜃, and weight parameters , ,𝜔
1

𝜔
2

and 𝛿, which alter the contributions of origin populations, destination populations, and distance

respectively (eq. 4).

(eq. 4)𝜆
𝑖,𝑗

 =  𝜃 *  (
𝑁

𝑖
𝜔

1𝑁
𝑗
𝜔

2

𝑒
𝑑𝑖,𝑗

𝛿

)
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Finally, we used a basic radiation model defining the number of trips between locations i and𝜆
𝑖,𝑗

j as a function of the population size of the origin , the destination , the total number of trips𝑁
𝑖

𝑁
𝑗

leaving the origin and the population surrounding the origin defined by the population𝑀
𝑖

𝑠
𝑖,𝑗

within the radius (eq. 5).𝑟
𝑖,𝑗

(eq. 5)𝜆
𝑖,𝑗

 =  𝑀
𝑖 

𝑁
𝑖
𝑁

𝑗

(𝑁
𝑖
 + 𝑠

𝑖,𝑗
) (𝑁

𝑖
 + 𝑁

𝑗
 + 𝑠

𝑖,𝑗
)

We fitted all mobility models using the Mobility (22) and rjags (23) R packages. Both gravity

models were fitted to the empirical movement matrices using Markov Chain Monte Carlo

(MCMC) parameter estimation. Both gravity models were fitted as likelihood functions with the

number of trips specified as a Poisson distribution; whereas the weak informative prior

distributions for the parameters 𝜃, , and ,  were defined by the Gamma distribution with𝜔
1

𝜔
2

shape and scale of 0.001 for parameter 𝜃 and with shape and scale of 1 for , and . The𝜔
1

𝜔
2

prior distribution of the parameter 𝛿 was modelled using a normal distribution truncated at 0 with

mean and standard deviation calculated from the distance matrix. MCMC training was

conducted using 4 chains of 50,000 samples each, with a burn-in of 10,000 samples. We

assessed convergence using the convergence diagnostic, requiring a threshold where all𝑅

parameters were deemed valid with less than 1.05.𝑅

We compared empirical and modelled networks by the total number of edges (connections) in

the network, the total number of network trips (the sum of weights along each edge), the

average node degree (the average number of edges connected to each node), and the network

density (the ratio of the number of network edges compared to the number of possible edges).

We also compared the performance of each model against the empirical data using Root Mean

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and R2. We assessed the

quality of model predictions by identifying the model with the lowest RMSE and MAPE, and

highest R2, indicating a close fit with the empirical travel network while minimising model error.

Epidemiological Modelling
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We modelled the spread of infection using a stochastic metapopulation SEIR model (24–26).

The progression of the epidemic was modelled in discrete time intervals in individual

subpopulations and infectious individuals were exported between subpopulations relative to the

weight of the movement network connecting these populations. In the model, the probability that

infections will be exported between subpopulations reflects the size of the epidemic within

subpopulations as well as the volume of connections to other subpopulations. We compared the

results of a model in which we vary the CDR aggregation method, and all other model

parameters remain constant.

We used a stochastic SEIR model implemented in the R package SimInf (26). This model

simulates an epidemic by modelling the transition of individuals in a population between

compartments (Susceptible, Exposed, Infected, Removed). The model is stochastic, meaning

that transitions between compartments are modelled through a random count measure and

infection states for each subpopulation form a Continuous Time Markov Chain. Population

movements are scheduled during model compilation, where the number of individuals travelling

between subpopulations is defined by the average number of individuals travelling between

pairs of locations per day across the study period. The probability of travel between

subpopulations is equal across compartments.

Our model assumes constant rates of replacement (births) and mortality (deaths) within

subpopulations during the study period. Although this assumption does not reflect real

population characteristics, there is not sufficient data to estimate the rate of population change

in Ghana during the study period. The model also assumes a uniform contact rate among

members of a subpopulation. In reality, within-population contact rates vary relative to age

structure and other demographic factors which are not captured by our model. The inclusion of

some age-structure adjustment within population-units, as opposed to population units only,

would reduce the uncertainty and fine-tune the predictions from this analysis.

To assess whether CDR aggregation methodology impacts modelled infection spread, we run

the model for three values of : 1.25, 1.5, 3.0. is an epidemiological parameter which𝑅
0

𝑅
0

defines the average number of infections arising from a single infection in a fully susceptible

population. We chose these values of to simulate a COVID-19 type infection with between𝑅
0

𝑅
0
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1 and 3. Because is not a model input parameter, we vary the transmission rate β, given a𝑅
0

constant ​​recovery rate, γ.

We compare the influence of an introduction location by introducing 100 index infections into all

districts in Ghana. Because our model is stochastic, meaning that the results of the model vary

in part on random probabilities that individuals will transition between compartments through

time, we also performed a sensitivity analysis for 5 districts, introducing index infections into 5

representative locations in Ghana’s 3 major metropolitan areas: Accra (Greater-Accra Region),

Kumasi (Ashanti Region), Tamale (Northern Region), and two rural districts: Lawra (Upper West

Region) and Nkwanta South (Oti Region) (Supplemental Figure 1) for which we sample 10

introductions to assess the stability of the predicted spread of infection.

Data Availability

CDR mobility data used in this study was provided by Vodafone Ghana in partnership with the

Flowminder Foundation and Ghana Statistical Service. This data is available to researchers by

application. Use of this data was approved by the LSHTM Research Committee (Ref: 22477)

and the Noguchi Memorial Institute of Medical Research (Ref: 048/20-21). Population data was

publicly available 2020 constrained population counts in 100m grid cells (not UN-adjusted),

downloaded from the WorldPop project. Code used in this study is available from:

https://github.com/hamishgibbs/ghana_cdr_aggregation.
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