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Abstract

Intra-Operative Hypotension (IOH) is a haemodynamic abnormality that is commonly observed in operating theatres
following general anesthesia with associated life-threatening post-operative complications. Here, we apply Deep Learning
(DL) and more specifically Long Short Term Memory (LSTM) models across different patient groups for the classification
of IOH events five minutes before onset, using Electronic Health Records (EHR) and time-series intra-operative data of
604 patients that had undergone colorectal surgery. K-means clustering was used to group patients based on pre-clinical
data. As part of a sensitivity analysis, the model was also trained on patients clustered according to Mean arterial
Blood Pressure (MBP) time-series trends at the start of the operation using K-means with Dynamic Time Warping.
The baseline LSTM model trained on all patients yielded an Area Under the Curve (AUC) value of 0.83. In contrast,
training the model on smaller sized clusters (grouped by EHR) improved the AUC value (0.85). Similarly, the AUC
was increased by 4.8% (0.87) when training the model on clusters grouped by MBP. The encouraging results of the
baseline model demonstrate the applicability of the approach in a clinical setting. Furthermore, the increased predictive
performance of the model after being trained using a clustering approach first, paves the way for a more personalised
patient stratification approach to IOH prediction using clinical data.

Keywords: Haemodynamic monitoring, intra-operative hypotension, colorectal surgery, preventive healthcare,
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Introduction

Arterial hypotension is a highly prevalent haemodynamic
abnormality that is commonly observed in patients under-
going surgery under general anesthesia (1, 2), and notably
in colorectal surgery. This so called intra-operative hy-
potension (IOH), defined as Mean Blood Pressure (MBP)
<65 mmHg (3), is linked to many causative factors such as
age, comorbidity, type of anesthesia, and other vital mea-
surements such as systolic blood pressure (SBP) (4, 5). In
fact, anesthesia itself is thought to play a role in the occur-
rence of IOH. Anaesthetic agents, such as propofol, inhibit
the sympathetic nervous system and impair the baroreflex
regulatory mechanisms, both of which regulate blood pres-
sure (6). If not promptly treated, the decline of MBP can
cause severe adverse effects as this compromises local tis-
sue perfusion and causes hypoxic conditions in vital organs
(7). Among other considerations, this is thought to pro-
mote surgical site infection; a complication that is mostly
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observed during colorectal surgeries (8). Additionally, an
increasing number of studies reveal a link between IOH and
other life-threatening complications, such as myocardial in-
fraction and acute kidney injury. This ultimately trans-
lates into increased in-hospital length of stay and postop-
erative mortality and subsequent morbidity (9, 1).

Due to the complex pathophysiology underlying IOH,
predicting such events while the patient is under anesthe-
sia remains a challenge (10, 11). In the setting of a busy
operating room, clinicians often have to manage the on-
set of IOH without additional warning. While standard
patient monitoring devices measure instantaneous physio-
logical signals, they do not model the underlying temporal
dependencies. As a result, current systems cannot provide
past trends or predictions of vitals and therefore cannot
support decision making (12). Nevertheless, even a five
minute time window warning of an imminent IOH event
could lessen hypotension-associated postoperative compli-
cations (13), as it would allow anaesthesiologists sufficient
time to proactively maintain the hemodynamic stability
of the patient (e.g. by adjusting anesthetic agents, fluids
and vasoactive drugs). In fact, modern patient monitor-
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ing has been expanded to include anesthesia data collected
from different devices. Combined with the high-resolution
physiological/pharmacological time-series data and EHRs
of the patient, more data can be stored in real-time than
ever before (14).

Despite the progress, the complex and large nature of
such medical data makes it difficult for a human clinician to
analyse, rendering artificial intelligence (AI) a valuable tool
in the operating room. Supervised Machine Learning (ML)
methods provide an opportunity to exploit large amounts
of sequential data and are therefore increasingly utilized in
training and analysing physiological time-series for predic-
tion. Deep learning (DL) methods also represent an im-
portant alternative to assist clinicians as they can achieve
a deeper understanding of the input data without the need
of human interpretation (15, 16, 13, 17, 18). In the field
of anaesthesiology, the development of algorithms predic-
tive of intra-operative physiological alterations is showing
encouraging results, often outperforming traditional mod-
elling. If IOH can be accurately predicted, anaesthesiol-
ogists may then proactively search for possible causes to
prevent severe complications and remedies.

Here, we propose a Long Short-Term Memory, LSTM
(19), model to accurately classify IOH events 5 minutes
ahead and provide an early warning risk score. To achieve
this, the analysis uses EHR and physiological time-series
data collected from 604 patients undergoing colorectal surgery
under general anesthesia. We additionally investigate whether
the predictive performance of the baseline model can be
increased by training it on different categories (partitions)
of patients that have been clustered together according to
their clinical characteristics and intra-operative vitals. For
instance, increasing evidence suggests that factors such as
male sex, increased BMI and age, as well as the Amer-
ican Society of Anaesthesiologists (ASA) Physical Status
score IV (subjective assessment of a patient‘s health before
surgery) are linked to the occurrence of hypotensive events
during colorectal surgery (1). Ultimately, the findings of
this study aid in the development of a modelling framework
for real-time anesthesia monitoring and prediction of IOH
in the clinical setting, to avert associated post-operative
complications and mortality.

Continuous arterial pressure monitoring, involving ar-
terial catheterisation, is the most accurate intra-operative
metric of hypotension. However, this established method is
highly invasive for the patient. Patient physiological time-
series data, defined as a collection of data points recorded
at constant time intervals, represent an invaluable source
of information that is under-exploited. Most of the studies
for IOH prediction make use of such data by employing
forecasting methods such as the Autoregressive Integrated
Moving Average (ARIMA), a simple and stochastic tradi-
tional time-series model. As its acronym suggests, ARIMA
relies on auto-regression, meaning that variables are re-
gressed on their own past values, and a weight is applied to

lagging observations in order to forecast future time-series
values according to their temporal nature and error terms.
The word integrated refers to the removal of the stationary
nature that usually characterises time-series data, while
moving average indicates the lag of the forecast errors in
the moving average model. However, this method performs
poorly with long term forecasting, as it assumes a linear
relationship between independent and dependent variables
and only works with univariate analysis. These limitations
render ARIMA unsuitable for real-world problems, char-
acterised by complex non-linear mechanisms (20). Thus,
more flexible models are considered.

A recent study (17) developed a hybrid Convolutional
Neural Network (CNN) model, combining parameters ex-
tracted from invasive and non-invasive patient monitoring,
for the real-time prediction of a IOH at 5, 10 and 15 min-
utes in advance using combined biosignal waveforms (ac-
quired using one-point SBP/DBP, photoplethysmography,
capnography and electrocardiography) may provide a more
reliable prediction for patients than the more invasive ar-
terial catheterisation. Another study aimed at predicting
hypotensive events occurring between tracheal intubation
and incision. To do so, the authors trained several machine
learning models with data recorded from the start of anes-
thesia induction to right before intubation. By adopting a
feature engineering approach, a Random Forest (RF) ap-
proach combined with feature selection showed the highest
accuracy, followed by CNN and XGBoost (15). Similarly,
(4) developed a prediction model for anesthesia-induced
hypotensive events with the same time constraints. Again,
RF outperformed all other models, including Naïve Bayes,
RNNs and logistic regression. However, both studies fo-
cus on patients having undergone laparoscopic cholecys-
tectomy, while neither account for intra-operative hypoten-
sion. In contrast, (1) hypothesised that different phases of
hypotension during an operation have distinct causative
mechanisms. Therefore, they distinguished hypotension at
two phases: post-induction hypotension (PIH) and early
intra-operative hypotension (eIOH). Multivariate logistic
regression was subsequently used to find clinical factors
independently related to PIH and eIOH, supporting the
hypothesis of there being a temporal component to the
causative mechanisms of hypotension. Furthermore, (21)
attempted multiple ML algorithms using features extracted
from EHR, with the aim of predicting PIH within 10 min-
utes of anesthesia induction. The best performing model
in post-induction hypotension prediction was tuned gradi-
ent boosting (AUC=0.76), followed by RF (AUC=0.74).
Although the definition of hypotension was stricter than
in most studies (MAP <55 mmHg), a sensitivity analy-
sis using the conventional threshold at 65mmHg showed
an AUC reduced to 0.72 for the best performing model.
Notably, the authors used EHR data, as opposed to intra-
operative vital signs data (21). Furthermore, in (13), a
weighted average ensemble of individual neural networks
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was used to predict five-minute IOH arterial waveforms (as
opposed to our non-invasive MBP recording variable used
to train the models), which performed worse than our sug-
gested approach (precision-recall curve (AUPRC) score at
best 0.72). Additionally, the Hypotension Prediction Index
(HPI) (22, 23, 24), an algorithm for the real-time predic-
tion of hypotension, constitutes the first clinically available
application of IOH prediction. The index uses ML models
to continuously analyse multiple haemodynamic features,
yielding a unit-less number ranging from 0-100 that in-
dicates the likelihood of an imminent hypotensive event.
Following model validation, the algorithm predicted hy-
potension with a sensitivity and specificity of 89% and 90%
respectively, 10 minutes before the onset of hypotension
(12). In order to increase precision, the authors opted for
a binary classification algorithm, during the development
of which periods of hypotension were arbitrarily defined as
MBP <65 mmHg (>1 minute), whereas periods of non-
hypotension were defined by MBP >75 mmHg, creating a
gray zone for MBP (ranging from 65 to 75 mmHg). Fur-
thermore, the model did not investigate hypotensive events
occurring during anesthesia induction. Lastly, although
the algorithm was trained on mixed ICU/operating room
patient data, it was tested on surgical patient data (25).
On a higher level, existing literature uses arterial pressure
vital signals as a single data source, whereas IOH is also
linked to other physiological alterations, such as respira-
tory patterns and ECG trends (17).

The motivation behind LSTMs, introduced by (19),
was to mitigate the difficulty of RNNs to process long-tern
dependencies. To do so, LSTMs have information gates,
allowing nodes to retain memory from relevant data while
also forgetting unnecessary information to the final predic-
tion (19). The architecture of a standard LSTM network
is slightly more complex than the RNN, as it consists of a
chain of repeating memory blocks (or nodes), each consist-
ing of four layers. In brief, the forget, input and output
gates update and control the memory cell via hyperbolic
tangent and sigmoid activation functions. The informa-
tion encoded in the new cell states allow the LSTM to
capture long term dependencies and relations in sequential
data, possibly rendering it the most effective DL algorithm
for time-series analysis. Due to the aforementioned advan-
tages of LSTMs over other algorithms, and the encouraging
results of prior research in this field of study, this project
implements such a model for the accurate classification and
prediction of IOH events 5 minutes in advance during col-
orectal surgery.

To date, many algorithms depend on invasive arterial
line wave-forms recorded using arterial catheters and pres-
sure transducers, both of which are selectively performed
on high-risk patients, therefore limiting the applicability of
their approach. Most importantly, most models developed
thus far do not consider the heterogeneity of the patient co-
hort used to train the algorithms. The need to develop IOH

predictive models tailored to specific patient phenotype is
crucial, as it would significantly enhance their predictive
performance and ultimately prevent the clinical compli-
cations of (and not limited) colorectal surgery. Thus a
combination of DL and unsupervised learning (clustering)
was considered. In this context, clustering can be used
to stratify the patients and allow for more tailored and re-
fined modelling. The diverse clinical characteristics of each
patient play an important role in defining their risk of suf-
fering from hypotensive events during a surgical operation.
Due to this complexity, a simple and generic modelling
technique might not be sufficient for the accurate risk pre-
diction of IOH. This study investigates the effect of training
the LSTM model on different clusters of patients, defined
by their similarity in parameters such as BMI, age, type of
anaesthetic drug administered (e.g., ephedrine), preopera-
tive Na and hypertension.

Thus, this study also investigates the possibility of clus-
tering patients according to their time-series MBP data at
the beginning of the operation, in an attempt to improve
the predictive performance of the LSTM model. Distance
measures used in standard clustering algorithms are not
appropriate for time-series as they are invariant to time
shifts and ignore temporal dependencies. For instance,
Euclidean distance yields pessimistic similarity measures
when it meets alterations in the time axis. In other words,
it is not capable of identifying the similarity between two
time-series if one of them is slightly shifted in time, even if
they are highly correlated. Instead, Dynamic Time Warp-
ing (DTW) is a time-series similarity measure that finds
the optimal non-linear alignment between two time-series
irrespective of their time, speed and length. For instance,
given two time-series X and Y, DTW creates a wrapped
path between each value in X and the closest point in Y,
resulting in a sounder similarity assessment that minimises
the Euclidean distance between aligned series (26).

Results

Following data pre-processing, 604 out of 1106 colorectal
surgery patients satisfied the inclusion criteria and were
therefore considered for the analysis, of which 378 cases
experienced at least one event of IOH. Data characteris-
tics of the complete dataset, as well as within those having
suffered, or not, from hypotension are detailed in Table
1. Due to the time-series nature of the dataset, the ta-
ble indicates the number of observations belonging to each
category, rather than the number of patients. The mean
age of the cohort was 62, with the hypotensive group be-
ing slightly older than the average. Additionally, these
patients were characterised by significantly lower BMI and
weight, known to be inversely associated with the risk of
hypotension. As expected, the non-hypotensive group had
a 12% increased MBP compared to the hypotensive group.
The sex variable, deemed unimportant during feature se-
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lection was dropped from the final dataset, and is thus not
displayed in Table 1.

LSTM model

The univariate LSTM classification model was trained on
484 patients for the prediction of hypotensive events 5 min-
utes in advance, using 5 minutes of MBP data. Evalua-
tion of the model performance on the test dataset yielded
AUC=0.831 (Figure 2) and AUPRC= 0.225 (Figure 3).
The model calculates a vector containing a probability for
every output segment Y of the test dataset. In other words,
it predicts a risk score (∈ [0, 1]) denoting the probability
of a particular output segment Y being hypotensive. The
closer the score is to 1, the higher the risk of that 1-minute-
long segment having MBP <65mmHg.

Three examples of cases from the test dataset were plot-
ted for better visualisation of the output (Figure 4). The
x axis represents the MBP of the patient, while the y axis
represents the consecutive output segments Y generated by
the time window method throughout the operation time.
The vertical line at 65 mmHg denotes the threshold for
IOH classification. The red line shows the true MBP of
the patient at every output segment Y . The blue line can
be interpreted as a warning score for the occurrence of hy-
potension at every output segment Y . As seen on the x
axis on the right side of the plot, it is a probability plotted
on a scale of [0, 1]. The higher the blue line, the bigger
the risk of that segment being hypotensive. When both
lines cross the 65mmHg bar threshold simultaneously, that
area of the graph becomes shaded, indicating that those
segments have correctly been predicted as hypotensive by
the model.

Clustering

The optimal number of clusters to group 604 patients based
on their pre-clinical information is 3 based on the Elbow in-
dex (Figure 5). Performing K-means clustering (K=3) pro-
vides the following partition: cluster 0 composed of 36 pa-
tients (5.96%), cluster 1 composed of 348 patients (57,6%),
and cluster 2 composed of 220 patients (36,4%) (Table 2).
In addition, a polar plot was used visualise the separation
between clusters across clinical features (Figure 8). As ex-
pected, the main feature driving the differentiation was
preop_htn, a categorical variable defining whether a pa-
tient had hypertension prior to the surgical operation. As
seen from Table 2, 100% of cases in cluster 2 had preoper-
ative hypertension, whereas 100% of cases in cluster 1 did
not. Nearly one-third (1/3) of cases in cluster 0 had had
preoperative hypertension (30%).

Another important driving factor was ASA physical
status score, with 37 out of 61 cases of class III belonging
to cluster 2. Age also differed significantly among clus-
ters, with a mean age of 59 years old being recorded for

cluster 1, compared to 65 and 67 for clusters 0 and 2 re-
spectively. Based on the polar plot, it can be observed that
cluster 0 has grouped the few cases that are characterised
by lower preoperative levels of albumin, haemoglobin and
a lower platelet count, in addition to the aforementioned
differences in terms of ASA status score, age and BMI.
Training the LSTM model on gave the following results: i)
cluster 0 yielded an AUC = 0.81 (AUPRC = 0.131), ii)
cluster 1 yielded an AUC = 0.85 (AUPRC = 0.208), and
iii) cluster 2 yielded an AUC = 0.822 (AUPRC = 0.254).
Hence, when LSTM is applied to a specific cluster of pa-
tients characterised by the absence of pre-operative hyper-
tension (i.e., cluster 1), the AUC is increased with regards
to the baseline model trained on the whole cohort at once.

Sensitivity Analysis

As part of a sensitivity analysis, the first 100 recordings
of MBP were used to cluster 604 patients. The elbow plot
resulted in K=4 as the optimal number of clusters to differ-
entiate patients accurately. This result was also supported
by performing Silhouette analysis for K=4, which yielded
the highest score (=0.30). As seen in Figure 6, the plots
are more or less of similar thickness (except for cluster 2
which is of slightly smaller size) and show above average
Silhouette scores. The labelled scatter plot on the right
verifies these findings and allows for a better visualisation
of the clusters. Applying the K-means algorithm (K=4) to
MBP time-series with Euclidean distance yielded a Silhou-
ette score of 0.30, whereas using Dynamic Time Wrapping
(DTW) resulted in a slightly higher DBA Silhouette score
of 0.33. We also see in Figure 7 the time-series trends that
characterise each cluster post-normalisation. The four clus-
ters were composed of 169, 157, 92 and 169 patients respec-
tively. Again, the LSTM model was separately trained on
each of these clusters, with the resulting AUC and AUPRC
being compared to the baseline model in Table 3. Cluster
2, characterised by sudden drop in the MBP during the last
moments of the predefined ∼ 3 minute period, yielded an
AUC of 0.871 and AUPRC of 0.275. This represents a sub-
stantial increase in the predictive performance of the base-
line model (which yielded AUC=0.831 and AUPRC=0.225
after being trained on 604 patients).

Discussion

General anesthesia of patients undergoing surgery is of-
ten accompanied by the serious haemodynamic abnormal-
ity that is IOH. Currently, no reliable methods exist in
clinics to predict that a patient will suffer a hypotension
during an operation, although several devices are used to
continuously monitor the patient’s vital signs in real-time.
The existing need to minimise the post-operative compli-
cations of such events is what motivated this line of work
in predicting the likelihood of a IOH events in patients
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undergoing colorectal surgeries. Importantly, our analysis
tried to set up more realistic conditions than previous and
related work, to increase the applicability and generalisa-
tion of the model to different settings and patients and to
allow for more tailored model training using unsupervised
learning. For instance, we used intra-operative vital signs
collected using common monitoring devices present in most
operating rooms, as well as MBP time-series data recorded
in a non-invasive manner.

An LSTM classification algorithm was trained on sam-
ples of MBP generated via the sliding window method.
Using 5 minutes of MBP time-series data, the algorithm
was capable of classifying an IOH event five minutes in ad-
vance (AUC=0.831). Although the algorithm was trained
offline on pre-recorded time-series data, it could be used
as a real-time prediction model for IOH in the operating
room. By using the first five minutes of MBP data as in-
put, the model would already be able to output the first
IOH risk prediction score five minutes ahead. Running
the model in an iterative fashion on input data using a
one second step size would therefore yield a IOH risk score
throughout the duration of the operation, similarly to how
the model was tested on unseen patients. This risk score
can greatly benefit anaesthesiologists who could be alerted
of the proclivity towards an impending IOH event. As a
result, clinicians could be given a substantial advantage in
proactively treating the patient and averting the hypoten-
sive event and the subsequent potential complications and
Intensive Care Unit (ICU) stay.

Despite the encouraging results of this baseline pre-
dictive model, it is essential to better understand the dif-
ferent clinical phenotype of patients undergoing colorectal
surgery to assess their risk of IOH. With the widespread
adoption of EHR, much of this clinical data is already be-
ing collected and stored, but due to the expertise required
to analyse it, it often remains underutilized. However, un-
supervised machine learning offers the possibility to auto-
matically identify underlying physiological patterns among
a heterogeneous patient cohort. More precisely, unsuper-
vised clustering techniques such as K-means can be used
to automate the process of clustering patients according to
their clinical characteristics, and evidently improve numer-
ous ML models in predictive accuracy.

Thus, we trained the model on three clusters of pa-
tients that were different in the presence/absence of signs
of preoperative hypertension, BMI, age, ASA physical sta-
tus score, preoperative levels of haemoglobin, albumin and
platelet count. Surprisingly, the type of anaesthetic agent
used (e.g. propofol, rocuronium, ephedrine, fentanyl) did
not influence patient clustering, which would have been
interesting to investigate as these are known to influence
IOH at different levels. All variables were selected via a
thorough feature selection process according to their rel-
evance in predicting MBP. Training the model on a par-
ticular cluster that has half the number of patients of the

original dataset increased the predictive performance of the
model with an AUC=0.85 (2,4% increase). In fact, a re-
cent study demonstrates that patients categorised as ASA
physical status III and IV are more prone to suffering from
haemodynamic abnormalities such as IOH, as these pa-
tients are more susceptible to the vasodilatory effects of
anaesthetic agents (1). Additionally, platelet count and
haemoglobin level are known to be positively associated
with blood pressure, rendering these important determi-
nants of IOH risk, as was also seen in our results (27).
Lastly, patients showing signs of preoperative hypertension
are obviously less likely to suffer from IOH, which explains
why this is a major driving factor in patient grouping. The
fact that clustering patients according to clinical charac-
teristics showed increased predictive performance, even if
this was only observed in a single cluster, is a promising
finding. This shows that repeating the analysis on a signif-
icantly bigger cohort while introducing a larger number of
features could help increase the Silhouette score i.e. bet-
ter matching of patients to their own cluster yielding more
similar/compact clusters. This process could offer a more
tailored approach to new incoming patients, as they would
get categorised using similarity metrics with previous cases.
Thus, the appropriate pre-trained model could be used on
each incoming patient instead of applying a generic model
that ignores clinical phenotype heterogeneity. Ultimately,
recognising patterns in the clinical data of patients could
potentially lead to better IOH prediction and therefore bet-
ter post-operative outcomes.

Another unexplored yet exciting approach consists in
the grouping of colorectal-surgery patients based on the
patterns observed in their MBP some minutes after be-
ing put under anesthesia. Interestingly, performing this
type of clustering did again increase the predictive perfor-
mance of the baseline LSTM model by as much as 4.8%
(AUC=0.871). To do so, the K-means algorithm was used
with DTW, which is deemed as more appropriate for time-
series classification than the standard Euclidean distance.
The Silhouette score was increased, although not substan-
tially, potentially explained by the fact that the time-series
were of the same length (i.e., 100 values long) due to the
nature of the problem. Nevertheless, this finding opens
new avenues for future research. If time-series clustering
were to be performed on a bigger cohort, the resulting clus-
ters would be even more dissimilar. During the start of
the operation, the trends characterising the MBP of a new
incoming patient would be indicative of the appropriate
pre-trained LSTM model to use in order to predict IOH
during the rest of the operation.

This study contributes to the endeavor of limiting post-
operative complications by demonstrating that routinely
collected EHR and easily accessible vital sign data can be
used to produce a IOH risk score using the LSTM classifi-
cation algorithm. Most importantly, it showcases the un-
til now unacknowledged importance of classifying patients
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according to their clinical characteristics as well as their
trends in intra-operative time-series data, therefore open-
ing new avenues of research the biomedical domain and
precision medicine.

Furthermore, the association of IOH in combination
with the presence of hypotension prior of operation and
ICU admission has been demonstrated in Figure 9. Here,
we calculated the percentage of time spent in hypoten-
sion during surgery and calculated the hazard probability
against ICU stay stratified by the presence (or not) of the
combinations of IOH and pre operation hypotension, us-
ing the relevant variables from the original dataset. More
specifically, we engineered a new variable in the original
dataset, that shows the percentage of the time during each
patient’s operation where MBP < 65mmHg. The plot
shows that there is a statistically significant association
(p = 0.05) of hypotension pre and during the operation
with ICU admission. Surprisingly, patients that exhibit no
hypotension prior of surgery but IOH, are in bigger risk
of admittance to ICU versus patients who had presence of
hypotension prior of surgery too. These findings further
support the significance of the capability to predict hy-
potension during surgery to better pro-actively avert ICU
admission.

Although our approach is highly promising, it comes
with some limitations. Our analyses were centred on col-
orectal surgery, with the patient cohort naturally consisting
of similar cases. Therefore, our study cannot be directly
applied to other types of surgeries, as these use different
anesthesia procedures and drugs; however, a similar frame-
work can be used if trained on the appropriate dataset and
the models were fine tuned as required. The applicabil-
ity of the model is also limited by the fact that it was
trained and tested on a single cohort extracted only over a
14-month period and derived from a single institution and
population. It would be interesting to perform training and
external validation on institutionally independent patient
cohorts, as well as cohorts from different populations, in
order to increase model performance and generalisation.

This study also has potential for real-time prediction of
hypotension, but the data streams were not actually anal-
ysed in real time. In fact, we do not cover exactly how
anaesthesiologists would act upon the risk score predicted
by the model. This implies the need for the development
of a decision-support tool that could suggest interventions
or treatment alternatives according to the risk score cal-
culated by the model, tailored for the type of surgery and
severity of the event of interest.

Materials and Methods

We used publicly available data from VitalDB (28) (Vi-
tal Signs DataBase), published by Seoul National Univer-
sity Hospital and collected via the Vital Recorder (29), a
software for the automated recording of time-synchronised

data. VitalDB includes high-resolution multi-parameter
data of 6388 non-cardiac surgeries taking place between
June 2016 and August 2017. The dataset integrates intra-
operative vital sign recordings collected from several mon-
itoring devices with preoperative EHR data of patients.
Each operation type has unique features and complications
correlated to the nature of it, and usually follows a common
sequence from anesthesia induction to incision. Therefore,
this study focuses on adult patients having undergone col-
orectal surgery under general anesthesia. These not only
comprise a major part of the surgeries taking place globally
each year, but also often report instances of IOH. Although
using invasive BP measurements would result in higher pre-
diction accuracy, since data is continuously recorded, this
study focuses on predicting IOH based on signals acquired
during routine non-invasive monitors to expand the appli-
cability of the model. More precisely, only intra-operative
data collected via the Primus (anesthesia machine) and the
Solar8000 (patient monitor) were used in our analyses.

Although there is no universal definition for IOH, ad-
verse effects usually start occurring below a MBP thresh-
old of 65 mmHg. Therefore, we define hypotensive events
as rhythm segments with an MBP <65mmHg lasting for
longer than 1 min, whereas non-hypotensive events are de-
fined as those with an MBP >65mmHg stable for longer
than 1 min. Due to the nature of the analysis (probabil-
ity estimate), it is essential to have two easily separable
and mutually exclusive labels. The original dataset con-
tains intra-operative vital sign data and perioperative clin-
ical information of 1106 colorectal surgery patients. More
specifically, it consists of 101 features including: 1) patient
demographic data, such as age, gender, ASA status score,
2) preoperative medical comorbidities, such as cardiovas-
cular and respiratory risks, 3) intra-operative medications,
4) intra-operative vital signs, such as arterial blood pres-
sure, heart rate and oxygen saturation. Vital signs were
recorded at different time intervals according to the mon-
itoring device, with a frequency of 2 seconds for numeric
data recorded with Solar8000, and a frequency of 7 seconds
with Primus recorded vitals. In order harmonize the vital
signs sampled at different rates, the time interval was set
at 2 seconds, which is the frequency at which non-invasive
MBP, the main event of interest, was recorded. In case of a
missing data-point due to time difference, it was replaced
with the last encountered non-null value using backward
filling.

The initial selection of 101 features was decided based
on clinical judgement of factors that are most likely to
induce IOH, although ML was subsequently used to en-
sure unbiased feature selection. Among these features, 13
were removed due to having >80% missing values. Out
of the 1106 patients that underwent colorectal surgery,
two were excluded for the same reason. Blood pressure
measurements that were beyond the physiological range
were excluded according to the following criteria: (1) MBP
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<30mmHg or >200 mmHg, (2) SBP <50mmHg or >250mmHg,
(3) DBP <20 or >160mmHg. In rare cases, some nega-
tive values were observed due to an error in the measur-
ing equipment and were subsequently excluded, such as 61
negative values recorded using the Primus Positive end ex-
piratory pressure (PEEP). Under-aged patients, as well as
those having undergone a surgery lasting less than 2 hours
were removed to obtain a more homogeneous cohort of pa-
tients with which to train the model.

We used correlation plots along with principal com-
ponent analysis to identify highly correlated features. We
merged the preoperative and intra-operative time-series datasets
based on the patient ID, the EHR data was replicated for
each instance of the patients’ operation. Finally, we im-
puted the missing values of the vital signs via linear inter-
polation.

We performed feature selection to prevent over-fitting
and increase model performance. More precisely, dimen-
sionality reduction was decided upon the output of three
feature selection strategies: mean decrease in Gini, Boruta,
and lastly Recursive feature elimination (RFE) using a RF
classifier. The Gini index is an ensemble learner based on
randomised decision trees that measures the decrease in
the impurity of the selected features as each tree branches.
A higher decrease in mean Gini index is indicative of a
variable that contributes more to the sorting and grouping
of the target variable (MBP) to accurately classify IOH
events. The Boruta algorithm is a wrapper method also
trained on a random forest classifier. However, it does so
on a shuffled copy of the original features, called shadow
features, and applies a feature importance measure such
as mean decrease in accuracy. The main idea of this ap-
proach is that instead of competing among themselves, the
features are compared to a randomised version of them.
All variables declared insignificant due to low feature im-
portance were removed, and the model is repeated until
all variables are classified based on the selection thresh-
old (30). Lastly, Recursive Feature Elimination (RFE) is
an automatic feature selection wrapper method that uses
subsets of features to train the model and allows for the
addition or removal of them. Using a prediction error,
RFE selects a minimal set of variables needed for an ac-
curate predictive model (4). Following the implementation
of these feature selection strategies, a total of 36 variables
that were deemed unimportant for IOH prediction were
dropped from the dataset. Itra-operative anaesthetic med-
ications were regarded as continuous variables indicating
the dose administered, whereas the value was converted
to 0 in the case of no data availability. All other variables
were continuous except for the existence of preoperative di-
abetes, preoperative hypertension, and ASA physical sta-
tus score, all of which were categorical.

These pre-processing steps culminated in a final dataset
composed of 42 variables and 604 patients having under-
gone colorectal surgery, for each of which the operation

is recorded at two second intervals. This yields a total
of 2.370.396 observations, each including the preoperative
data (25 variables) and the intra-operative vital signs (17
variables) of a single second during the operation of each
patient.

Data repository

All generated models and data are available upon request.
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Figure 1: Sliding window method for the segmentation of time-series data

Figure 2: AUC-ROC plot for baseline model
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Figure 3: AUC-PRC plot for baseline model

Figure 4: MBP vs Risk score plots for patients with case IDs: 5115, 5167 and 5318
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Figure 5: Elbow plot for K-means clustering

Figure 6: Silhouette plot (left) and scatter plot (right) for number of clusters=4

Figure 7: Plots of 100 first MBP values for each cluster in sensitivity analysis
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Figure 8: Polar plot for number of clusters =3
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Figure 9: Association of ICU admission over IOH and pre-operation hypotension presence (discharge time in days)
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Grouped by Status (hypotensive/normal)

Overall IOH Normal P-Value
Clinical data, mean (SD)
N of observations 2370396 (=604 cases) 1733617 (=378 cases) 636779 (=226 cases)
Age (years) 62.4 (12.0) 63.1 (12.3) 60.5 (11.0) <0.001
Height (cm) 162.0 (8.5) 161.3 (8.5) 164.1 (8.3) <0.001
Weight (kg) 60.5 (10.7) 59.5 (10.5) 63.3 (10.8) <0.001
BMI (kg/m2) 23.0 (3.4) 22.8 (3.4) 23.5 (3.5) <0.001

ASA physical status, n (%)

1.0 641007 (27.0) 445737 (25.7) 195270 (30.7)
2.0 1521098 (64.2) 1160286 (66.9) 360812 (56.7)
3.0 170835 (7.2) 108610 (6.3) 62225 (9.8)
4.0 7051 (0.3) 7051 (1.1)

Preoperative hypertension, n (%) No 1482079 (62.5) 1078356 (64.4) 403723 (62.2) <0.001
Yes 888317 (37.5) 655261 (36.6) 233056 (37.8)

Diabetes, n (%) No 2041528 (86.1) 1500333 (86.5) 541195 (85.0) <0.001
Yes 328868 (13.9) 233284 (13.5) 95584 (15.0)

Preoperative haemoglobin (g/dL) 12.1 (2.8) 11.9 (2.7) 12.6 (2.9) <0.001
Preoperative platelet count (x1000/mcL) 259.6 (94.2) 260.6 (100.5) 256.8 (74.3) <0.001
Preoperative PT* (%) 99.0 (20.1) 98.8 (20.4) 99.6 (19.5) <0.001
Preoperative aPTT** (sec) 31.7 (6.7) 31.6 (6.4) 31.8 (7.3) <0.001
Preoperative Na (mmol/L) 132.7 (32.7) 133.1 (32.0) 131.7 (34.6) <0.001
Preoperative K (mmol/L) 3.8 (1.2) 3.8 (1.2) 3.8 (1.3) <0.001
Preoperative Glucose (mg/dL) 114.9 (47.5) 116.1 (49.8) 111.7 (40.3) <0.001
Preoperative Albumin (g/dL) 3.9 (0.8) 3.8 (0.8) 3.9 (0.9) <0.001
Preoperative Ast*** (IU/L) 22.0 (13.8) 22.2 (15.0) 21.4 (9.7) <0.001
Preoperative Alt**** (IU/L) 19.0 (15.0) 18.6 (15.3) 20.0 (14.3) <0.001
Preoperative blood urea nitrogen

(mg/dL)
14.1 (6.4) 14.2 (6.6) 13.8 (6.0) <0.001

Preoperative Creatinine (mg/dL) 0.8 (0.8) 0.8 (0.7) 0.9 (0.9) <0.001
Estimated blood loss (mL) 220.2 (484.2) 246.1 (552.3) 149.7 (188.6) <0.001
intra-operative urine output (mL) 188.3 (215.0) 190.1 (225.4) 183.6 (183.7) <0.001
intra-operative Crystalloid (mL) 1001.3 (935.3) 1036.3 (1022.6) 905.9 (630.0) <0.001
intra-operative Propofol (mg) 47.9 (55.8) 44.6 (54.7) 56.6 (57.7) <0.001

intra-operative Fentanyl, (mcg)

0 1717352 (72.5) 1285691 (74.2) 431661 (67.8) <0.001
100 546053 (23.0) 362069 (20.9) 183984 (28.9)
150 11212 (0.5) 6912 (0.4) 4300 (0.7)
200 27186 (1.1) 19348 (1.1) 7838 (1.2)
50 68593 (2.9) 59597 (3.4) 8996 (1.4)

intra-operative Rocuronium (mg) 87.0 (23.9) 87.8 (24.8) 84.9 (21.1) <0.001
intra-operative Ephedrine (mg) 10.5 (12.8) 13.1 (13.5) 3.5 (6.8) <0.001
intra-operative vital signs with Primus, mean (SD)
MAC*****(unitless) 0.4 (0.5) 0.4 (0.5) 0.5 (0.6) <0.001
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Grouped by Status (hypotensive/normal)

Positive End Exp. Pressure (mbar) 1.8 (2.4) 1.7 (2.4) 2.2 (2.5) <0.001
intra-operative vital signs with Solar8000, mean (SD)
Body temperature (℃) 33.8 (5.6) 34.0 (5.3) 33.3 (6.2) <0.001
ETCO2 (mmHg) 33.4 (7.5) 33.6 (7.1) 32.8 (8.5) <0.001
FEO2 (%) 38.9 (17.1) 38.4 (16.5) 40.4 (18.6) <0.001
FIO2 (%) 44.3 (17.4) 43.8 (16.8) 45.7 (19.0) <0.001
HR (/min) 71.2 (15.4) 71.6 (15.6) 70.2 (14.7) <0.001
INCO2 (mmHg) 1.1 (1.5) 1.1 (1.5) 1.0 (1.5) <0.001
Diastolic BP (mmHg) 69.8 (13.1) 67.5 (12.6) 75.9 (12.5) <0.001
Mean BP (mmHg) 86.0 (16.9) 83.2 (16.2) 93.6 (16.2) <0.001
Systolic BP (mmHg) 115.6 (23.2) 112.1 (22.3) 125.0 (22.9) <0.001
Plethysmography recorded HR (/min) 71.6 (15.3) 71.9 (15.3) 70.9 (15.4) <0.001
Plethysmography recorded SPO2 (%) 99.0 (1.9) 99.0 (2.0) 99.1 (1.8) <0.001
Capnography recorded Resp. rate (/min) 13.8 (3.4) 13.8 (3.3) 13.7 (3.7) <0.001
Ventilator recorded Mean Airway Pressure (mbar) 5.6 (2.8) 5.4 (2.7) 5.8 (3.0) <0.001
Ventilator recorded Resp. rate (/min) 13.8 (4.0) 13.9 (3.9) 13.7 (4.3) <0.001

Table 1: Population characteristics grouped by patients who expe-
rienced and did not experience IOH
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Grouped by clusters

Clinical data, mean (SD) Overall 0 1 2 P-Value
n 604 36 348 220
Age (years) 62.7 (12.1) 65.3 (12.8) 59.6 (12.4) 67.2 (9.9) <0.001
Height (cm) 161.8 (8.7) 159.1 (8.5) 162.5 (8.6) 161.3 (8.6) 0.036
Weight (kg) 60.7 (10.9) 58.3 (12.4) 60.2 (10.9) 61.9 (10.6) 0.079
BMI (kg/m2) 23.1 (3.5) 22.9 (3.7) 22.8 (3.5) 23.8 (3.4) 0.004

ASA physical status, n (%)

1.0 155 (25.7) 11 (30.6) 136 (39.1) 8 (3.6)
2.0 377 (62.4) 15 (41.7) 188 (54.0) 174 (79.1)
3.0 61 (10.1) 24 (6.9) 37 (16.8)
4.0 1 (0.2) 1 (0.5)

Preoperative hypertension, n(%) No 373 (61.8) 25 (69.4) 348 (100.0) <0.001
Yes 231 (38.2) 11 (30.6) 220 (100.0)

Diabetes, n(%) No 518 (85.8) 31 (86.1) 311 (89.4) 176 (80.0) 0.008
Yes 86 (14.2) 5 (13.9) 37 (10.6) 44 (20.0)

Preoperative haemoglobin (g/dL) 12.0 (2.9) 6.7 (6.5) 12.4 (2.1) 12.3 (2.2) <0.001
Preoperative platelet count (x1000/mcL) 257.2 (92.9) 179.6 (143.7) 262.6 (84.3) 261.4 (90.2) <0.001
Preoperative PT* (%) 98.0 (22.0) 61.8 (49.5) 99.3 (17.0) 101.9 (15.6) <0.001
Preoperative aPTT** (sec) 31.7 (7.7) 19.7 (17.0) 32.3 (5.2) 32.8 (6.8) <0.001
Preoperative Na (mmol/L) 132.1 (33.7) -1.0 (0.0) 140.6 (2.9) 140.4 (2.7) <0.001
Preoperative K (mmol/L) 3.8 (1.3) -1.0 (0.0) 4.1 (0.4) 4.1 (0.4) <0.001
Preoperative Glucose (mg/dL) 114.7 (48.6) 75.7 (58.0) 113.3 (43.2) 123.5 (51.8) <0.001
Preoperative Albumin (g/dL) 3.8 (0.9) 1.8 (2.4) 4.0 (0.5) 3.9 (0.6) <0.001
Preoperative Ast*** (IU/L) 22.1 (13.7) 15.5 (15.6) 22.1 (13.6) 23.1 (13.4) 0.009
Preoperative Alt**** (IU/L) 19.1 (15.2) 11.4 (13.5) 19.4 (14.8) 19.9 (15.8) 0.007
Preoperative Creatinine (mg/dL) 10.2 (9.3) 13.5 (5.0) 16.0 (8.2) <0.001

Estimated blood loss (mL) 0.9 (0.9) 0.0 (0.9) 0.8 (0.5) 1.0 (1.2) <0.001
intra-operative urine output (mL) 186.2 (206.5) 182.9 (197.9) 191.3 (195.1) 178.6 (225.3) 0.770
intra-operative Crystalloid (mL) 992.1 (909.9) 1113.0 (1125.1) 993.6 (886.1) 970.0 (911.3) 0.682
intra-operative Propofol (mg) 52.6 (56.3) 62.5 (56.7) 53.1 (56.7) 50.2 (55.8) 0.467

intra-operative Fentanyl, (mcg)

0 452 (74.8) 21 (58.3) 262 (75.3) 169 (76.8) 0.140
100 128 (21.2) 13 (36.1) 71 (20.4) 44 (20.0)
150 3 (0.5) 1 (2.8) 2 (0.6)
200 7 (1.2) 1 (2.8) 4 (1.1) 2 (0.9)
50 14 (2.3) 9 (2.6) 5 (2.3)

intra-operative Rocuronium (mg) 84.4 (24.1) 83.3 (30.4) 85.8 (23.3) 82.4 (24.3) 0.255
intra-operative Ephedrine (mg) 10.0 (12.2) 14.3 (20.7) 9.0 (11.1) 10.8 (11.9) 0.020

Table 2: Preoperative population characteristics grouped by clus-
ters
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Cluster 1 2 3 4 Baseline model

AUC 0.798 0.871 0.779 0.782 0.831
AUPRC 0.209 0.275 0.187 0.134 0.225
Table 3: Results from LSTM with Sensitivity analysis
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