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ABSTRACT 

Objective. The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic 

alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the 

epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and 

transcriptional status, followed by drug target discovery. 

Methods. We performed a stratified epigenome-wide association studies of whole blood DNA methylation 

from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor 

activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were 

searched for based on differentially methylated genes. 

Results. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on 

molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs 

in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in 

disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with 

transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were 

enriched in known and novel potential drug targets for SLE.   

Conclusion. This study expands the number of genes associated with SLE and reveals novel pathways of 

disease. The findings reveal possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity 

and disentangles the DNAm mediation role on SLE genetic risk and the genetic architecture of DNAm in different 

molecular contexts. Finally, novel targets for drug development were discovered. 
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INTRODUCTION 

Systemic lupus erythematosus (SLE) is an autoimmune disease (SAD) caused by the activation 

of autoreactive T and B cells, the release of inflammatory cytokines and the formation of immune 

complexes that deposit in tissues, resulting in organ damage. It predominantly appears in young to 

middle-aged women with a 9:1 female:male bias (1). Treating and diagnosing SLE is challenged by 

the patients’ heterogeneity in terms of diversity of symptoms, manifestations (2), the organs affected, 

and a diverse array of autoantibody (AAb) specificities. Although AAb production helps in the 

diagnosis of some autoimmune diseases and is related to several clinical manifestations, the 

complexity of SLE is such that patients can present a wide range of specificities, being, moreover, not 

solely identified in SLE or in specific SLE manifestations. 

The understanding of genetic, environmental and molecular mechanisms disrupting immunity 

and triggering autoantibody production is not well understood. Genome-wide association studies 

(GWAS) identified several susceptibility genes among which HLA class II locus and genes such as 

TNIP, BANK1, and IRF5 exhibit the strongest risk effects (3,4). A strong HLA genetic association with 

the presence of autoantibodies such as anti-SSB, anti-SSA, anti-RNP, anti-SM (5) and anti-dsDNA 

production has been recognized since long (5,6). The most important molecular characteristic of SLE 

is the overexpression of several interferon-regulated genes (IRG) known as the interferon (IFN) 

signature, also widely observed at the epigenetic level (epigenIFNsig) in all blood cell types and 

tissues(7) as well as in other SADS(8,9) . A strong interaction between HLA genetic variation, the 

production of anti-SSA AAb and the epigenetic IFN signature has been reported in primary Sjogren’s 

syndrome (9), however the genetic and autoantibody determinants of the IFN signature in SLE are still 

not clear. Recently, the study by Barturen et al. (8)  molecularly reclassified SLE and other six SADs 

into different molecular subtypes with important clinical implications. SLE and SADs patients could 

be stratified into an inflammatory subtype, with increased activity of genes related to the function of 

monocyte and neutrophil; a lymphoid subtype, with genes related to the function of these immune 

cells; and an IFN subtype, defined by enhanced activity in genes induced by IFN. This molecular 

classification needs to be taking into account to overcome SLE heterogeneity.  

Heritability studies showed that genetics explains only a small fraction, less than 10% of SLE 

susceptibility (10–12),  suggesting the important contribution of environmental or non-genetic factors 

(13) and possibly the role of epigenetics mediating gene-by-environment interactions. Epigenetic 

modifications allow to retrieve different phenotypes from a unique genotype, and are fundamental for 

immune cells to exhibit diverse and plastic functions responding to evolving environments, stimuli 

and differentiation processes (14). Dysregulation at the epigenetic level has been identified in 

association with SLE and some SLE manifestations (15–17). The genome of SLE patients is globally 
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hypomethylated -unmethylated state of CpGs in a normally methylated sequence - and a large 

percentage of SLE patients exhibit the epigenIFNsig but, intriguingly, not all of them. Functional 

genomics deciphers the regulatory role of many disease-associated non-coding genetic variants (18), 

but studies are scarce in SLE (17). Approaches such as methylation quantitative trait loci (meQTL) 

(18) allows identifying genetic variants influencing disease by modifying DNA methylation (DNAm) 

(17). However, large meQTL studies have been performed in non-disease populations despite the 

increasing recognition that regulatory genetic effects can be dependent on age, context and 

pathological status (9,18,19) 

Despite the increasing number of molecular and epigenetic studies in SLE, previous work has 

not paid attention to disease heterogeneity nor to the possible role of genetic factors or their 

consequences at the transcriptional and cytokines levels. 

The present work moves a step forward in the understanding of epigenetic landscapes in SLE, 

and their possible drivers and consequences, as well as in the identification of potential new SLE drug 

targets. We speculate that stratifying EWAS based on molecular subtypes and autoantibody 

specificities, and integrating different multi-omics layers, provides greater statistical power to find new 

and group-dependent epigenetic associations that might have a specific genetic regulation and context-

specific epigenetic correlation with transcriptional factors and cytokine expression. 

 

METHODS 

An overview of the study design is depicted in Figure 1.  

Samples. We included 292 SLE patients and 320 healthy controls (CTRL). The sample was 

divided into a discovery set (213 SLE patients and 221 healthy controls with DNAm data based on the 

EPIC array) , and a replication set (79 SLE patients and 99 with DNAm data based on the 450K array) 

from the PRECISESADS project (8). Supplementary Table 1 describes the main characteristics of 

the study sample, together with the groups and traits analyzed. Blood cell proportions were obtained 

using flow cytometry (20) while autoantibodies, cytokines and other inflammatory mediators were 

analyzed from serum. Autoantibodies (anti-chromatin, anti-dsDNA, anti-U1RNP, anti-SSA/Ro, anti-

SSB/La, anti-SM, anti-b2 glycoprotein 1, anti-b2 microglobulin,  IgG anti-cardiolipin, IgM anti-

cardiolipin, rheumatoid factor, and anti-ENA), cytokines and inflammatory mediators (BAFF, BLC, 

CRP, FASL, GDF15, IL1RII, IL1RA, IL6 IP10, MCP2, MCP4, MIP1B, MMP2, MMP8, TARC, 

TGFb1, TNFRI and TNFa) were measured in serum samples as described by Barturen et al. (8).  

DNA methylation (DNAm) profiling. DNAm data was produced using the Illumina Infinium 

HumanMethylationEPIC BeadChip array and the Illumina Infinium HumanMethylation450 BeadChip 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.22283772doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.19.22283772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

array, which covers up to 850,000 and 485,512 CpG sites respectively. DNA was extracted from 

peripheral blood samples from which the genome was amplified and hybridized to the Illumina arrays. 

Standard methodological procedures for quality control and probe filtering were performed as 

described previously (21). Samples were excluded based on the detection P criteria > 99%, poor 

bisulfite conversion based on control dashboard check, and sex mismatches according to failed 

chromosome X and Y clustering. Probes were filtered out based on detection P > 0.01 in > 95% of 

samples. Additionally, probes located at the X and Y chromosomes were separated in different datasets 

to avoid gender bias. Probes with genetic variants at their CpG sites were also excluded. After applying 

these filtering steps we obtained 776,284 and 433,337 autosomic probes in the discovery dataset and 

in the replication dataset, respectively. After QC, the raw methylation beta values were background 

corrected and normalized using the functional normalization within the meffil R-package. A beta value 

ranging from 0 to 1 was used to measure DNAm in whole blood, being 1 the methylated status with 

100% of cells being methylated at a given CpG and 0 the unmethylated status with 0% of cells being 

methylated. 

Genetic profiling. Genotyping was performed using InfiniumCore from Illumina. Imputation 

was performed using the Michigan Imputation Server(22) and Haplotype Reference Consortium as 

reference panel(23). Filtering of genetic variants and quality controls were performed by PLINK (24). 

A total of 4,553,097 variants with a minor allele frequency (MAF) higher than 0.05 were used for 

subsequent analyses. 

Epigenome-wide association analyses (EWAS). We performed a series of EWAS 

interrogating DNAm differences between groups at each autosomic CpG site. We used linear 

regression models adjusting by sex, age and blood cell composition (B cells, CD4 T cells, CD8 T cells, 

monocytes, neutrophils and natural killer cells) as well as technical confounder effects (Sample_Plate 

and Sample_Position). SLE-associated differentially methylated CpG positions (SLE-DMPs were 

identified comparing DNAm between SLE patients and CTRLs. We stratified SLE patients into the 

molecular subtypes described in Barturen et al. (8) and by autoantibody (AAbs) profile and compared 

their DNAm separately with CTRL. In total, 30 SLE patients were classified into the inflammatory 

subtype, 18 into the lymphoid subtype and 54 to the IFN subtype in the discovery cohort (Figure 1) 

and 11, 7 and 19 SLE patients in the replication cohort as previously defined by Barturen et al. (8). We 

only performed EWAS on those AAbs that exhibited positivity in more than 20 SLE patients and 

corrected models for the presence of all other autoantibodies. We applied a Bonferroni significance 

threshold (P < 5 x 10-08) to claim genome-wide significance. We assessed replication (P < 0.05) in an 

independent cohort from based on 450K-methylation data and determined replication rate for those 

CpGs present in both arrays.  To determine group-dependent DMPs (ex. SLE-dependent DMPs), we 
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used strict significant threshold for the specific DMP passing a Bonferroni threshold in one group 

while exhibiting a P > 0.001 in the others.  

Functional enrichment analyses. Gene-set enrichment function analyses were performed to 

reveal if genes annotated to DMP were enriched in particular functional pathways. We used the 

Reactome database (25) implemented by enrichPathway function in R library ReactomePA (26). As 

background distribution we used all genes interrogated in the EPIC array. We separately analyzed 

DMP with hypomethylation and hypermethylation events. 

Methylation quantitative trait loci analysis. We performed methylation quantitative trait 

locus  (meQTL) mapping using the Matrix eQTL R package (27), by means of linear regressions in 

which the minor allele dosage effect on DNAm was tested while adjusting for age, sex, batch effects, 

cells proportions, the first genetic principal component, and disease status. We defined cis-meQTLs as 

SNPs located no farther than 1Mb from the interrogated DMP. Cis-meQTLs were separately 

discovered in different groups: i) whole sample, ii) SLE patients, iii) healthy controls, iv) inflammatory 

SLE patients, and vi) IFN SLE patients. Lymphoid subtype was discarded from this analysis due to 

the low sample size. We used a permutation based False Discovery Rate (FDR) < 0.05 to claim 

significance. We investigated the interaction effect between SNP and group for the following groups: 

SLE vs CTRL and inflammatory vs IFN. To determine group-dependent meQTLs we used the 

following statistical conditions: FDR < 0.05 in one group and P > 0.05 in the other group and P < 0.05 

significant interaction effect. We also looked for meQTLs with an opposite and significant genetic 

effects in different groups, with the ensuing conditions i) FDR < 0.05 in one group AND P < 0.05 in 

another group, or ii)  P interaction < 0.05 AND P < 0.05 in both groups AND  FDR interaction < 0.005. 

Genetic association and mediation analyses. We ran a genome-wide association study 

(GWAS) in an European sample of 4,212 SLE patients and 4,065 controls previously described (28), 

and extracted the results for those SNPs involved in meQTLs regulating 148 DMPs. We established a 

Bonferroni significance threshold of P < 0.05/148 = 0.00033 to claim statistical significance. We 

performed mediation analyses with the R package mediation using the method development by Imai 

et al. (29) to quantify mediation effect of DNAm on SLE genetic risk. We report the Total Genetic 

Effect of the SNP on SLE (c), the Direct Genetic Effect of the SNP on SLE from a model adjusted by 

DNAm (c’), and estimated the proportion of the Total Genetic Effect on SLE explained by DNAm 

Mediation by the formula: Prop. Mediated = (a*b)/(a*b+ c’), where a is the effect of the SNP on 

DNAm and b is the effect of DNAm in SLE. Test statistics for these measurements were estimated by 

10,000 Monte Carlo simulations. 

Epigenetic associations with cytokine levels and transcription factor activities (TFact). 
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We inferred TFact for 119 Transcription Factors in the PRECISESADs data using whole blood 

RNAseq data and the R package DoRothEA (30) as previously described (31).  Linear regression 

models were performed between DNAm at DMP and log transformed cytokine levels for 18 different 

inflammatory cytokines (see supplementary Table 1) or with TFact in different groups (SLE, CTRL, 

inflammatory and IFN) and corrected for the same covariates used for the EWAS/meQTLs. A 

Bonferroni threshold of P < 0.05/1,198 = 4E-5 was used to claim statistical significance.  

Identification of drug targets within epigenetic signals. We used different informatics 

platforms and data sources (Supplementary File 1) to identify drug targets within epigenetic signals. 

Specifically, for each gene in the list of the 549 differentially methylated genes, a “Total Score” was 

calculated as the sum of individual sub-scores, as described below (see also Figure 6):  

i) “known drug target” in OpenTargets OR Informa (clinical phase 1 or above), sub-score=1; 

ii)  “known drug target for SLE” in OpenTargets OR Informa (clinical phase 1 or above), sub-

score=1 

iii) having direct interactions with an SLE drug target (from OpenTargets OR Informa) in the 

PPI network, sub-score=1  

iv) reported in DisGeNet to have GDA score of association with SLE > 0.3, sub-score=1 

v) reported from UK BioBank with significant genetic variant associations (P < 5 × 10-08) to 

SLE, sub-score =1 

 

RESULTS 
 

1. Genome-wide DNAm patterns associated with different molecular SLE subtypes  

We identified 262 SLE-DMPs (97% replication rate in 450K independent sample) (Figure 2A, 

Supplementary Table 2), 64% of them exhibiting hypomethylation and 36% hypermethylation 

effects. Not unexpectedly, the top SLE-DMPs implicated large reductions of DNAm at IRGs and genes 

enriched in IFN pathways (Supplementary Table 3), as for example IFI44L, MX1, NLRC5, IFITM1, 

IFIT1, IRF9 or PARP9 but also genes involved in antigen processing and class I presentation (TAP1 

and B2M). Large hypermethylation effects were also observed in IRGs such as OASL. These results 

corroborate previous findings and is likely a consequence of the higher IFN levels observed in SLE 

patients (32).  

Stratifying SLE patients into the molecular subtypes allowed us to raise the number of 

associations despite reducing the sample size (Figure 2A). We identified 314 inflammatory-DMPs 

(96.18% hypomethylation, Supplementary Table 4), 41 lymphoid-DMPs (90.24% hypomethylation, 
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Supplementary Table 5) and 659 IFN-DMPs (54.48% hypomethylation, Supplementary Table 6), 

among which 214, 3, and 420, respectively, had not been previously detected when all SLE patients 

were pooled together (Figure 2E). The IFN subtype exhibited the largest effects at genes involved in 

IFN pathways, but a persistent epigenIFNsig and similar enrichment were also observed in patients 

within the lymphoid and the inflammatory subtypes (Figure 2B-D, Supplementary Table 3). 

Inflammatory-DMG were also enriched in synaptic functions. (Supplementary Table 7). 

We identified 71 inflammatory-dependent DMPs, 1 lymphoid-dependent DMPs and 232 IFN-

dependent DMPs (Supplementary Figure 1A-C, Supplementary Table 8).  For example, we 

observed a DNAm decrease at SYNGAP1 and EGR3 genes in SLE inflammatory patients (P < 4.08 x 

10-04) that we did not observe in healthy controls or in patients from other subtypes (P < 0.05) (Figure 

2F-G). For the IFN subtype, we found large DNAm differences at IRF7 and TRIM22 genes, (Figure 

2H-I) both of which are related to type I IFN pathways (33) .  

 

2. The relationship of autoantibody profile on the SLE epigenome  

We stratified patients based on their positivity for the most prevalent AAbs. We identified 388 

anti-SSA-DMPs, 223 anti-chromatin-DMPs, 256 anti-dsDNA-DMPs and 164 anti-U1-RNP-DMPs 

(Figure 3A, Supplementary Tables 9-12) when compared with CTRLs, yielding a total of 466 AAb-

DMPs, from which 238 had not been previously detected as SLE-DMPs, and 81 were not detected as 

molecular subtype-DMPs. The epigenIFNsig, and in general every CpG effect, was stronger in SSA+ 

SLE patients for which we identified 155 DMPs not observed in the other groups (Figure 3B-F). 

However, the epigenetic signature was still persistent and dominant in SLE patients positive for other 

autoantibodies (Figure 3B-E). A small proportion of 27 anti-chromatin-DMPs and 38 anti-DNA-

DMPs were exclusively observed in these groups when establishing a genome-wide significance level. 

However, at a significant threshold of P < 0.05,  we could only identify one example of an anti-SSA-

dependent-DMPs in the NLCR5 gene that reached genome wide significance level in the SSA group 

and was not significant in the rest. (Figure 3G, Supplementary Table 14). Functional enrichment 

analyses on AAb-DMPs identified IFN pathways as well as antigen processing and other pathways 

regulatory of immune responses (Supplementary Table 13).  Our results indicate that epigenetic 

signature is highly shared across SLE patients with different autoantibody profiles, and that there is 

little specificity on SLE autoantibody-related epigenetic signals.   

 

3. Genetic drivers of SLE epigenetic signals and mediation role of DNAm on SLE risk 

We searched for cis genetic variants associated with DNAm at 148 DMPs (cis-meQTLs-DMPs, 

FDR < 0.05) (Figure 4A, Supplementary Table 15). Up to 31 loci involved in cis-meQTL-DMPs 
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also associate with SLE (SLE-cis-meQTLs-DMPs, Bonferroni significance P < 8 x 10-05) (Figure 4A, 

Supplementary Table 15).  Mediation analyses on SLE-cis-meQTLs-DMPs (Supplementary 

Table16) revealed that SLE genetic risk is significantly reduced when DNAm is incorporated in the 

model (Figure 4B), and that a significantly high proportion of SLE genetic risk at the HLA class I 

region (12-65% proportion mediated) is mediated by DNAm in HLA-F, HLA-A, C6orf136, HLA-C, 

HLA-B, HCP5, TAP1 and PSMB9 genes (Figure 4C-D). Other SLE-associated SNPs such as those 

located in STAT1 or the intergenic region at chromosome 5 nearby microRNA mir-146 also showed a 

significant indirect effect of SNP on SLE suggesting a mediation role of DNAm, but the proportion 

mediated did not reach statistical significance (P > 0.05), probably due to the low sample size. 

Interestingly, for SLE-associated genes such as IRF7 and ITGAX, the SLE genetic effect increased 

when DNAm was included in the model, suggesting a cofounded or more complex relationship 

between DNAm, genetic variation and SLE (Figure 4D).  

4. Context-dependent meQTL regulatory function in SLE 

We discovered cis-genetic variants associated with DNAm with dependency on disease status or 

molecular subtype by the identification of meQTL in different groups together with significant 

interaction effects (Supplementary Table 17-19). We identified SLE-dependent meQTLs for 394 

DMPs (Supplementary Table 20), among which significant disease-dependent effects were observed 

in CDHR5 and MAML2 (Figure 4E-F). Likewise, we discovered inflammatory- and IFN- dependent 

meQTLs for 283 and 316 DMPs, respectively (Supplementary Table 21 and 22). For instance, we 

observed genetic regulation on DNAm in RSAD2 gene in inflammatory SLE patients, but not in the 

IFN group or in controls where RSAD2-DNAm does not show a relationship with the genotype 

(Figure 4G).  IFN-dependent meQTL effects were observed for example for HLA-F (Figures 4H).  

Intriguingly, we also identified meQTLs with strong opposite effects (op-meQTLs) between SLE and 

CTRLs (119 DMPs) (Supplementary Table 23), or between the IFN and inflammatory subtypes (35 

DMPs) among which IFI44 gene shows the greatest opposite effect (Figure 4I) (Supplementary 

Table 24).  Some genetic variants involved in context-dependent meQTLs were associated with SLE 

at a Bonferroni-corrected threshold (P < 1.2 x 10-04) (Supplementary Table 17). The strongest SLE-

associated SNPs involved SLE-dependent meQTL that associated with DNAm at HLA-B and HLA-E 

genes.  Interestingly, we also identified strong genetic-disease interaction (Pint = 6.5x10-05) in the 

regulation of DNAm within the CDHR5 gene at chromosome 11, that involve SNPs strongly associated 

with SLE (P = 1.9x10-07) (Figure 4E) 

 

5. SLE-associated epigenetic signals correlate with transcription factor activity and 

cytokine production 
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Transcription Factor (TF) binding has an important role in shaping DNAm levels and vice versa 

(34). Here, we identified up to 61 different TFs whose activity correlated with DNAm at several DMPs 

(P < 0.05) (Supplementary Table 25). Interestingly, the large interaction between DNAm and 

TFactivity for IRF9, IRF1, STAT2, STAT1, STAT3, TFDP1, FOXM1, E2F3, E2F2, GLI2 and RUNX3 

was restricted to SLE patients (Figure 5A-B, Supplementary Table 26). While, TFs of IRF and STAT 

family have a well described role in the activation of IFN pathways and are associated with DNAm at 

IRGs. The TFact of TFDP1, E2F3 and FOXM1 correlated also with DNAm at IRGs such as IFI44L, 

MX1, TRIM22 and ISG15.  Interestingly, RUNX3 activity was associated with DNAm at genes such 

as FCGR3B, HLX, LGALS12, BACH and SYNGAP which are not IFN-regulated. Intriguingly, we 

observed differential DNAm-TFact associations when comparing between inflammatory and IFN SLE 

patients (Supplementary Table 27). For example, NR2F2 TFact is strongly negatively associated with 

DNAm at the LETM1 gene, but such effect is not observed in the IFN subtype (Figure 5C). Likewise, 

ZEB1 TF-act is associated with DNAm at LGALS9, RSAD2, TMEM123, HECA and IFI44L genes only 

in IFN patients (Figure 5D). 

We explored whether DMPs could be associated with cytokine production in each molecular group 

(Supplementary Tables 28-30). In total, 82 DMPs were significantly associated with levels of 8 

cytokines (P < 5 x 10-05). The strongest (and negative) associations were found between IL1RII levels 

and SLE-DMPs at a number of IRGs such as PARP9 and IFI44L. We found SLE CpG-cytokine 

association for TNFa (VRK2, PARP9), IL1ra (BST2, ATP10A), IL1RII (IFITM1, ARID5B), MCP2 

(IFI44L, CMPK2) and IP10 (NLRC5, B2M) which were not observed in CTRLs (Supplementary 

Table 29). We also observed inflammatory-dependent association for TNFRI (RAPGEF1) and CRP 

(OAS3) (Supplementary Table 30). Figure 5E illustrates the strength of the group-dependent 

associations. It can be observed that associations differed between groups and that for some CpGs, for 

cytokines such as IL1RII, these were stronger within the inflammatory as compared to the IFN subtype 

and stronger than CTRLs. For example, IL1RII was negatively associated with DNAm at MX1 in IFN 

subtype but it is positively associated in the inflammatory subtype (Figure 5F), similarly MCP2 

showed opposite effects at the DNAm level for the LGALS3BP gene for the inflammatory and IFN 

subtypes (Figure 5G). Altogether, our results indicate that the relationship between DNAm, TFact and 

cytokine production is determined in a subtype-dependent manner.  

6. SLE-associated epigenetic signals inform drug discovery  

We observed an enrichment of the list of unique 549 SLE differentially methylated genes (DMG) 

among known drug targets (Fold enrichment of 1.4, P < 0.01 in phase 1 or above in OpenTargets and 

Informa databases), and identified a total of 62 DMG being known drug targets, including 8 known 
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SLE drug targets: SYK, JAK3, BCL2, PIK3CD, VDR, BTLA, FGR, GDP2 and NDUFS8 

(Supplementary Table 31-32, Figure 6). 

To identify and prioritize candidate novel SLE gene targets, we collected different features of 

each gene and ranked them based on two criteria: i) previous evidence of genetic association to SLE 

ii) “network proximity” (Figure 6, see Methods for scoring details). We showed strong enrichment 

of validated targets within the groups of genes with scores equal or higher than one (Supplementary 

Figure 2). Using the different annotations available for each gene of the list, we could prioritize genes 

of interest and focus on potentially novel targets (see discussion) for SLE, and for different SLE 

subtypes.  For example, we observed that 4 of the known drug targets (VDR, ALOX5AP, ITGA5 and 

ECE1) overlapped with genes that are differentially methylated only in the inflammatory SLE patients. 

Likewise, 17 genes (CLU, CETP, TSHR, ITGA2, ACACA, TNK2, STAT4, PSMB8, SCN8A, INPP5D, 

BMPR1A, TAP1, TYMP, QPCT, GPD2, PSMB9 and LAMB1) overlapped with interferon specific 

epigenetic signatures (Supplementary Table 32).  

 

DISCUSSION 
In this study we present the first integrative EWAS that contrasts genome-wide DNAm data in 

several stratifications of SLE patients and integrates results with genetic, transcription, clinical and 

serological data.  

Stratifying SLE patients across homogenous molecular subtypes allowed us to significantly 

increase statistical power expanding the epigenetic signals and reporting new loci associated with SLE 

that had not been revealed when analyzing SLE heterogeneous populations. The largest effects were 

mostly found at interferon related genes as for example IFI44L, MX1, NLRC5, PARP9/DTX3L, which 

has been extensively identified in previous SLE-EWAS across most blood cell types and in other 

SADs(7). Here we show that the epigenIFN sig is present across all SLE molecular subtypes at 

different intensities, however we could discover some epigenetic signals exclusively in those SLE 

patients from the IFN subtype, as DMPs at IRF7 and TRIM22 genes.  IRF7 has been established as an 

SLE genetic risk locus that alters IFN type I expression (33) and TRIM molecules have been studied 

as autoantigens in some autoimmune diseases, especially in Sjögren’s syndrome (SS) where TRIM22 

protein showed little or no immunoreactivity in a sub-population of SS patients(35) suggesting that 

TRIM22 was acting as a potential SSA60 regulated gene. Importantly, we also discovered epigenetic 

signals that are specific of SLE patients with an inflammatory molecular profile, as those in the EGR3 

and SYNGAP genes. EGR3 is a member of a zinc finger transcription factor that plays an important 

role in regulating immune responses inducing also the expression of anti-inflammatory cytokines such 
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as IL-10 and TGFB1 (31), however the role of EGR3 in autoimmunity it is not clear yet. 

SYNGAP1 encodes a Ras GTPase activating protein that is member of the N-methyl-D-aspartate 

receptor complex and has been identified as a differentially methylated gene associated to gene 

expression in systemic sclerosis (SSc)(36). 

Our stratification approach also included an exploration of the AAb relationship on the SLE 

epigenome. The DMPs with largest effects were found within SSA positive SLE patients. Our previous 

work showed that the IFNepig signature in Sjogren’s syndrome is restricted to SSA positive patients 

and driven by HLA genetic variation(9). However, in SLE many of the signals observed are shared 

across SLE patients with different AAb profiles, which suggests that in SLE, the epigenetic signature 

is not AAb-specific or AAb specificities are highly correlated.  

One of the most important findings of this work is that SLE-associated genetic variation might 

exhibit its risk through DNAm changes, this is especially true for SLE-associated SNPs within the 

HLA region. Our findings strongly suggest that beyond the impact on antigen presentation, genetic 

risk at the HLA region is also mediated through the epigenetic and transcriptional alterations of many 

genes residing within the HLA such as HLA-F, HLA-A, HLA-C, HCP5, PSMB8, TAP1 and PSMB9. 

These results are in concordance with previous work showing an overexpression of these genes in SLE 

patients (7). Outside the HLA region, our mediation results also support an indirect effect of SLE-

associated genetic variation via DNAm within STAT1 and microRNA146 gene, previously genetically 

associated with SLE. However, given the small effects of these SNPs on SLE, and the sample size 

analyzed here, confirmatory studies are needed to provide conclusive results.  In the same line, 

analyzing public repositories of genetic associations by means of Mendelian Randomization 

approaches would help to resolve puzzling relationships as those observed for genetic variation, 

DNAm and SLE risk at the IRF7 gene. 

Our findings show that there exists a clear influence of disease and molecular status on the 

genetic architecture of DNAm, given the fact that DNAm at a large proportion of DMPs is regulated 

by meQTLs but exclusively in the SLE population context or in certain molecular states. For example, 

this is the case for CDHR5 gene which DNAm is regulated by genetics only in the IFN  and SLE 

subtypes, respectively.  Interestingly, our results show that genetic variants involved in CDHR5 

meQTLs are also associated with SLE risk. The SLE-associated SNPs represent novel disease variants 

as they have not been previously identified in GWAS and are likely to mediate their effects trough 

DNAm changes. Previous studies have identified CDHR5-SNPs located close to IRF7 (37,38) and  

associated with systemic sclerosis (SS) (38). The candidate gene CDHR5 is a member of the cadherin 

family which interacts with the b-catenin pathway (39). These observations are in agreement with a 
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growing body of evidence that highlights that genetic effects are largely context and time-specific, and 

implicates that future research and data collection of pathological and molecular status within 

longitudinal larger autoimmune populations will be able to decipher many more genetic variants with 

important regulatory functions in autoimmunity. 

TF activity (TFact) has been linked to SLE recently (31). In this work, we identified a group of 

TFs whose activity was associated with SLE-associated DNAm changes. The activity of STAT and 

IRFs regulators show the strongest association with DMPs at IRGs, and here we show that this 

relationship is specific of SLE population and not observed in healthy individuals. We also reveal other 

TFs not previously implicated in SLE, such as TFDP1, E2F3 and FOXM1 whose activity associates 

with DNAm at IRGs. On the contrary, we identified that RUNX3 activity, a susceptibility gene in SLE 

and systemic sclerosis (SSc) (40,41), correlates with DNAm at non-IFN related genes. Our results 

suggest that TFact could play a relevant role in autoimmunity by altering epigenetic programs.  

In SLE pathogenesis, an inflammatory cascade is mediated by altered cytokine production. 

Despite the growing recognition of the high potential of DNAm changes as surrogate and biomarkers 

of pro-inflammatory proteins, especially in ageing phenotypes (42,43), no study, to the best of our 

knowledge, had reported epigenetic-cytokine correlations within autoimmune diseases. Here we show 

a strong association in the SLE population between inflammatory cytokines and methylation changes, 

not observed within healthy individuals, being IL2RA and IP10 the cytokines showing the strongest 

association with the epigIFNsign. Our results also show that many epigenetic-cytokine associations 

are only observed in certain molecular contexts.  

Finally, we discovered several interesting potential new drug targets based on the SLE 

epigenetic profiles. Among the novel SLE candidate genes with higher score is STAT4, which is in 

direct PPI connections with SLE drug targets and exhibit strong genetic associations (44–49). 

Another interesting target candidate is the transcription Factor ETS1, which also had a significant 

strong SLE genetic association (50) and which is in direct PP interaction with SLE drug targets such 

as JAK3. This protein has been observed to suppress T follicular helper type 2 cell differentiation and 

halt SLE onset (51,52). Of interest, FGR, a member of the Src family of protein tyrosine kinases 

(PTKs) was scoring high for being a drug target for non-SLE conditions, but in close PPI 

connections with SLE validated targets, making it a potential candidate for drug repositioning. It 

functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via 

RAC1 activation. It also phosphorylates SYK and promotes SYK-dependent activation of AKT1 and 

MAP kinase signaling. SYK is one of the top genes in the candidate drug target gene list for SLE 

(31,53), as STAT4 is for the IFN subytpe and VDR for the inflammatory.  
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To wrap up, our study disentangles epigenetic signatures in SLE with regards to different 

heterogeneity aspects and identifies potential novel drug targets. By means of integrative multi-omics 

analyses we show that the strong association between epigenetics and genetics, TF activity and 

cytokine production is highly dependent on disease and molecular context.  
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FIGURE LEGENDS 

 

Figure 1. Overview of the Study Design. Schematic outline illustrating the data analysis and the use 

of patients’ genetic and molecular information to stratify patients into molecularly homogenous groups 

and autoantibody-positivity profiles to further perform EWAS functional enrichment analyses, 

meQTL analyses, cytokine association, and drug discovery according to molecular and serological 

subtypes.  
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Figure 2. Epigenetic signatures of SLE molecular subtypes. A. Manhattan plot illustrating EWAS 

results for SLE and different molecular groups when compared with controls. X-axis represents the 

chromosomic locations of CpG sites and Y-axis represents the log10 (P) obtained in linear regression 

models. B-D. Volcano Plots representing EWAS results. The X-axis represents the DNAm differences 

between each pair of groups tested. E. Overlap of genome-wide significant results for each EWAS was 

performed. F-I. Examples of subtype dependent-DMPs. Colored dots represent significant DMPs after 

Bonferroni correction of different groups according to the legend. Diamonds and starts dots represents 

subtypes-dependent DMPs. 

 

Figure 3. Epigenetic signatures of SLE autoantibody profiles. A. Manhattan plot illustrating EWAS 

results for different groups of SLE patients according to their autoantibody profiles when compared 

with controls. X-axis represents the chromosomal locations of CpG sites and Y-axis represents the 

log10 (P) obtained in linear regression models. B-E. Volcano Plots representing EWAS results. The 

X-axis represents the DNAm differences between each pair of groups tested. F. Overlap of genome-

wide significant results for each EWAS performed. G. Example of DNAm distribution across different 

autoantibody groups, and healthy subjects. Colored dots represent significant DMPs after Bonferroni 

correction of different groups according to the legend. 

 

Figure 4.  Genetic drivers of SLE-epigenetic signatures. A. Top Manhattan plot (MP) shows GWAS 

results contrasting allele frequencies between a group of SLE patients (N= 4,212) and a group of CTRL 

(N= 4,065). Bottom MP illustrates meQTL results for DMPs in the whole sample. X-axis represents 

the chromosomal locations of CpG sites and the Y-axis represents the log10 (P) obtained in a logistic 

regression model or meQTL analyses. Genetic associations above the red line marks the statistical 

association at a significant threshold of P < 1 x 10-06 for logistic associations and FDR < 0.05 for 

meQTLs. Red boxes show overlap in GWAS and meQTL results and represent meQTLs associated 

with SLE diagnosis. B. Mediation model in which SLE genetic risk is exerted partly through DNAm 

changes. C. Examples of SLE-associated SNPs in chr6 that are mediated by DNAm changes at DMPs 

in the HLA region. D. Mediation results for the best SLE-meQTL-DMPs by gene.  Upper barplot 

shows the Total and the Direct Effect of SLE-associated genetic variants. Botton barplot show the 

significance of the proportion mediated via DNA met resulted from mediation models. Percentage of 

mediation is illustrated in red below each bar only for those significant genes (P proportion mediated < 0.05) 

E-J Group-dependent meQTL effects. E.  A meQTL significant effect is observed among SLE patients 

(FDR < 0.05) but not in the CTRL population (P>0.05). F. A meQTL significant effect is observed in 

SLE patients and CTRLs but with different signs. G. A meQTL significant effect is observed among 
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SLE from inflammatory group (FDR < 0.05) but not in the CTRL population or in the IFN group 

(P>0.05). H. A meQTL significant effect is observed among SLE from IFN group (FDR < 0.05) but 

not in the CTRL population or in the inflammatory group (P>0.05). I. A meQTL with opposite 

direction effects between Inflammatory-IFN subtypes. 

 

Figure 5.  Relationship between SLE-epigenetic signatures, transcription factor activity, and 

cytokine production. A. Heatmap representing SLE-dependent associations between DNAm at DMPs 

and TFact inferred from RNAseq data. B. SLE dependent example showing the effect between TFact 

STAT2 and DNAm at ADAR gene vs CTRL. C-D. Subtypes dependent examples showing the effect 

between TFact ZEB1 and NR2F2 and DNAm at SPATS2L and LETM1 genes. E. Heatmap showing 

the effect distribution of CpGs-genes associated to cytokine levels exhibiting group specificity. Color 

gradient from blue to red correspond to effect sizes. F-G. Examples for cytokine opposite associations 

at DNAm levels for inflammatory and IFN subtypes.  

 

Figure 6. Representative SLE Epigenomic signature genes.  We list the top 20 (of the 549 genes 

from the identified 974 CpG sites) based on summary of gene total scores derived from individual 

criteria (filled box indicates criterion satisfied). Filled boxes indicate an overlap with the data source 

described in each column. For full results, see Supplementary Table 32. 

 

 

Supplementary Figure 1. Effect Size Comparison comparing results from different EWAS. A. 

Effect size comparison between inflammatory-dependent DMPs and lymphoid-dependent DMPs. B. 

Effect size comparison between inflammatory-dependent DMPs and IFN-dependent DMPs. C. Effect 

size comparison between IFN-dependent DMPs and lymphoid-dependent DMPs.  

 

Supplementary Figure 2. Relationship between SLE Epigenomic signature genes and known 

drug targets. A. Bar plot with number of methylated genes and known drug targets that are in these 

methylated genes under different score thresholds. B. Bar plot with number of methylated genes and 

the rate of known drug targets in these methylated genes under different score thresholds. 
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Figure 1. Overview of Study Design  
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Figure 2.  
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Figure 3 
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Figure 4  
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Figure 5 
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Figure 6 
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