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Supplemental Table 1. Example of prior therapy data collection form from subject ETB-

003. 

Regimen  Reference  
Cycle 
Length 
(days) 

# 
Cycles 

Best 
Response 

Known 
Resistance 
Mechanism 

ETB Comment 

Insulin potentiation 
therapy (IPT) - 
Cisplatin 

PMID: 
30712796 

N/A 2 N/A N/A IPT is not a proven 
anticancer treatment 

Insulin potentiation 
therapy (IPT) – 
paclitaxel + 
cisplatin + 5-
fluorouracil 

PMID: 
30712796 

N/A N/A N/A N/A IPT is not a proven 
anticancer treatment 

cisplatin + 5-
fluorouracil + 
cetuximab 

PMID: 
18784101 

21 2 PR 

Tumor phenotype 
change to 
mesenchymal 
phenotype 

Initiated with cisplatin, 
switched to carboplatin 
due to elevated creatinine. 
Discontinued regimen due 
to toxicity. 

cisplatin + 5-
fluorouracil + 
pembrolizumab 

PMID: 
31679945 

21 3 PR 

Downregulation 
of antigen 
presenting 
machinery 

Initiated as pembrolizumab 
alone, added chemo due 
to visible growth. 
Discontinued 
pembrolizumab after 2 
doses due to possible 
immune-mediated toxicity. 
Switched to carboplatin 
again due to elevated 
creatinine 

carboplatin + 
paclitaxel 

PMID: 
29774120 

21 4 CR N/A   

carboplatin + 
paclitaxel + 
radiation therapy 

PMID: 
14645636 

30 1 CR 

TP53 mutation, 
low tumor 
infiltrating 
lymphocyte, 
tobacco use 
history 

6,600 cGy IMRT/IGRT 
over 30 fractions, given 
concurrent with carboplatin 
+ paclitaxel regimen for 
locoregional control 

N/A: Not Available, PR: Partial Response, CR: Complete Response 
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Supplemental Table 2. Example of available therapies and anticipated outcomes 

Regimen 

Published 
Complete 
Response 
Rate 

Published 
Event-Free 
Survival 

Published 
Median 
Overall 
Survival 

Reference (e.g. 
PMID) 

Docetaxel 5.4% 

6.5 months 
median 
duration of 
response Not reported 

PMID: 7918125 

Methotrexate 0.7% Not reported 6.7 months PMID: 19289630 

Nivolumab/Cetuximab Not available Not available Not available NCT03370276  

Carboplatin/Paclitaxel 4% 

4.7 months 
median 
progression-
free survival 9.1 months 

PMID: 29774120 
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Supplemental File 1 

Development of Therapeutic Strategies based on Mathematical Models 

The growth of each lesion (each individual metastasis) is modeled using exponential 

growth with parameter γi. Tumor growth rates are not always perfectly exponential, 

particularly at larger sizes; we favored this growth model because using a more complex 

growth law would increase the number of parameters with minimal benefit to fitting the 

patient data. To date, we have found that the exponential growth model provides an 

excellent fit across lesions of different sizes both within and across patients, for several 

different cancers. This superior fit relative to other growth models is likely due to the 

paucity of data points.  

 

The reduction in lesion volumes caused by each drug is also modeled as an exponential 

term. In effect, each drug causes a reduction of the growth rate, and in most cases, for 

highly cytotoxic drugs, the death term will be larger than the growth term, causing a 

decline in the size of that lesion. For a single drug j, the product of the maximal drug death 

rate (δj), the current efficacy (Ej ∈ [0,1]), and the current dose (Dj ∈ [0,1]) determines the 

ecological dynamics of the tumor when the drug is on (Dj > 0). If that product is greater 

than γi, then the lesion will decrease in size. If the product is less than γi, then the lesion 

will grow, but at a slower rate than the untreated tumor.  

 

The evolution of cancer cells within each tumor is modelled by the time-dependent drug 

efficacy term Ej. We assume that the efficacy of a drug decays exponentially while the 

drug is on (representing the progressive selection of drug resistance in the tumor), and 

that the efficacy increases logistically toward 1 when the drug is not being administered 
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(representing the re-sensitization to a previous therapy). Note that the resensitization 

dynamic is only relevant to the model for cases where the tumor(s) are rechallenged with 

a previously used therapy. 

 

The GDRS model was developed from serial observations of volumetric measurements 

of individual lesions. Time series data came from retrospective cohorts as well as the 

patients enrolled on the ETB protocol. Namely, we often found the pattern of an initial 

decline in tumor size when a drug was commenced, followed by decreasing efficacy and 

eventual regrowth. The GDRS model generally provided excellent fits to these common 

‘U-shaped’ dynamics. This fit is accomplished with a minimum number of parameters (1 

growth parameter, and 2 parameters per drug). Our overall approach to the ETB is fully 

flexible and can use alternative models of tumor growth and treatment, but here we focus 

on the results produced with the GDRS model. 

 

Parameter space mapping from patient data 

In the exemplar patient of Figures 2B-D, the model plot prior to the ETB line is one “fit” 

out of many possible trajectories. For simplicity, we show one trajectory but a range of 

model fits match this data. To find exactly where these fits are in parameter space, our 

approach was as follows. First, we fit a growth rate from the data. In the exemplar patient, 

we used a growth rate corresponding to the largest metastatic lesion at the time of the 

ETB. This lesion had two pre-treatment imaging points, which gave a growth rate of 0.038. 

The scan before detection showed no apparent lesion, and applying our assumptions 
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about detection size, we find that this growth rate is also consistent with the lesion being 

present but below the detection level of the instrument. 

 

Once the growth rate was selected, we defined the parameter space of death and 

resistance for each segment of therapy (segment j). Note that resensitization only comes 

into play upon repeat application of therapies, and therefore is not part of the initial fitting 

for death and resistance. In all cases, there is an imaging point prior to the start of 

therapy j. Furthermore, there may be one or more imaging points following therapy before 

the next therapy begins. In general, the final imaging point after starting therapy j becomes 

the pre-treatment value for the next segment. For the case where there is one pre-

treatment point and more than one on-treatment point, we can generally find a set of 

parameters {δj, rj} that fits the three points. The exception being if the points are concave 

down, in which case the model is poorly defined. For the case where there is only one 

imaging point on treatment, then there is a space of {δj, rj} that would go through pre- and 

on-treatment points. One endpoint of that space is where rj = 0 and δj fits the constant 

exponential change from pre- to on- treatment points. With rj > 0, solving the GDRS model 

equations leads to the corresponding fitting value for δj, given by: 

!! =
#!$%!Δ' − ln(*" *#⁄ )-

1 − /$%!∆'  

where T1 is the on-treatment volume, T0 is the volume at start of therapy, and ∆t is the 

time between the two scans. In the limit as rj à 0, the death parameter is a straight 

forward solution of exponential decline, as long as δj > γj : 

!! = %! − ln()" )#⁄ )
,' . 



18 
 

The upper endpoint of the space of fitting {δj, rj} is essentially unlimited since any value of 

rj can be matched by a corresponding value of δj. In practice, there are limits to this fit. 

First, real tumors that decline below one cell would be removed and would not regrow, so 

this puts a limit on the depth of the “u-shape” and therefore an upper limit on the space 

of fitting {δj, rj}. In practice, we also limit the range of δj based on values observed in the 

historical cohort, as described in Table 2. This procedure leads to bounds on the space 

of {δj, rj} for a given growth rate, and the formation of prediction cones and the average 

trajectory applies the extremes of this space to the patient in a predictive fashion. In Figure 

2B, the patient-specific trajectory part of the cone arises due to the fact that previous 

administration of these agents in that patient led to patient-specific estimates for δ and r 

for the cetuximab and nivolumab. 

 

Combinations of agents can be treated in two ways. If none of the agents are used again, 

then the combination can be considered as a single therapy, because the individual 

contributions of each agent to the dynamics do not have importance. However, when 

there are multiple agents used and one or more are later applied separately (as in the 

case of cetuximab for the exemplar patient), we also sweep the contributions of each 

agent in that initial combination. In this case, resensitization also becomes a factor. In this 

study, we have set the resensitization to be equal to the rate of resistance. In this case, 

the change of contribution to one agent can affect subsequent fits of later strikes. 

However, these efficacies contribute to overall values of {δ, r} for the combination as a 

whole; the individual efficacies therefore can be adjusted algebraically across the fitting 

parameters. For example, if drugs A and B are applied early and then drugs B and C are 
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applied later, changes to the efficacy parameter of drug B in the first combination are also 

propagated to the second combination, and then the efficacy of drug C is adjusted to 

compensate for the change in B. 

 

In this example, we have used a basic approach to fitting the data to find average and 

extreme behaviors of a historical cohort and applied that to patient specific measures to 

produce predictive cones. More sophisticated methods might include forming distributions 

of parameters from historical data, and weighting fits by error measures such as least 

squares or similar. However, given the sparsity of the patient data and the range of 

dynamics possible, for our purposes of constraining and comparing the dynamics of 

various treatments we chose an approach that was parsimonious. Current and future 

work will include larger historical datasets that are analyzed, propagated, and illustrated 

with more statistical-based methods. 

 


