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Abstract

Recent empirical evidence suggests that the transmission coefficient in susceptible-

exposed-infected-removed-like (SEIR-like) models evolves with time, presenting random

patterns, and some stylized facts, such as mean-reversion and jumps. To address such

observations we propose the use of jump-diffusion stochastic processes to parameterize the

transmission coefficient in an SEIR-like model that accounts for death and time-dependent

parameters. We provide a detailed theoretical analysis of the proposed model proving the

existence and uniqueness of solutions as well as studying its asymptotic behavior. We

also compare the proposed model with some variations possibly including jumps. The

forecast performance of the considered models, using reported COVID-19 infections from

New York City, is then tested in different scenarios, including major outbreaks. The

proposed jump-diffusion model presented remarkably accurate out-of-sample predictions,

even during larger forecasted periods.

Keywords: Epidemiological Models, Stochastic Processes, Forecast Performance, COVID-

19, Asymptotic Behavior.

1 Introduction

Since the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic, numerous mod-

els were proposed to describe, calibrate and forecast the SARS-CoV-2 virus spread dynam-

ics, as well as, the disease evolution in populations. Some models are agent-based [42] or

network-based [1], other are generalizations of the classical susceptible-infected-removed (SIR)
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or susceptible-exposed-infected-removed (SEIR) models [3, 7, 10, 17, 23, 32]. Some mod-

els are based on partial-differential equations [35], statistical modeling [55], or yet, neural

networks [47]. Other works use multi-scale approaches, which consider, for example, the

interaction among individuals and between the virus and cells [15, 16].

One of the main difficulties faced in modeling is converting data into useful information,

such as accurate forecasts to help sanitary authorities to implement contention or mitigation

measures. These authorities must also appropriately adjust the intensity of lockdowns and

movement restrictions to minimize the impact on the labor market and the economy in general.

In fact, during 2020, many countries implemented socioeconomic measures to alleviate the

impact of lockdowns, furnishing income to those that lost their jobs [2, 4], which could have

helped the stay-at-home policies.

Another difficulty faced in modeling is balancing model parsimony and prediction accu-

racy [17]. A highly sophisticated model can overfit the data producing accurate in-sample

predictions but misleading forecasts. In other words, the model must be as simple as possible,

but not too simple.

A series of recent articles used SIR or SEIR-like models to describe the COVID-19 dy-

namics accounting for time-dependent transmission parameters that were estimated from

reported infections [3, 6, 5, 7, 21, 22, 11]. These estimations provided empirical evidence

for the time-dependency and the stochastic nature of the SARS-CoV-2 transmission [3]. For

other diseases, such as measles, such time variation was already investigated [19].

It is well-known that, in SIR and SEIR-like models, the transmission parameter is a

function of the average number of contacts someone has in a time period and the probability

of each of these contacts with an infected being will cause transmission [41]. Intuitively,

there is no reason for such values to stay static over time. Moreover, the probability of

transmission deeply depends on the pathogen evolution, which is highly uncertain. Thus,

it seems natural to parameterize the transmission coefficient as a stochastic process, which

is a random process that has a distribution that evolves with time. In [3, 45], the Cox-

Ingersoll-Ross (CIR) model [26], from Mathematical Finance, was proposed to describe the

transmission parameter dynamics in SEIR-like models. In fact, in [3], the resulting SEIR-like

model produced accurate forecasts with different time horizons using datasets from different

places. The rationale behind the use of this model is its mean-reversion which seems to be

one of the main characteristics of the transmission parameter values estimated from data.

The use of stochastic models to describe the evolution of epidemics in populations has a

long-standing tradition, and dates back at least, to the 1950s and 1960s [14, 13, 56]. For exam-

ple, in [54], the studied model was based on a discrete-time Markov chain. More recently, some

authors proposed stochastic versions of the susceptible-infected (SI) model [39, 48] studying

its asymptotic behavior, based on the so-called stochastic perturbation of parameters. Some

stochastic SI- or SEIR-like models were also proposed in [28, 30, 34, 53, 57]. In fact, the refer-
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ence [53] proposes a stochastic SIR model with jumps. A review of stochastic epidemiological

models can be found in [20].

The main difference between our approach with these previous works is the direct modeling

of the transmission parameter as a stochastic process. This allows us to define a structure for

the transmission parameter accounting for observed stylized facts, such as mean-reversion and

jumps. Moreover, by assuming that the only source of uncertainty comes from transmission,

we avoid adding unnecessary stochastic terms to the epidemiological dynamics, keeping the

model parsimonious and avoiding dealing with cross-correlations, that are difficult to estimate

from data. We shall see that considering only the transmission parameter as a stochastic

process, is sufficient to provide adherence to data and accurate forecasts.

In summary, the article’s contributions are as follows, a general jump-diffusion mean-

reverting model is proposed to describe the dynamics of the transmission parameter in an

SEIR-like epidemiological model. The resulting model is then analyzed theoretically, i.e.,

results on the existence and uniqueness of solutions are proved. Concerning the asymptotic

behavior of the model, we consider the versions with and without jumps. In both cases, the

existence of invariant or asymptotic measures is presented using recent results on the Ergodic

properties of stochastic processes. For the jumpless version, a closed-formula for the invariant

measure is achieved. For the model with jumps, the invariant measure is given by the solution

of an integro-differential equation that is solved numerically. We also consider in the analysis

and in the numerical examples the classical CIR model, and its version with jumps. We test

the forecast performance of the presented models using COVID-19 reported infections from

New York City (NYC), paying special attention to two major outbreaks, namely, the second

outbreak of 2020 and the outbreak caused by the omicron variant at the end of 2021.

The article is organized as follows, Section 2 introduces the epidemiological model, as

well as existence and uniqueness results are presented. Section 2 also recalls the asymptotic

properties of the deterministic SEIR model. The asymptotic analysis of different versions of

the model to the transmission parameter is developed in Section 3. Section 4 presents some

numerical examples evaluating predictions given by the epidemiological model considering

different versions of the dynamics of the transmission parameter using data from NYC. It

also presents an example that accounts for reinfection and loss of immunity. Concluding

remarks and a further discussion about the modeling are drawn in Section 5. Appendix A.1

presents the details of the implementation of the numerical examples in the text.

2 The Epidemiological Model

2.1 The General Setting

Consider the filtered probability space defined by (Ω,F , {Ft}t≥0,P), where Ω is the sample

space, F is a σ-algebra defined on Ω, {Ft}t≥0 is a filtration, and P a probability measure

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.23284574doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.15.23284574
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined on (Ω,F) [40, 51]. The proposed SEIR-type model accounts for susceptible (S),

exposed (E), infected (I), recovered (R), and deceased (D) compartments. Individuals progress

from one compartment to another accordingly to the system of differential equations below:

dS

dt
(t) = Λ− β(t)S(t)I(t)− µS(t), t > 0, (1)

dE

dt
= β(t)S(t)I(t)− (σ + µ)E(t), t > 0 (2)

dI

dt
= σE − (γ(t) + δ(t) + µ)I(t), t > 0 (3)

dR

dt
= γ(t)I(t)− µR(t), t > 0 (4)

dD

dt
= δ(t)I(t) + µ (S(t) + E(t) + I(t) +R(t)) , t > 0 (5)

dβ(t) = κ(t)(θ(t)− β(t−))dt+ ξ(t)β(t−)dW (t)

+

∫
R
λ(t)β(t−)(ez − 1)Ñ(dt, dz), t > 0. (6)

The time-dependent transmission parameter β(t) is a jump-diffusion, satisfying the stochas-

tic differential equation (SDE) [52] in Eq. (6), where W (t) is a Brownian motion [40] and

Ñ(dt, dz) is a compensated version of the Poisson random measure [52, 24]. In other words,

there exists a σ-finite measure ν(dz) such that Ñ(dt, dz) = N(dt, dz)−ν(dz)dt, and N(dt, dz)

is the Poisson random measure. The transmission has two main features, it is mean-reverting

and non-negative. The first two parts of the right-hand side (RHS) of the SDE in Eq. (6)

is the diffusive part, whereas the third part is the jump part. The compensator measure

ν(dz) is the Lévy measure of the process, which is the so-called jump-size distribution, and

the Poisson measure N(dt, dz) states the time-frequency of jumps with certain sizes. In gen-

eral, small jumps can be modeled as diffusion, however, the transmission can suffer dramatic

regime changes that are represented by large jumps in the time series of estimated values for

β(t). Such large jumps are observed, for example, when a more transmissible variant arises.

Thus, allowing the process that defines the transmission rate jump can be more realistic.

For simplicity, we assume that only the transmission parameter has stochastic dynamics

since our aim is to understand how the stochastic perturbation of the transmission parameter

interferes with the qualitative behavior of SEIR-type models.

It is worth noticing that, if ω ∈ Ω is fixed, β(t) = β(t, ω) as a function of t is continuous by

parts. More precisely it is a right-continuous with left limit (càdlàg), this is why we use the

superscript minus sign (−) in the SDE in Eq. (6). Thus, for almost every ω, we can analyze

the system of ordinary differential equations in Eqs. (2)–(5) using usual techniques.
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2.2 Existence and Uniqueness of Solutions

Firstly, we must state that there exists a unique non-negative solution of the SDE in Eq. (6).

Lemma 1. Assume that the coefficients κ(t), θ(t), ξ(t), and λ(t) are non-negative and

bounded functions. In particular, 0 ≤ λ(t) ≤ 1. Assume also that the jump-size distribu-

tion satisfies:

ν({0}) = 0,

∫
R

z2

1 + z2
ν(dz) < ∞ and

∫
z≥1

zezν(dz) < ∞. (7)

There exists a unique non-negative and càdlàg process β(t) satisfying the SDE in Eq. (6) for

any deterministic initial condition β(0) = β0 > 0.

Proof. The first two conditions in Eq. (7) state that ν is a Lévy measure. The third condition

states that the integral part in the SDE in Eq. (6) is finite. The existence and uniqueness

of a càdlàg process β(t) satisfying the SDE in Eq. (6), given a deterministic initial condition

β(0) = β0 > 0, follows by [52, Theorem 1.19], since the parameters α(t, x) = κ(t)(θ(t) − x),

σ(t, x) = ξ(t)x, and γ(t, x, z) = λ(t)x(ez−1) satisfy the linear growth and Lipschitz continuity

on the variable x conditions. Moreover, the expected value E
[
β(t)2

]
is finite for every t ≥ 0.

The non-negativity follows since β(t) has the formula

β(t) = X1(t)X2(t), (8)

where

X1(t) = exp

[
−
∫ t

0

(
κ(s) +

1

2
ξ(s)2

)
ds+

∫ t

0
ξ(s)dW (s)

+

∫ t

0

∫
R
λ(t) (1 + z − ez) ν(dz)ds+

∫ t

0

∫
R
λ(t)zÑ(ds, dz)

]
(9)

and

X2(t) = β0 +

∫ t

0
κ(s)θ(s)X1(s)

−1ds. (10)

Since X1(t) ≥ 0 almost surely (a.s.), it follows that x2(t) is also non-negative, since β0, κ(t),

and θ(t) are non-negative. Thus, β(t) is a.s. non-negative.

Remark 1. To obtain the formulas in Eqs. (8)–(9) for the solution of β we adapted techniques

to find solutions for a general linear SDE from [29, Example 2] to the context of jump-

diffusions and applied the multi-dimensional version of the Itô’s lemma to jump-diffusions in

[52, Theorem 1.16]. The formula in Eq. (10) is the version with time-dependent parameters

of the solution of the geometric Lévy process obtained in [52, Example 1.15] and γ(t, z) =

λ(t)(ez − 1).
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We now pass to the existence and uniqueness of the solution of the system in Eqs. (2)–(5).

Lemma 2. Let σ be a positive constant and γ(t) and δ(t) be bounded and non-negative

continuous functions. Then, the system of ordinary differential equations (ODE) in Eqs. (2)–

(5) has a unique solution almost surely, given appropriate initial conditions.

Proof. The almost surely part comes from the fact that the SDE in Eq. (6) is satisfied almost

surely by the càdlàg process β. Since for each ω ∈ Ω, β(t) = β(t, ω) is continuous by parts

function and the other parameters in the ODE system in Eqs. (2)–(5) are continuous and

bounded functions, existence and uniqueness follow by Theorems 1–2 in [31].

A simple adaptation of the calculations in [46, Section 2] shows that, for a positive ini-

tial condition, the solution for the system in Eqs. (2)–(5), with β(t) given, is non-negative.

Moreover, for any initial condition such that (S(0), E(0), I(0), R(0)) is inside the region

D = {(S,E, I,R) ∈ R4
+ : S + E + I +R ≤ Λ/µ}

the corresponding solution remains in D, i.e., D is positively-invariant.

We expect that, when t → ∞, the coefficients in the epidemiological model converge to

constant values. In the analysis of the asymptotic behavior of the model in Eqs. (2)–(6), we

shall assume that all coefficients, including those in the definition of β(t), do not depend on

time t. We shall also need the definitions below.

Definition 1. Let f(x) be a bounded function with bounded first and second derivatives, then,

the infinitesimal generator of the stochastic process in Eq. (6) is the operator defined as

lim
t→0+

Ptf(x)− f(x)

t
= Lf(x) for x ≥ 0,

where Ptf(x) = E [f (β(t)) |β(0) = x] is the semi-group associated with β(t).

Definition 2. An invariant measure µ associated with the stochastic process β(t) in Eq. (6)

is a Borel probability measure defined in R+ such that∫
R+

Ptf(x)µ(dx) =

∫
R+

f(x)µ(dx),

i.e., P ∗
t µ = µ.

Notice that, Definitions 1–2 can be extended to general stochastic processes. See, for

example, [8, 40, 49].

2.3 Asymptotic Properties of the Deterministic Model

In this section, we assume that the model in Eqs. (2)–(5) has constant parameters, i.e.,

β(t) = β, γ(t) = γ, and δ(t) = δ. Since the asymptotic analysis of this model is well-known,
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we just recall some results that are relevant to the analysis that follows. We refer the readers

to the works [46, 44] for more details.

In this case, the time-dependent reproduction number, obtained through the next-generation

matrix method [27], is given by

R(t) =
σ

σ + µ

β(t)

γ(t) + δ(t) + µ
. (11)

If we assume that β and γ are strictly positive constants, the resulting ODE system has

two steady-state equilibrium points, namely, one disease-free equilibrium point (DFE), and

one endemic equilibrium point (EEP). By steady state points, we mean limit points to the

orbits of the model when t → ∞. In this case, the time derivatives in Eqs. (2)–(5) vanish,

and the resulting algebraic system is solved for (Se, Ee, Ie, Re), in the case of the EEP, and

for (Sf , 0, 0, 0) in the case of DFE.

The DFE is given by Sf = Λ/µ and the EEP is given by,

Se =
1

R0
,

Ee =
1

σ + µ

(
Λ− µ

R0

)
,

Ie =
ΛR0 − µ

β
,

Re =
γ

µ

ΛR0 − µ

β
.

Based on results from [46, 44] it is possible to find an appropriate Lyapunov function and

to verify that both equilibrium points are dynamically stable. Intuitively, dynamical stability

means that, under certain conditions, the system’s solution will necessarily converge to these

equilibrium points, even under small perturbations in the initial conditions.

3 Asymptotic Analysis of the Transmission Parameter

In this section, we study the asymptotic properties of the transmission parameter providing

sufficient conditions for the existence and uniqueness of the associated invariant distribution.

This analysis uses deep results in the Ergodic Theory of stochastic processes. In general,

we must show that the stochastic processes satisfy a series of conditions that are related

to, for example, the strong Markov property. For more details, see the notes by Martin

Hairer [36] and the literature review in [9]. We start by considering the transmission without

jumps, since, in this case, we can find a closed formula for the asymptotic density. This is of

particular interest as we can easily evaluate the probability of the epidemiological model to

reach the disease-free and the endemic equilibrium points based on the estimated values of
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the transmission parameter. Then, we analyze the case with jumps, providing similar results.

However, in this case, the associated forward Kolmogorov equation has an integral part, which

makes it difficult to find a closed formula for its solution.

3.1 The Transmission Parameter without Jumps

To study the asymptotic behaviour of the transmission parameter, we shall assume that its

coefficients are constant, i.e., we set κ(t) = κ, θ(t) = θ, and ξ(t) = ξ. Moreover, for simplicity,

in this section we also assume that the model has no jumps, i.e., we set λ(t) = 0. Thus

β(t) = β0 exp

[
−
(
κ+

ξ2

2

)
t+ ξW (t)

]
+

κθ

∫ t

0
exp

[
−
(
κ+

ξ2

2

)
(t− s) + ξ (W (t)−W (s))

]
ds. (12)

In addition, the SDE for β(t) now reads

dβ(t) = κ (θ − β(t)) dt+ ξβ(t)dW (t), with β(0) = β0 known. (13)

In this case, by applying Itô’s formula, Fubini’s theorem, and simple calculations to obtain

the solution of linear ordinary differential equations, it follows that,

E [β(t)|β(s)] = β(s)e−κ(t−s) + θ
(
1− e−κ(t−s)

)
(14)

and

E
[
β(t)2|β(s)

]
= β(s)2e−(2κ−ξ2)(t−s) +

2κθβ(s)− 2κθ2

κ− ξ2

(
e−κ(t−s) − e−(2κ−ξ2)(t−s)

)
+

2κθ2

2κ− ξ2

(
1− e−(2κ−ξ2)(t−s)

)
, for t > s. (15)

For the equality above to make sense, we must have κ ̸= ξ2 and 2κ ̸= ξ2. Based on such

calculations, it is easy to evaluate Var[β(t)] = E
[
β(t)2

]
− E [β(t)]. We are interested in the

behavior of β(t) when t → +∞. Since κ > 0, it follows that

lim
t→+∞

E [β(t)] = θ. (16)

If, κ > ξ2/2 and κ ̸= ξ2,

lim
t→+∞

Var[β(t)] =
ξ2θ2

2κ− ξ2
. (17)

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.23284574doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.15.23284574
http://creativecommons.org/licenses/by-nc-nd/4.0/


On the other hand, if κ < ξ2/2, and β0 satisfies

β0 >

√
4κ− 3ξ2

(2κ− ξ2)(κ− ξ2)2
− 1

κ− ξ2
,

then, limt→+∞Var[β(t)] = +∞.

In what follows, we assume that

κ > ξ2/2 and κ ̸= ξ2. (18)

Using the estimates for E [β(t)] and Var[β(t)] in Eqs (14)–(15), it is possible to evaluate

estimates based on the Markov and Chebychev inequalities, which are given, respectively, as

follows:

P [β(t) ≥ c] ≤ E [β(t)]

c
, (19)

P [|β(t)− E [β(t)]| ≥ c] ≤ Var[β(t)]
c2

. (20)

Notice that, when t → +∞, W (t)/t converges almost surely to zero. Thus, the first part of

the right-hand-side (RHS) in Eq. (12) converges to zero, which means that only the integral

part is relevant to the asymptotic behavior of β(t).

Another simple calculation leads us to the candidate of steady-state or invariant distribu-

tion of the stochastic process β(t). In other, words, we consider the solution of the steady-state

forward Kolmogorov partial differential equation (PDE) associated with the infinitesimal gen-

erator of the process β(t). See [40].

Assume that β0 > 0 and β0 ̸= θ, then, κ(θ − β0) ̸= 0, moreover, κ(θ − β0)ξβ0 ̸= 0. In

other words, β(t) satisfies the Hörmander conditions and it admits an infinitely differentiable

density [49]. Such density is a solution for the forward Kolmogorov PDE [40]. Since we are

interested in the asymptotic behavior of β(t), we must find the invariant measure of β(t),

that, in principle, must solve the following steady-state forward Kolmogorov PDE,

d2

dx2

(
1

2
ξ2x2ϕ(x)

)
=

d

dx
(κ(θ − x)ϕ(x)) (21)

If we assume that ϕ(0) = 0, integrating from 0 to x we have

ϕ′(x)

ϕ(x)
=

2κ(θ − x)− 2ξ2x

ξ2x2
.

It follows that

ϕ(x) ∝ exp

(
−2κθ

ξ2
1

x

)(
1

x

) 2κ
ξ2

+2

, (22)

9
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which means that 1/β∞ = limt→+∞ 1/β(t) is Gamma-distributed, if the process β(t) admits

a unique steady-state or invariant distribution. Thus, we can state the following proposition:

Proposition 1. If the hypotheses in Eq. (18) hold, then the stochastic process β(t) in Eq. (12)

admits a unique invariant distribution, with the corresponding random variable denoted by β∞.

In addition, 1/β∞ follows the Gamma distribution, i.e.,

1

β∞
∼ Ga

(
2κ

ξ2
+ 1,

2κθ

ξ2

)
.

Proof. By assuming that the density of β∞ is ϕ,

P(β∞ ≤ c) = K

∫ c

0
exp

(
−2κθ

ξ2
1

x

)(
1

x

) 2κ
ξ2

+2

dx = K

∫ +∞

1
c

exp

(
−2κθ

ξ2
y

)
y

2κ
ξ2 dx,

where

K =

(
2κθ

x2

) 2κ
ξ2

+1
/

Γ

(
2κ

ξ2
+ 1

)
and Γ denotes the Gamma function. By applying the change of variable y = 1/x and the well-

known property of Gamma functions Γ(x+1) = xΓ(x), it follows that the mean value and the

variance of β∞ evaluated using the density ϕ coincide with the estimates in Eqs. (16)–(17),

respectively.

The existence and uniqueness of the asymptotic or invariant measure for the process in

Eq. (12) follows by the existence of a so-called strong Lyapunov function w(x), which, in the

present case, can be defined as w(x) = x. Such strong Lyapunov function is related to the

infinitesimal operator

L = −1

2
ξ2x2

d2

dx2
− κ(θ − x)

d

dx

associated with β(t) in Eq. (12) and satisfies the properties, limx→+∞w(x) = +∞ and

limx→+∞ Lw(x) = +∞, since Lw(x) = κ(x − θ). Then, the hypotheses of Theorem 3.11

in [18] are satisfied and the existence and uniqueness of the invariant measure hold. Alterna-

tively, using the same strong Lyapunov function, it is possible to use the conditions proposed

in [36], as in the proof of Proposition 2 in [58]. By, the uniqueness result, the invariant

distribution is given by the density in Eq. (22).

In other words, we are considering the convergence in law, i.e., the convergence of the

probability distribution of β(t) to some asymptotic distribution. In fact, there are convergence

rates results when considering the semigroup associated to the distribution of β(t) and the

corresponding invariant distribution. See [36]. Based on the steady-state distribution for β(t),

it is possible to find the asymptotic distribution of the time-dependent reproduction number

R(t).
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Definition 3. We define the steady-state effective reproduction number as

R∞ =
σ

σ + µ

β∞
γ∞ + δ∞ + µ

,

where β∞ is the random variable associated to β(t), as well as γ∞ and δ∞ are the limit values

of γ(t) and δ(t), respectively.

Notice that, R∞ is the limit in law of R(t) when t → ∞. Thus,

P [R∞ ≥ c] = P [β∞ ≥ c̃] = P
[

1

β∞
≤ 1

c̃

]
= F

(
1

c̃
,
2κ

ξ2
+ 1,

2κθ

ξ2

)
,

where c̃ = c (γ∞ + δ∞ + µ)
σ + µ

σ
and F represents the Gamma cumulative distribution with

the parameters
2κ

ξ2
+ 1 and

2κθ

ξ2
.

Corollary 1. Under the assumptions of Proposition 1, the probability of the steady-state

effective reproduction number to be larger than one is

P [R∞ ≥ 1] = F

(
σ

(γ∞ + δ∞ + µ) (σ + µ)
,
2κ

ξ2
+ 1,

2κθ

ξ2

)
. (23)

Notice that, intuitively, when t → +∞, we can assume that β(t) ≈ β∞, i.e., the transmis-

sion parameter is random but constant in time. In this case, it makes sense to evaluate the

probability of the model in Eqs. (2)–(5) will reach the DFE and the EEP, depending on the

values of the parameters of β, i.e., κ, θ, and ξ.

Example 1. In this example we evaluate the probability of reaching the EEP, i.e., when

P (R∞ ≥ 1), for different values of κ, θ, and ξ and using the estimate in Eq. (23). We set

µ = 0, γ∞ = 1/12 days−1, and δ∞ = 1/14 days−1. The parameter κ ranges from 1 to 2,

θ assumes the values 0.01, 0.05, 0.10, 0.20, 0.30, and 0.40, and ξ is set to 0.20, 0.60, and

1.00. We aim to evaluate the impact of the volatility level, the mean-reverting speed, and the

mean value on the probability of reaching an endemic equilibrium R∞ ≥ 1. In this example,

P (R∞ ≥ 1) = P (β∞ ≥ 0.155).

When κ assumes lower values, even when θ is substantially larger than 0.155, we can see

that the volatility ξ is more relevant, since we observe probability values considerably smaller

than one. As the value of κ increases, θ becomes more relevant. This is expected as the

variance of β∞ decreases when κ increases. Notice that, for simplicity, we included also cases

when the first condition in Eq. (18) is violated. They are displayed on the left-hand side of

the vertical solid line in the three panels of Figure 1.

Remark 2. An important mean-reverting stochastic model that is closely related to the one

in Eq. (12) is the Cox-Ingersoll-Ross (CIR) model [26] which was originally introduced to
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Figure 1: Probability of R∞ ≥ 1 with different values for κ, θ, and ξ. The vertical line
indicates when κ = ξ2/2. The probability values for κ ≤ ξ2/2 are included for completeness.

describe bond prices. This model was used in SEIR-like models to describe the dynamics of

the transmission parameters in recent works [3, 45]. In this case, the parameter β satisfies

the SDE below:

dβ(t) = κ(θ − β(t))dt+ ξ
√

β(t)dW (t), (24)

with β(0) = β0 known. Unfortunately, this model does not have an explicit expression for its

solution. Many of its features and asymptotic properties are well-known and well-understood.

The model has a unique stable distribution [58]. If we denote the random variable associated

to this distribution by β∞, it follows that

β∞ ∼ Ga

(
2κθ

ξ2
,
2κ

ξ2

)
.

To find the stable distribution, it is only necessary to repeat the steps used in the case of β

given in Eq. (12). Notice that, in the present case,

P [R∞ ≥ 1] = F

(
σ

(γ∞ + δ∞ + µ) (σ + µ)
,
2κθ

ξ2
,
2κ

ξ2

)
and P [R∞ < 1] = 1− P [R∞ ≥ 1] .

3.2 The Transmission Parameter with Jumps

We will now analyze the existence, uniqueness and some properties of the invariant or steady-

state distribution associated to the process β(t) satisfying the SDE in Eq. (6) with the constant

parameters κ(t) = κ, θ(t) = θ, ξ(t) = ξ, and λ(t) = λ. Thus, the SDE for β(t) now reads

dβ(t) = κ(θ − β(t−))dt+ ξβ(t−)dW (t) +

∫
R
λβ(t−)(ez − 1)Ñ(dt, dz), t > 0, (25)

with β(0) = β0 known. It is worth mentioning that, again, to analyze the asymptotic prop-

erties of the transmission parameter, we must assume that its coefficients are constant.
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Since Ñ is a compensated Poisson random measure, it follows that [49]

E
[∫

R
λβ(t−)(ez − 1)Ñ(dt, dz)

∣∣∣∣β(s)] = 0, for s ≤ t.

Then, β(t) in Eq. (25) also satisfies the conditional expected value in Eq. (14). This means

that the limit in Eq. (16) also holds for the present process.

Using again Fubini’s theorem, the Itô’s formula for jump-diffusions [52], and the rule for

the expected values of the integral with respect to the compensated Poisson measure [49], it

follows that

E
[
β(t)2|β(s)

]
= β(s)2ea(t−s) − 2κθβ(s)− 2κθ2

a+ κ

(
e−κ(t−s) − ea(t−s)

)
− 2κθ2

a

(
1− ea(t−s)

)
, for t > s, (26)

where a = ξ2 + λ2
∫
R(e

z − 1)2ν(dz)− 2κ.

Here, we replace the conditions in Eq. (18) in Section 3.1 by

2κ > ξ2 + λ2

∫
R
(ez − 1)2ν(dz) and κ ̸= ξ2 + λ2

∫
R
(ez − 1)2ν(dz), (27)

respectively. Under the conditions in Eq. (27), the quantity a becomes negative and it follows

that

lim
t→+∞

Var[β(t)] =
ξ2θ2 + λ2θ2

∫
R(e

z − 1)2ν(dz)

2κ− ξ2 − λ2
∫
R(e

z − 1)2ν(dz)
. (28)

Notice that, by setting λ = 0, we recover the estimates in Eqs. (15)–(17) in Section 3.1 from

the estimates in Eqs. (26)–(28).

Proposition 2. If the conditions in Eq. (27) are satisfied, then, the process in Eq. (25) admits

at least one invariant measure.

Proof. By Theorem 4.5 in [8], since the coefficients in the SDE in Eq. (25) are linear with

respect to βt, it is only necessary to show that there are constants K and M , such that

ξ2x2 + 2xκ(θ − x) + λ2x2
∫
R
(ez − 1)2ν(dz) ≤ −Kx2 +M.

By the first condition in Eq. (27), it is only necessary to choose K > 0 such that K <

2κ− ξ2 − λ2
∫
R(e

z − 1)2ν(dz) and M ≥ 0, such that

M ≥ 4κ2θ2

2κ− ξ2 − λ2
∫
R(e

z − 1)2ν(dz)−K
.
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Sufficient conditions for the uniqueness of the invariant measure and convergence rates

can be found, for example, in Corollary 5.2 in [9]. However, the processes considered so far,

do not satisfy them.

By applying the Itô’s formula for jump-diffusion processes [52], it is easy to see that the

infinitesimal generator associated with the SDE in Eq. (25) is the following:

Lf(x) = κ(θ − x)
df

dx
(x) +

1

2
ξ2x2

d2f

dx2
(x)

+

∫
R

(
f(x+ λx(ez − 1))− f(x)− df

dx
(x)λx(ez − 1)

)
ν(dz), (29)

where f is any sufficiently regular function defined in R+. Using integration by parts and

change of variables y = x+ λx(ez − 1) [37], such that

x = y − λy(ez − 1)

1 + λy(ez − 1)
,

it follows that the adjoint in L2(R+) of the operator L is the following

L∗ϕ(x) = − d

dx
(κ(θ − x)ϕ(x)) +

d2

dx2

(
1

2
ξ2x2ϕ(x)

)
−K1ϕ(x) +K2

d

dx
(xϕ(x))

+

∫
R
ϕ

(
y − λy(ez − 1)

1 + λ(ez − 1)

)
1

1 + λ(ez − 1)
ν(dz), (30)

where K1 = ν (R) and K2 = λ
∫
R(e

z − 1)ν(dz), if we assume that ν is a finite measure. The

function ϕ is sufficiently regular and defined in R+.

The steady-state version of the forward Kolmogorov equation associated to β(t) in Eq. (25)

is then

L∗f(x) = 0, x ∈ R+, (31)

with homogeneous boundary conditions. The solution of the ODE problem in Eq. (31) defines

an invariant distribution for the stochastic process β(t).

Remark 3. Under appropriate conditions, to show that µ solves the integro-differential equa-

tion in Eq. (31) in the sense of distributions, just note that

lim
t→0+

∫
R+

Ptf(x)− f(x)

t
µ(dx) =

∫
R+

Lf(x)µ(dx) =
∫
R+

f(x)L∗µ(dx), (32)

since µ is an invariant measure, it follows that∫
R+

Ptf(x)− f(x)

t
µ(dx) = 0 for every t > 0.

The first equality in Eq. (32) follows by the dominated convergence theorem. It is sufficient

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.23284574doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.15.23284574
http://creativecommons.org/licenses/by-nc-nd/4.0/


to assume that f and its derivatives have compact support and ν is a finite measure.

The main difficulty in finding regularity properties for a solution of the integro-differential

equation in Eq. (31) is the following, it mixes degenerated coefficients in the differential part,

that vanish and is unbounded, with a non-local term, i.e., the integral part. We refer the

interested reader to [12, 25] that study similar problems in the context of viscosity solutions.

Example 2. The goal of this example is to evaluate the impact of the jumps and the mean-

reverting speed on the probability of reaching an endemic equilibrium R∞ ≥ 1. As in the

previous example, P (R∞ ≥ 1) = P (β∞ ≥ 0.155). We evaluate againg the probability of reach-

ing the EEP, but for the model in Eq. (25). We set θ = 0.2 and ξ = 0.4. We assume that

the distribution ν is Gaussian, and we test different combinations of values for its mean

and standard deviation. The epidemiological-related parameters assume the values µ = 0,

γ∞ = 1/12 days−1, and δ∞ = 1/14 days−1. The parameter κ ranges from 0.01 to 2, λ as-

sumes the values 0.01, 0.1, 0.5, and 1.0. The mean of ν assumes the values −1.0, 0, and 1.0,

whereas its standard deviation assumes the values 0.5, 1.0, and 1.5.

As λ increases, the probability of R∞ to be larger than one becomes smaller. The probabil-

ity increases as a function of κ, in general. If the mean of ν is −1.0, the probability values are

less sensitive to changes in the standard deviation of ν. As the mean increases, the sensitivity

w.r.t the standard deviation increases. If λ assumes the values 0.5 and 1.0, the probability

becomes closer to zero, especially if the mean of ν is 0 or 1.0. It is worth mentioning that, for

the sake of completeness, we are considering values that violate the first condition in Eq. (27).

4 Numerical Results

Transmission Parameter Estimation The aim of this section is to illustrate the pre-

diction capability of the models presented so far using daily reports of COVID-19 infections

from New York City (NYC) [50] during the omicron outbreak at the end of 2021. To test

the sensitivity of the epidemiological model in Eqs. (2)–(5) with respect to the estimated

β, we use bootstrapping with 200 samples. Figure 3 shows the median and the correspond-

ing 90% confidence interval (90% CI) of the estimated transmission parameter β(t) during

two COVID-19 outbreaks in NYC, namely, the second outbreak at the end of 2020 and the

omicron variant outbreak at the end of 2021.

As Figure 3 illustrates, the estimated β(t) is highly volatile. When a new and highly

transmissible variant becomes dominant, as, during the omicron outbreak at the end of 2021

in NYC, we can observe jumps in the β(t) dynamics. Such patterns cannot be appropriately

described by deterministic models, as many shocks in the transmission dynamics, such as the

introduction of new variants, occur randomly and have an unpredictable impact. Thus, using
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Figure 2: Probability of R∞ ≥ 1 with different values for κ, θ, and ξ. The squares in the
curves indicate when κ start to satisfy the condition in Eq. (27). If the curve does not have
a square, the condition is never satisfied. The probability values for κ not satisfying the
condition in Eq. (27) are included for completeness.

Figure 3: Median values and 90% CI of the estimated transmission parameter during the
second COVID outbreak in 2020 (left) and the omicron outbreak at the end of 2021 (right),
both in NYC. In both cases, the estimated parameter β(t) is highly volatile. During the
omicron outbreak, β(t) presents a large jump occurring in the middle of December 2021.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.23284574doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.15.23284574
http://creativecommons.org/licenses/by-nc-nd/4.0/


diffusion models or, more generally, jump-diffusion models, seem to be a proper way to treat

such randomness in order to improve forecasting.

It is worth mentioning that, it is important to recalibrate the models as time goes by since

regime changes in a longer time horizon can cause a loss of accuracy in predictions. This is

why in Eq. (6), we assume that β(t) has time-dependent parameters.

Estimation of the Stochastic Models After estimating the values of β(t) from the daily

reported infections, we calibrate the parameters of the stochastic models from the 200 sam-

ples generated by bootstrapping. The out-of-sample predictions of the stochastic models are

generated considering 5000 sample paths for each set of estimated parameters. This leads to

106 sample paths. Recall that the mean-reverting (MR) model is defined in Eq. (24) and its

version with jumps, which we call mean-reverting with jumps (MRJ), is defined in Eq. (33).

These models have a nonlinear term in the diffusion part. The models with the linear diffusion

term are the linear mean-reverting model (LMR), which is defined in Eq. (12) and its version

with jumps, which we call linear mean-reverting with jumps (LMRJ), is defined in Eq. (25).

For the MR and LMR models, we estimate κ, θ, and ξ from 45-day long series of β(t) values,

whereas the MRJ and LMRJ models, κ, θ, ξ, λ, µ, and σ are estimated from 90-day long

series to capture the jump-size distribution.

To illustrate the performance of the estimated model, in-sample and out-of-sample predic-

tions for β(t) and for accumulated infections are provided and compared with observed data,

in the case of infections. The out-of-sample predictions provide 60-day-long forecasted scenar-

ios. To stress-test, such predictions are performed during two major outbreaks of COVID-19

in NYC, namely, the second wave of infections at the end of 2020 and the omicron variant

outbreak at the end of 2021. The prediction plots can be found in Figures 4–7.

The estimated median and 90% CI values of the model parameters for the two NYC

COVID-19 outbreaks can be found in Table 1.

In Figures 4 and 6, the solid black line represents the median β(t) values directly estimated

from reported infections. We call such median values as observed since they are not given

by any stochastic model and we use the as our benchmark for the forecasted scenarios of the

transmission parameter evolution given by the stochastic models.

For the second outbreak of 2020, Figure 4 shows that the 90% CIs of the out-of-sample

predictions of all four models contain the path of β (black solid line). However, the jump-

diffusion models, i.e., MRJ and LMRJ, presented tighter 90% CIs in comparison to MR and

LMR. This is reflected in the evolution of the predicted accumulated infections in Figure 5,

where, the MRJ and LMRJ models also presented tighter 90% CIs containing the reported

infections.

In other words, the MRJ and LMRJ models successfully incorporated the uncertainty in

the data presenting more accurate results. The wider 90% CIs of the MR and LMR models

is due to the larger estimated values for the diffusion parameter ξ shown in Table 1. As
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Figure 4: In-sample and out-of-sample model predictions for the parameter β during the
second wave of COVID-19 infections in NYC during 2020. The out-of-sample predictions are
on the right-hand side of the vertical lines. The filled envelopes represent the 90% CIs.

Figure 5: Out-of-sample model predictions for the accumulated number of infections during
the second wave of COVID-19 in NYC during 2020. The filled envelopes represent the 90%
CIs.
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Figure 6: In-sample and out-of-sample model predictions for the parameter β during the
omicron variant outbreak in NYC at the end of 2021. The out-of-sample predictions are on
the right-hand side of the vertical lines. The filled envelopes represent the 90% CIs.

Figure 7: Out-of-sample model predictions for the accumulated number of infections during
the omicron variant outbreak in NYC at the end of 2021. The filled envelopes represent the
90% CIs.
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Model Parm. 2nd. Wave (2020) Omicron Wave (2021)

MR κ 8.34 (0.58–9.69) 7.99 (0.62–9.82)
θ 0.05 (0.00–0.48) 0.05 (0.02–0.06)
ξ 0.29 (0.10–1.02) 0.44 (0.21–1.2)

LMR κ 5.49 (0.27–8.14) 5.70 (0.63–10.0)
θ 0.05 (0.00–1.40) 0.04 (0.01–0.05)
ξ 1.05 (0.10–2.39) 1.61 (0.29–3.56)

MRJ κ 16.6 (0.27–33.1) 15.4 (4.24–22.8)
θ 0.07 (0.04–1.11) 0.02 (0.01–0.03)
ξ 0.36 (0.10–0.62) 1.78 (0.18–4.65)
λ 0.65 (0.46–5.49) 0.68 (0.09–4.06)
µ -2.12 (-6.78–1.46) -0.51 (-4.7–0.72)
σ 1.03 (0.68–1.98) 1.16 (0.07–1.61)

LMRJ κ 1.86 (0.08–31.01) 19.0 (8.07–34.4)
θ 0.24 (0.05–2.39) 0.01 (0.01–0.20)
ξ 0.30 (0.10–0.55) 0.10 (0.10–0.50)
λ 1.88 (0.46–5.96) 0.70 (0.62–0.78)
µ -1.95 (-7.19–1.24) 0.58 (-0.43–0.91)
σ 1.10 (0.65–2.07) 1.25 (0.87–1.32)

Table 1: Median values estimated parameters for the stochastic models using data just before
the NYC second outbreak of COVID-19 at the end of 2020 and just before the NYC omicron
variant outbreak at the end of 2021. The numbers inside the parentheses are 90% CIs.

Figures 3–4 show, β(t) is highly volatile, presenting large changes during short periods. To

incorporate such shocks, the MR and LMRmodels need artificially larger diffusion parameters.

Therefore, the MRJ and LMRJ models performed better, presenting more accurate (tighter

90% CIs) results.

It is worth mentioning that, during the 2020 outbreak, all the models presented large

estimated values for the mean-reverting speed (κ) and small estimated values for the mean

θ. Concerning the jump-size distribution, the estimated mean values for the MRJ and LMRJ

models were mainly negative, and the estimated standard deviations had the same order of

magnitude as the estimated mean values. In other words, the jumps were mainly negative

during this period. Of course, positive jumps could occur, as the distribution is defined in

R. The MRJ and LMRJ models presented similar performance and similar estimated values.

However, the parameters θ and λ presented considerably larger estimated values for the LMRJ

than for the MRJ. So, in the LMRJ the jump part has a larger weight in the dynamics and

the long-term mean is larger. Such differences probably led the LMRJ to present a slightly

tighter 90% CI for the β(t) predictions, with median values closer to observed β(t) values.

As Figures 6–7 show, during the NYC omicron variant outbreak, at the end of 2021, MR,

LMR, and LMRJ performed quite similarly, presenting relatively tight 90% CIs for the out-

of-sample predictions of β(t), and, in consequence, for the accumulated infections. None of
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these three models was able to capture the larger jumps in the β(t) time evolution inside their

90% CIs, however, accumulated infection predictions were accurate. The MRJ presented a

much wider 90% CI for out-of-sample predictions for β(t), which contained the observed large

jumps. However, the 90% CI of accumulated infections predictions was considerably large,

which may lead to unrealistic scenarios. Such a wider 90% CI for MRJ is linked to the large

values for the estimated diffusion parameter ξ, in comparison to MR and LMRJ. The LMRJ

presented mainly positive jumps, with the jump part having a smaller role in the dynamics

than in the 2020 outbreak.

Long-Term Predictions To illustrate the performance of long-term predictions, we pro-

vide a 340-day long forecast, corresponding to the period from 11-Oct-2021 to 15-Sept-2022.

Figures 9–8 present the forecasted daily infections and beta values.

Figure 8: In-sample and out-of-sample model predictions for the parameter β during the
omicron variant outbreak in NYC at the end of 2021. The out-of-sample predictions are on
the right-hand side of the vertical lines. The filled envelopes represent the 90% CIs.

As Figure 8 show, the MRJ model presented a much wider 90% CI for β(t) predictions,

leading to a massive outbreak in Nov-Dec 2021, shown in Figure 9, anticipating the actual

omicron outbreak. After that, apparently, the disease dies out. The MR and LMR models

had very similar performances, with similar 90% CIs for β(t) and infections predictions. In

both cases, the model predicts long-standing outbreaks during 2022. However, in the LMR

predictions, the outbreak starts just after the beginning of the actual omicron outbreak.

The LMRJ model also predicts a large outbreak, containing the actual omicron outbreak.
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Figure 9: Out-of-sample model predictions for the daily number of infections. The filled
envelopes represent the 90% CIs.

However, it is smaller than the outbreak predicted by the MRJ model and lasts for a smaller

period in comparison to the other model predictions. In other words, once again, the LMRJ

seems to outperform the other models.

Asymptotic Behavior We now use the estimated parameter values of the LMR and LMRJ

models corresponding to Figures 8–9 to evaluate the probability of the effective reproduction

number R(t) be larger than one, when t → ∞. The procedure is the same performed in

Examples 1–2. The probability values are evaluated considering the estimated parameters

that satisfy the conditions in Eqs. 18 and (27). Such parameters represent 89,0% and 73,5%

of the estimated values of the LMR and LMRJ, respectively.

For the LMR, the probability has a median value of 0.74% (70% CI: 0%–2.08%), and for

the LMRJ, it has a median value of 0,04% (70% CI: 0,01%–35,18%). Although the LMRJ

has a smaller median value, the 70% CI is much wider. This means that reaching a disease-

free equilibrium, with a transmission process driven by a jump-diffusion model is unlikely,

considering the estimation period, i.e., from 13-Jul to 10-Oct-21. This is in agreement with

the observed data, that show recurrent outbreaks in the period of forecast. Moreover, the

median value of the best-fit estimation of R(t) during the period 11-Oct-21 to 15-Sept-22 is

0.58 (70% CI: 0.17–0.94), with 12,7% of its values larger than one.
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Long-term Predictions with Immunity Loss As an additional experiment, we add the

possibility of loss of immunity for those recovered. Thus, we add to Eq. (4) the term −αR,

and to Eq. (2), we add +αR. In this example, α assumes the value 1/360 days−1. The

forecasted period spans over 3 years, starting at 11-Oct-2021, which contains the omicron

variant outbreak. Figure 10 presents the model predictions.

Figure 10: Out-of-sample model predictions for the daily number of infections considering
the loss of immunity. The filled envelopes represent the 90% CIs.

Again, the MRJ and LMRJ models presented more accurate predictions, with less massive

waves of infections. Moreover, the predictions provided by the LMRJ seem more plausible.

Both models presented recurrent waves when the loss of immunity occurs with a mean time of

360 days. The other models also presented recurrent waves, however, with magnitudes much

higher than the omicron outbreak.

5 Discussion and Concluding Remarks

Quantitative Finance (QF) teaches us that we must identify the main sources of uncertainties

in the market to create parsimonious models that properly incorporate the data variability

and stylized facts to provide accurate forecasts [43]. By using stochastic tools in epidemiolog-

ical models, we take advantage of the accumulated wisdom from QF, building parsimonious

and computationally efficient models, which can be tested with real data thus producing fore-

casts that can be compared with actual reported data. By comparing out-of-sample model

predictions with observed data, in different situations, it is possible to evaluate the model
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performance.

In the present work, we followed these steps, building stochastic adaptations of the classical

SEIR model [41], focusing on modeling the time evolution of the transmission parameter β.

We do not add stochastic terms to the SEIR compartments’ dynamics for a number of reasons.

Firstly, because β depends on the average number of daily contacts and the probability of such

contacts will result in infection, these two components, the average number of contacts and

the infection probability, are time-dependent random values. So, it seems natural to assume

that β is a stochastic process. Secondly, adding stochastic terms to the other equations

in the model may not improve its performance, since it will necessarily increase the model

complexity and the stochastic components may have some sort of correlation that must be

estimated from data. In addition, the data may be not sufficient to calibrate the additional

number of parameters.

The chosen structure for β(t) is in line with the estimations. After observed shocks,

which can lead to large values during outbreaks or smaller values during lockdowns and

other contention measures, β(t) tends to return to some mean level. This justifies the use of

a mean-reverting term. Indeed, periods of high incidence lead to contention measures, and

periods of low incidence lead to relaxation of the contention measures. Moreover, the observed

fluctuations in the estimated values at any time can be modeled as diffusion. The jump term

adds an extra degree of freedom that accommodates sudden shocks in the dynamics that

cannot be well parameterized by a diffusion term, as observed during larger outbreaks in

NYC, such as the second wave in 2020 and the omicron outbreak that started at the end of

2021.

It is well-known that small jumps can be viewed as diffusion [24]. Thus, during peri-

ods when transmission stabilizes, diffusion models and jump-diffusion models will perform

similarly. However, during major outbreaks, jump-diffusion models can address better the

uncertainty in the data providing potentially more accurate predictions. This is illustrated

by the results obtained using the LMRJ, which presented accurate out-of-sample predictions

during two major outbreaks in NYC, outperforming the other models.

For the sake of simplicity, in this study, we did not consider a series of features observed

in the COVID-19 dynamics, such as differences in the degree of the disease severity driven

by age and sex, the effects of vaccination, loss of immunity and reinfection, asymptomatic

infection, and underreporting. Some of these features were already studied in previous works

[6, 5, 7]. Immunity loss must be one of the main reasons for the emergence of new outbreaks.

Furthermore, data on reinfection and infections after vaccination is absent or, at least, difficult

to access. Thus, calling for a modelling approach to immunity loss. In future work, we aim

to investigate the relationship between the loss of immunity and jumps in the transmission

dynamics.
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A Appendix

A.1 Numerical Implementation

In this section, we present numerical tools to simulate and calibrate the stochastic mod-

els presented so far to make out-of-sample predictions of infections. All the codes used in

this work are available from the GitHub repository https://github.com/viniciusalbani/

StochasticTransmission.

In this example, the performance of four stochastic models are compared, namely, the

CIR model in Eq. (24) and its version with jumps,

dβ(t) = κ(θ − β(t−))dt+ ξ
√

β(t−)dW (t) +

∫
R
λβ(t−)(ez − 1)Ñ(dt, dz), t > 0. (33)

as well as the models in Eq.(12) and Eq. 25.

Calibration Procedure The model calibration is divided into the following two steps:

1. Estimate the values of β(t) from daily reports of infections by minimizing the functional

F (β(t)) = (It − σE(t))2 + α1 (β(t)− β(t− 1))2 , t = 1, 2, . . . , N, (34)

with β(0) given and α1 > 0 the regularization parameter.

2. As in [3], the parameters of the models describing β(t) are estimated from the values

obtained in the first step. This procedure helps to improve model adherence to the

data.

To implement Step 2 above, as β(t) is observed in discrete time, we minimize the following

functional:

F(Θ) =

N∑
t=1

E
[(

β(t; Θ)− βobst

)2
]
+ α2∥Θ∥2ℓ2 , (35)

where Θ represents the vector of the parameters defining the model for β(t), βobst denotes

the value for β(t) estimated in Step 1 above, and α2 is the regularization parameter. Notice

that

E
[(

β(t; Θ)− βobst

)2
]
= E

[
β(t; Θ)2

]
− 2E [β(t; Θ)]βobst +

(
βobst

)2
. (36)

To evaluate the expected values in Eq. (36), we apply the Itô formula, discretize the SDEs

for β(t) considering an Euler-Maruyama-like scheme [38], and take expectations finding for

the CIR model with jumps,

E [β(t+ 1)] = (1− κ∆t)E [β(t)] + κθ∆t (37)
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and

E
[
β(t+ 1)2

]
=

(
1− 2κ∆t+ λ2∆t

∫
R
(ez − 1)2ν(dz)

)
E
[
β(t)2

]
+ (2κθ + ξ2)E [β(t+ 1)]∆t.

For the model in Eq. (25), the expected value E [β(t+ 1)] is equal to the one in Eq. (37),

whereas

E
[
β(t+ 1)2

]
=

(
1− 2κ∆t+ ξ2∆t+ λ2∆t

∫
R
(ez − 1)2ν(dz)

)
E
[
β(t+ 1)2

]
+ 2κθE [β(t+ 1)]∆t.

To evaluate the expected values above for the model versions without jumps, just set λ = 0.

In this numerical example, we further assume that λ = 1 in the cases with jumps and the

jump-size distribution ν is Gaussian with mean µ and variance σ2, i.e.,

ν(dz) =
1√
2πσ2

e
(z−µ)2

2σ2 dz.

Thus,
∫
R(e

z − 1)2ν(dz) = e2(σ
2+µ) − 2e

1
2
(σ2+2µ) + 1.

Model Simulation To generate scenarios using the models with jumps in Eqs. (25) and

(33), we use a numerical scheme for jump-diffusion models proposed in [33]. The versions

without jumps are solved numerically by the Euler-Maruyama scheme [38].

The minimization of the objective functions in Eqs. (34)–(35) is performed by using the

2022 release of MATLAB’s routine LSQNONLIN.

Evaluation of Example 2 To calculate P (β∞ ≥ 0.155) in Example 2, we evaluate the

integral ∫ 0.155

0
ϕ(x)dx

by the trapezoidal rule. To evaluate ϕ, we numerically solve the integro-differential equation

in Eq. (31) by a finite-difference scheme for the differential part and the trapezoidal rule for

the integral part. Then we build a fixed-point iteration to approximate ϕ, where, at each

iteration, a linear system is solved with the integral part approximation on the right-hand

side. More precisely, if ϕ0 represents the initial step, we solve the iterations

Hϕk = Aϕk−1, k = 1, 2, . . .
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We repeat the iterations until ∥ϕk − ϕk−1∥ℓ2 is sufficiently small.

Hj,j+1 = Aj , Hj,j = Bj , and Hj,j−1 = Cj , j = 1, . . . , n,

where n is the number of discretization points, ∆x is the step-size, Aj =
Aj

2∆x − Cj

∆x2 , Bj =

2
Cj

∆x2−Bj , and Cj = − Aj

2∆x−
Cj

∆x2 , with Aj = κθ−(κ+2ξ2+K2)xj , Bj = (κ−K1+K2+ξ2), and

Cj =
1
2ξ

2x2j . In Example 2, K1 = 1, and K2 = λ
(
exp

(
σ2

2 + µ
)
− 1

)
, where µ and σ denote

the mean and variance of the Gaussian distribution ν. The operator A is the trapezoidal rule

applied to the discrete version of the function

ϕ

(
x− λx(ez − 1)

1 + λ(ez − 1)

)
1

1 + λ(ez − 1)

1√
2πσ2

exp

(
−(z − µ)2

2σ2

)
.
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