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CELLULAR PHYLODYNAMICS  

In the main text of this communication, we presented a condensed description of a new method, Cellular 

Phylodynamics,1 and its findings, focusing on aging, by which we mean the consideration of growth, development, and 

aging in terms of numbers of cells, N.2 The equations derived from this approach for animals generally are summarized in 

BOX 1.  Equations in the text are given numbers less than 100, while the additional equations introduced in this APPENDIX 

begin with 100.  Related equations have a letter following the number (11b), followed by a number (11b1), etc. 

In this APPENDIX we provide a more detailed and thorough report of this analysis. This includes derivations of all 

of the equations for the growth, development, and aging of animals and humans, and a more complete presentation of the 

growth data, which is exhaustive.   

The Cellular Phylodynamics of growth 

The Cellular Phylodynamics approach is based on counting the number of cells in the animal as a whole, Nw. and 

in its various anatomical parts, Np.  These values of Nw and Np provide the raw material for mathematical analysis, from 

which equations could be discerned. Thus, the equations that emerge from a Cellular Phylodynamic Analysis of growth, 

development, and aging aren’t mathematical inventions, describing imaginary humans and animals, but empirically based 

generalizations of actual growth and development, which occur in actual animals, including ourselves.  

Cellular Phylodynamics is a mathematics of the discrete nature of cells and the cellular events that cause change in cells. 

We, and almost all animals, begin life as a single cell, which divides to become 2 cells, then 4 cells, then 8, growing 

to the trillion or so cells of a human3 or the thousand or so cells of a nematode worm20, comprised of cell lineages, tissues, 

organs, and anatomical structures, each of which grows to its recognizable size.  How does this occur?  At the microscopic 

scale, our cells are intrinsically discrete entities.83 There is no such thing as 1/3rd of a cell or 1.33 cells. It follows that the 

number of cells in the body, or in any part of the body, can only change their integer numbers by binary events, such as 1 

cell becoming 2 cells by mitosis, or 1 cell becoming 0 cells by cell death. We can, and will, avail ourselves of continuous 

mathematics when it can provide us with useful approximations, but the Cellular Phylodynamics of embryology is 

fundamentally discrete in nature. 

The Computational Animal 

Since cells only come in integers, whose numbers only change by discrete events83, multicellular animals remind 

us of computers, also comprised of integer units,4 which have also been called “cells”5, whose states also undergo discrete 

changes. As we shall see, Cellular Phylodynamics provides us with a way to understand ourselves as Computational 

Animals, whose growth, development, and aging can be understood as the aggregate consequences of the many discrete 

changes that occur among our cells. 

Current concepts in growth and development 

In contrast to the discrete nature of animal life at the microscopic scale, from our macroscopic perspective the 

growth of the body and its parts appears in continuous qualities of length, volume, mass, and shape.  These continuous 

features of growth have yielded to quantitative analysis, although not always in ways whose meanings are clear.  For 

example, it has long been appreciated that as we grow older, we grow bigger, and we grow slower, until growth becomes 

imperceptible, and a number of density-dependent growth equations have been developed (the logistic, Gompertz, von 

Bertalanffy, Richards, West, and other equations: see below), which capture this increase in size and decline in the speed, 

and form classic S-shaped growth curves.6-11 Unfortunately, none of these density-dependent growth equations accurately 

fit the growth of real animals.12-14  It has also long been appreciated that as we grow, the sizes of the tissues, organs, and 

anatomical structures of the body, when compared with the size of the body as a whole, often form straight lines on log-log 

graphs, a phenomenon known as allometric growth.15-19  However, the reason behind the striking log-linearity of allometric 

growth has long been a mystery.  Finally, many studies have used 4-dimensional microscopy to characterize the growth of 

cell lineages that arise from single Founder Cells at the beginning of development,20,21 but the precise way in which the 

embryo uses the control of cell division to create these first body structures has been obscure.22-24 Cellular-Selection, that 

is, differential cellular proliferation and death, creates many anatomical structures by outgrowth from the undifferentiated 

body mass, and molds much of the fine scale detail of anatomy, although how cell division is harnessed to achieve this is 

obscure.98,99   Cell lineages grow from individual Founder Cells,20 although how embryos use mitosis to create these parts, 

and how these Founder Cells undergo Cell-Heritable change that characterized each clone, remains unknown.  The analysis 

of cellular diversification, by single cell mRNA expression,25,cell marking,26, and high resolution 4D microscopy,22,23,102 has 

also wrestled with the problem of cell lineage formation.  As we have seen in the main text of this communication briefly, 

and will present in greater detail below, when we re-examine these features of growth, development, and aging in units of 

numbers of cells, that is, by Cellular Phylodynamics, the biological basis for many of these processes becomes clear.  
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UNI-GROWTH  
Data for the Cellular Phylodynamic Analysis of the growth of the whole body. 

To carry out the Cellular Phylodynamic Analysis of growth, we assembled data on the number of cells in the whole 

animal, Nw, by age, t, in days from fertilization until maturity, for 13 species of animals: zebrafish (Danio rerio),27 European sea 

bass (Dicentrarchus labrax),28,29 mice (Mus musculus),30,31 rats (Rattus norvegicus),32 cows (Bos taurus),33,34 humans (Homo 

sapiens),35,36,37 bobwhite quail (Colinus virgianus),38,39 domestic chickens (Gallus gallus domesticus),40,41 turkeys (Meleagris 

gallopavo),42 geese (Anser anser),38 nematode worms (C. elegans),20 frogs (Rana pipiens),43 and clams (Merceneria 

mercenaria).44,45,46 Data on the numbers of cells in early embryos, from fertilization onward, were available for mice,47,48 rats,49 

cows,50 humans,51 chickens,52 turkeys,53 nematode worms,20 frogs,54 clams,45 and fish.55,56 Data on the numbers of cells in later 

embryos were assembled from published values in units of weight or volume by taking advantage of the finding that there are 

about 108 cells/gram-cc.57  Excel files (TABLE A1) characterizing these basic growth data (“Basic Data Files”), and the 

calculations made from these data (“Calculations Files”), are available on request (JamesMichaelsonPhD@gmail.com). Also 

available to interested readers are excel files with the data on the growth of the parts of the body parts that we examined (see 

below).  

The graphs of these various datapoints for animal size’s (Nw) versus time (t), are shown in FIGURES A1-A3. Graphing 

the number of cells in the body as a whole, Nw, vs. age, t, from fertilization until maturity, reveals, for each of these 13 species, 

that animal growth occurs by S-shaped growth curves (Fig A1). This is most easily viewed on log-log plots, because the greatest 

part of growth occurs rapidly at the beginning of life. For example, in terms of numbers of cells, Nw, humans grow about 11 orders 

of magnitude in the womb and about 2 orders of magnitude after birth.  As we shall see below, the reason why all of these creatures 

have similar S-shaped growth curves is that they all grow by an equation of the same form, the Universal Growth Equation. 

Basic features of growth and cell division: exponential growth, biotic potential, the Mitotic Fraction, and quiescence 

Because cells increase in number by cell division, they are capable of exponential growth, in which the size of an 

organism, Nw (in terms of cell number), with age, t, can be thought of in terms of its rate of growth: 
𝒅𝑵𝒘

𝒅𝒕
=

𝒍𝒏(𝟐)

𝒄
∙ 𝑵𝒘                                                                                (100) 

where c is the average Cell Cycle Time among those cells that are dividing, which, for exponential growth, is all cells. 

Integration of Equation #100, translates the integer nature of cells into the continuous appearance of growth:  

 𝑵𝒘 = 𝒆
(

𝒍𝒏(𝟐)

𝒄
)∙𝒕

                                                                                (100b) 

Thus, data on the relationship between cell number, Nw, and time, t, at the very beginning of development, when all cells 

are dividing, can give one a practical measure of the animal’s Cell Cycle Time, c. 

Of course, exponential growth (Equation #100b) is ultimately unsustainable, a fact captured by the concept of the biotic 

potential.58 The departure from the biotic potential of our cells is a fundamental feature of animal growth, which can be captured 

by introducing the term m, the Mitotic Fraction, giving us this expression for the rate of growth: 
𝒅𝑵𝒘

𝒅𝒕
=

𝒍𝒏(𝟐)

𝒄
∙ 𝑵𝒘 ∙ 𝒎(𝑵𝒘)                                                                               (100c) 

Equation #100c embraces all forms of growth, but without specificity, as the manner by which the Mitotic Fraction, 

m(Nw), changes with the animal size, m(Nw), is completely unspecified. As we shall see below, this lack of specificity gives the 

Equation #100c the power to accomplish such things as leading to a way to calculate how the Mitotic Fraction, m, changes as we 

grow (see the Mitotic Fraction Method below).  Additionally, insertion of the Mitotic Fraction, m(Nw), into the exponential 

growth equation (#100b), converts it into Equation #100c, and gives us the general form of a density dependent growth equation, 

which balances the unlimited quality of exponential growth (
𝒍𝒏(𝟐)

𝒄
∙ 𝑵𝒘) with the inevitable limit of resources (𝒎(𝑵𝒘)). 

Although our treatment of the Mitotic Fraction, m, relies on an obsessively rigorous adherence to this mathematical 

definition in Equation #100c, from time to time we will revert, for the purposes of clarity, to speaking of m as a rough measure 

of the growth fraction, G, the fraction of cells dividing, which is usually measured by the cytogenetic analysis of the uptake of 

DNA precursors.59  The two abstractions of Mitotic Fraction, m, and growth fraction, G, are obviously closely, but not precisely, 

related, since other factors (cell death, cell size, cell density) play roles in growth that are likely to be secondary to cell division. 

Definitionally, the Mitotic Fraction is a measure of the amount of actual growth that occurs as a fraction of the growth that would 

have occurred had each cell divided, ignoring other effects, such as cell death and cell size, a plausible approximation, as mitosis 

is growth’s principal driving force. Thus, the Mitotic Fraction m can be thought of as the main component of the growth fraction, 

G, the precise fraction of cells that are dividing. Operationally, this imprecision has little practical impact, as it will be cancelled 

out when we reintroduce m into new equations of growth that we shall derive below.  

When we think imprecisely of the Mitotic Fraction, m, as the fraction of cells dividing:  

𝒎 ≈ 𝑵𝑾𝒅 (𝑵𝑾𝒅 + 𝑵𝑾𝒒⁄ )                                                                         (100d) 

where NWd is the number of cells dividing and NWq is the number of cells that have ceased from dividing, a process known 

as mitotic quiescence.  Quiescence is the complex biochemical mechanism that occurs within cells to prevent them from 

progressing to mitosis, which is set in motion by inhibitory and stimulators growth factor molecules, hormones, and other signals 

that cells use to communicate.60-62 
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FIGURE A1: Growth, in units of numbers of cells, Nw, from fertilization until maturity, in units of days, t. 

Datapoints for animal size’s (Nx) versus time (t), for C elegans, chickens, mice, turkeys, quail, geese, frogs, and humans, 

and their fit to the numerically integrated form of the Universal Growth Equation (#5b). 

                        
FIGURE A2:    Fit of human growth to the Universal Growth Equation (red), the logistic equation (blue), and the 

Gompertz equation (green).   Data values as black circles. 

FIGURE A3:   

Analysis of the closed form integration of the Universal Growth Equation (#3).  
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The Mitotic Fraction Method, where the value of the Mitotic Fraction, m, is measured over the full range of growth 

from fertilization until maturity. 

The value the Mitotic Fraction, m, for animals of various sizes, Nw, can be calculated by reversing Equation #100c:  

𝒎 =
𝒅𝑵𝒘

𝒅𝒕
 / [

𝒍𝒏(𝟐)

𝒄
∙ 𝑵𝒘]                                                                       (3b) 

We call the practical implementation of this equation the “Mitotic Fraction Method”.  To execute these Mitotic 

Fraction Method calculations, we use our assembled growth data to calculate the value of the Mitotic Fraction, m, (column 

M of the excel files listed in “Calculations Files” column of Table 1) by: 

𝒎𝒊 =
𝟐𝑵′(𝒕𝒊)

𝒓(𝑵𝒊+𝑵𝒊+𝟏)
                                                                             (101) 

The same iteration was also carried out based on an exponential calculation, rather than on the linear calculation 

show above, yielding essentially the same outcome (not shown).   

Equation #101 occasionally resulted in a small number of data points with 𝒎 > 𝟏. Since this is both theoretically 

and numerically impossible (the biological meaning would be one cell dividing to give rise to more than two cells, which is 

nonsensical), these values of m were manually overwritten with a value of 𝒎 =. 𝟗𝟗𝟗 noted by orange highlights in the excel 

spreadsheets. 
 

As animals grow in size, Nw, the Mitotic Fraction, m, declines rapidly.  

Our Mitotic Fraction Method calculations, based on the animal growth data noted above (Table 1), characterized 

how the value of the Mitotic Fraction, m, declines as growth occurs, that is, as Nw increases, from fertilization until maturity, 

for nematodes, chickens, cows, geese, quail, turkeys, fish, clams, mice, rats, humans, and many other animals (FIGURES 

A4-A6).  Graphs of the values of the Mitotic Fraction, m, calculated by the Mitotic Fraction Method, for each of the 

diverse species of animals noted above, reveal that growth is close to exponential during the first few cell divisions           

(𝒎 ≈ 𝟏), but soon begins its “slippery slope” descent, resulting in a rapid and accelerating decline in the value of m, reaching 

values of 10−2 to 10−6 by the time adult size is reached (FIGURES A4-A6). 

 

As animals grow in size, Nw, the declines in the Mitotic Fraction, m, is well fit by the Universal Mitotic Fraction 

Equation, 𝒎 = 𝒂(𝑵𝒘
𝒃 ) 

The basis for the relationship between the Mitotic Fraction, m, and Nw becomes evident by graphing the 

𝐥𝐨𝐠(𝑵𝒘) vs− 𝐥𝐨𝐠(− 𝐥𝐨𝐠(𝒎)), revealing roughly straight rows of dots (FIGURE A4d). This suggests that the relationship between 

the Mitotic Fraction, m, and Nw can be captured with the expression: 

𝒎 = 𝒂(𝑵𝒘
𝒃 )                                                                                  (1) 

The best fit values for a and b for each species were calculated as regression inputs of 𝐥𝐨𝐠 𝑵𝒊 and − 𝐥𝐧(− 𝐥𝐧 𝒈𝒊) using 

Excel’s LINEST function. Values for a and b were calculated from the LINEST output (in columns P-Q of the excel files listed 

in Table 1) together with the r2 value.  This relationship is well borne out, as indicated by the high r2 values from non-linear 

regressions for each of the eleven animals listed in the Table 2.   

Because Equation #1 so closely captures the relationship between the Mitotic Fraction, m, and size, Nw, from fertilization 

until maturity, for all of the animals we have examined, we call it the “Universal Mitotic Fraction Equation”.  ("Universal"; 

from the Latin "universalis”; Etymology: "uni (Latin, "one"), Versum (Latin, "turned"); thus something "turned into one"). Note 

that the Universal Mitotic Fraction Equation, and the Universal Growth Equation, that is derived from it, and which we shall 

describe below, holds for all of the animals that we have examined, and for all of the sizes we have examined, from the first 

fertilized cell onward. 
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FIGURE A4:  Decline in fraction of cells dividing, the Mitotic Fraction, m, calculated by the Mitotic Fraction Method, 

that occurs as animals increase in size, as seen by the Universal Mitotic Fraction Equation.  Data points for size, Nw, in 

integer units of numbers of cells, vs. the Mitotic Fraction, m, from fertilization, until maturity, for humans.  

:\_0\              
FIGURE A5:  Values of the Mitotic Fraction, m, calculated by the Mitotic Fraction Method, as a function of animal 

size, Nw, as shown at various scales.  Data points for animal size, Nw, in integer units of numbers of cells, vs. the Mitotic 

Fraction, m, from fertilization, until maturity, for humans, chickens, C elegans nematode worms, and mice.  
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The relationship between size, Nw, and age, t, is well fit by the Universal Growth Equation: ∫ (
𝐥𝐨𝐠(𝟐)

𝒄
) 𝑵𝒘𝒂(𝑵𝒘

𝒃 ) 

Combining Equation #3 and #4 leads to this expression for describing the rate of animal growth:  
𝒅𝑵𝒘

𝒅𝒕
=    

𝒍𝒏(𝟐)

𝒄
 ∙ 𝑵𝒘 ∙ 𝒂(𝑵𝒘

𝒃 )                                                                      (5a) 

The relationship between size, Nw, and age, t, is captured by numerical integration of Equation #5, where the age, 

t, at fertilization is ~0, and the age at death is d:  

𝑵𝒘 =  ∫
𝒍𝒏(𝟐)

𝒄
 ∙ 𝑵𝒘 ∙ 𝒂(𝑵𝒘

𝒃 )𝑡=𝑑

𝑡=0
                                                                        (5b) 

Numerical integration of Equation #5, to derive Equation #5b, was carried out 4th order Runge-Kutta method, 

employed manually in Excel to carry out such growth curve reconstructions, so as to examine relationship between Size 

(Nw) and Age (t).  The step size h (cell b11 of the excel files listed in “Calculations Files” column of the excel files 

enumerated in Table 1) was set such that 10,000 steps was used for each organism. At each 𝒕𝑖 (column W), the model value 

of Ni was calculated recursively in column X as  

𝑁𝑖 = 𝑁𝑖−1 +
ℎ(𝑘1+2𝑘2+2𝑘3+𝑘4)

6
                                                           (200) 

where: 

if: 𝑓(𝑁) = 𝑁′ = 𝑟𝑁𝑔                                                                 (201) 

𝑘1 = 𝑓(𝑁𝑖)                                                                          (202)      

𝑘2 = 𝑓 (𝑁𝑖−1 +
𝑘1

2
ℎ)                                                                 (203) 

𝑘3 = 𝑓 (𝑁𝑖−1 +
𝑘2

2
ℎ)                                                               (204) 

𝑘4 = 𝑓(𝑁𝑖−1 + 𝑘3ℎ)                                                                 (205)           

  

The values of each 𝒌𝒊 are calculated in columns Z-AC of the excel files listed in “Calculations Files” column of 

the table above.  Excel’s VLOOKUP and CORREL functions were then used to calculate correlations of observed and 

model 𝐥𝐧 𝒈 and 𝐥𝐧 𝑵 (columns AM-AU). These correlations, as well as the regression correlation coefficient, were used as 

quality-of-fit metrics for the model and recorded in the summary columns A-B in the excel files.  

The fit of Equation #5b, the numerically integrated form of Equation #5, to the various datapoints for animal size’s 

(Nw) versus time (t), are shown in FIGURE A1. The strength of this relationship was confirmed by the high r2 values for 

each of the eleven animals listed in the Table 2: humans, frogs, nematodes, chickens, cows, geese, mice, quail, rats, turkeys, 

fish, and clams. Because Equation #5, in its numerically integrated form (Equation (#5b)) closely captures the relationship 

between size, Nw, and age, t, from fertilization until maturity, for all of the animals we have examined, we call it the 

“Universal Growth Equation”.  We call the biological process which the Universal Mitotic Fraction and Universal Growth 

Equations capture “UNI-GROWTH”.  
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Closed form solution to the integration of the Universal Growth Equation  

A closed form solution to the integration of the Universal Growth Equation (#5), can also be seen by considering: 
dN

dt
= 𝑟 N a(𝑁𝑏)                                                                                     (301) 

where 𝑟 =
log(2)

𝑐
. Rearranging, one obtains: 

N−1 a(−Nb) dN = 𝑟 dt 
                                                                              (302) 

which can be integrated as: 

∫ N−1 𝑎(−𝑁𝑏) 𝑑𝑁
Nw

1

= ∫ 𝑟 𝑑τ
𝑡

0

  

                                                             (303) 

 

Leading to the growth equation: 

t = [Ei(−Nw
b log(a)) − Ei(− log(a))] 

c

b log(2)
 

         (3) 

where 𝑡 = 0 when 𝑁𝑤 = 0, and Ei is the exponential integral function63. 

Equation #3 can be considered as a continuous approximation of the expected time required by a Poisson model 

with individual cell growth  𝑟a(Nb) . 

We show this by considering the random variable tN  representing the time required to reach the number of cells N, 

starting from a single cell. This variable has expected value: 

E[tN] = ∑ E[tn − tn−1]

N

n=2

 

(305) 

We assume that each one of the n cells that make up the organism at a given time behaves according to a Poisson 

process with rate 𝑟𝑎(𝑛𝑏)  and that they are all independent. As a result, the event represented by the growth of a new cell out 

of any of the n current cells behaves according to a Poisson process with rate 𝑛 𝑟 𝑎(𝑛𝑏)  (this can be easily seen by considering 

the cumulative distribution function of the exponential distribution). Therefore: 

tN̅̅ ̅ = E[tN] = ∑
1

nra(nb)

N

n=2

 

(306) 

 

σN = √var(tN) = ∑
1

(nra(nb))
2

N

n=2

 

    (307) 

where 𝑡𝑁̅̅ ̅ and 𝜎𝑁 are, respectively, the mean and standard deviation of the time required to reach the number of cells N. The 

continuous version in #6 and the discrete (point-process) version in #306 provide very similar results. For example, using 

𝑐 = 0.070, 𝑎 = 0.925, 𝑏 = 0.269, we get the behavior shown in FIGURE A3 for the continuous version in red, and the 

discrete version in blue (mean ± std) (FIGURE A3).  
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Density dependent growth equations 

A number of density-dependent growth equations have been developed to capture either the growth of the number 

of organisms in a population,64,65 or the growth of the size of individual organisms,7-11 none of which accurately fit the 

growth of real animals.12-14  The simplest of these density-dependent growth equations, the logistic, occurs by m declining 

linearly as the size of the organism, Nw, increases.7 In the Gompertz equation8, m declines as the log of Nw. Similarly, for 

many other equations, including the von Bertalanffy9, the Richards10, and West11 equations, the value of m declines 

monotonically as size, Nw, increases.  

The relationship of the Mitotic Fraction (m) and size (Nw) to the logistic equation.  

Density dependent growth is captured by the logistic equation7 in the form:   

𝒎 = 𝟏 −
𝑵𝒘

𝑲
                                                                                         (401) 

The relationship of the Mitotic Fraction (m) and size (Nw) to the Gompertz equation.  

Density dependent growth is captured by the Gompertz equation,8 in the form:   

𝒎 = (
𝟏

𝐥𝐨𝐠 𝑲
) 𝐥𝐨𝐠 (

𝑵𝒘

𝑲
)                                                                            (402) 

The relationship of the Mitotic Fraction (m) and size (Nw) to the West equation.  

Density dependent growth is captured by the West equation,11 for total mass of the organism (M), in the form 

𝒅𝑴

𝒅𝒕
= 𝒂𝑴

𝟑

𝟒 (𝟏 − (
𝑴

𝑲
)

𝟑

𝟒
)                                                                          (403)  

 Units of mass are unspecified, so we can treat Equation #403 such that the units of mass (M) of our organism are 

in units of “the weight of a cell” (Nw).  West’s equation then becomes: 

𝒅𝑵𝒘

𝒅𝒕
= 𝒂𝑵

𝟑

𝟒 (𝟏 − (
𝑵𝒘

𝒌
)

𝟑

𝟒
)                                                                         (404)  

 By re-arranging: 

𝒅𝑵𝒘

𝒅𝒕
= [(

𝐥𝐨𝐠 𝟐

𝒄
) 𝑵] [(

𝒂𝒄

𝐥𝐨𝐠 𝟐
) 𝑵−

𝟑

𝟒] [𝟏 − (
𝑵𝒘

𝒌
)

𝟑

𝟒
]                                                       (405) 

Thus, for any organism growing by the West equation, the fraction of cells dividing, m: 

𝑚 = [(
𝑎𝑐

log 2
) 𝑁𝑤

−
3

4] [1 − (
𝑁𝑤

𝑘
)

3

4
]                                                                      (406) 

Equation #406 can be thought of as the West equation, phrased in terms of the fraction of cells dividing, m. 
 

Fit of the relationship of the Mitotic Fraction (m) and size (Nw), to the Gompertz, logistic, and West 

equations.  
             As can be seen in FIGURE A4, over the full range from conception to adult size, neither the Gompertz 

(Equation #402), nor the logistic (Equation #401) provides a close characterization of the behavior of the Mitotic Fraction, m, 

with respect to Nw.  As can be seen in FIGURE A6, while the West equation can be used to quite accurately capture growth over 

its full expanse, to do so requires 𝒎 > 𝟏 early in development, which is mathematically valid, but biologically impossible, since 

individual cells would have to give rise to more than two daughter cells in a single Cell Cycle Time.  However, both our Universal 

Growth Equation (Equation #5), and the West equation (#406), work quite well (FIGURE A6) later in development.  This means 

that our Universal Growth Equation is capable of achieving growth within the limits of the blood supply’s capacity to support 

growth, as captured by the West equation.11 

 
FIGURE A6: Comparison of the fit of Mitotic Fraction, m, as a function of size, Nw, with human growth data, to the 

Universal Mitotic Fraction Equation (green) and West equation (red).  



12 
 

Fit of the relationship between size (Nw) and Age (t) to the Gompertz, logistic, and West equations.  

             We tested our data on body size, Nw, and age, t, against three of the most widely used density dependent 

growth equations (the Gompertz, the logistic, and the West [a variation of the von Bertalanffy]) (FIGURE A2).  None of 

these growth equations fit the actual growth data as well as the Universal Growth Equation (FIGURE A2). 

 

Fine scale “ripples” identify a lower level of growth detail that occurs in the life of the organism. 

Of course, no equation, however closely it may summarize actual data, can ever capture the world precisely.  In 

fact, while the values for body size, Nw, and age, t, that we have assembled, fall remarkably close to the Universal Growth 

Equation, we can also see hints of fine-scale minor “ripples” departing from the smooth edge of the curve (FIGURE A1 

and A2).  We suspect that these ripples identify specific events in the life of the organism, such as gastrulation, somite 

formation, weaning, puberty, and individual differences, that are associated with sex, malnutrition, genetic variation, and so 

on.  To extract this second layer of growth information, we derived an expression, Equation #500, to measure the magnitude 

and timing of these growth residuals, 𝜹𝒋: 

𝑚 = 𝐴𝑁𝐵
+ ∑𝛿𝑗                                                                              (500) 

where each 𝛿𝑗 models a wave-like deviation away from the trend (the Universal Growth Equation #5b) that corresponds to 

an interpretable life-event in the growth of the organism. The appropriate functional forms for the 𝛿𝑗 may be determined 

through regression of the residuals of observed m against the Universal Growth Equation (#5b). 

Indeed, a graph of these 𝛿𝑗 values, as a function of the size of the developing human male, Nw, which is shown in 

FIGURE A7 bears out our suspicion that these ripples identify biologically relevant processes, such as the right-most peak 

(at log 𝑁𝑤 ≈ 29.3), which corresponds to puberty.  

  
FIGURE A7:  Wave-like deviations (“ripples”) from the Universal Growth Equation curve, for human growth.  
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The Meaning of UNI-GROWTH 

The growth data shown in Tables 1 and 2, and FIGURE A1-A6 make clear that animals as diverse as mollusks, 

nematodes, fish, amphibians, birds, and mammals, including humans, all grow by the Universal Growth Equation (#5).  

The values of a, b, c, and R make the Universal Growth Equation (#5) specific for each individual. Let us unpack the 

biological meanings of the form of the Universal Growth Equation and its parameters. 

The Universal Growth Equation describes how growth occurs 

Mathematically, each of the parameters of the Universal Growth Equation (#5) has a specific impact on the shape 

of the “S-shaped” growth curve. The a and b parameters determine the curviness of the “S”.  The c parameter, the Cell 

Cycle Time, determines the speed of growth, expanding or contracting the “S” like an accordion. 

The Universal Growth Equation is linked to the cell biology behind growth. 

Biologically, each of the parameters of the Universal Growth Equation (#5) is linked to a specific aspect of cell 

division. The Mitotic Fraction, m, reflects how many cells are engaged in mitosis; m itself, which decreases as we become 

larger, is determined by the a and b parameters of Universal Mitotic Fraction Equation (#4), which lies within the 

Universal Growth Equation (#5). The c parameter, the Cell Cycle Time, of the Universal Growth Equation (#5) describes 

how fast it takes cells to divide.  

The Universal Growth Equation’s description of how fast we grow is linked to the Cell Cycle Time, c, 

which is linked to genome size, which is linked to how much junk DNA we have. 

What might be the mechanism behind the Cell Cycle Time, the c parameter of the Universal Growth Equation (#5), 

which not only determines how long it takes a cell to divide, but also determines the speed of the growth of the body as a 

whole?  Biochemically, the principal determinant of the Cell Cycle Time, c, is the amount of DNA that the cell contains. 

The more DNA a cell has to copy, the longer it takes to divide.  This was first found by Van’t Hof and Sparrow, who 

discovered a linear relationship between the total amount of amount of DNA and Cell Cycle Time for plant cells.66  Their 

observation has subsequently been confirmed in many studies of many types of organisms.67,68   For most animals, the largest 

part of the genome is non-coding DNA, sometimes called junk DNA,69 no doubt imprecisely named.70,71  The amount of 

this non-coding DNA has been found to be correlated with growth in salamanders,72 anurans,73 amphibians,74 insects,75 and 

copepods.76 

The speed of growth has a profound impact on survival.77,78  Human fetuses that grow to full-size in 10 months, or 

in 8 months, have a much lower chance of survival than fetuses that reach optimal size in 9 months.79  Non-coding DNA, 

which determines genome size, is very susceptible to duplication or deletion, and thus provides populations of animals 

abundant genetic variation in genome size.80-82  Perhaps this genetic variation in genome size leads to genetic variation in 

the Cell Cycle Time, c, which leads to genetic variation in the speed of body growth. Such genetic variation would appear 

to give species a powerful resource to draw upon, so that they can evolve, by the bitter reality of Darwinian selection, to 

growth rates that give them the greatest chance of survival. Indeed, this makes us wonder whether junk DNA may owe its 

very existence to its role in determining the speed of growth. 

  

The Universal Growth Equation’s description of the fraction of cells dividing, the Mitotic Fraction, m, is 

linked to the action of cell signaling molecules that induce mitotic quiescence. 

What might be the mechanism behind the Mitotic Fraction, m, the fraction of cells that divide, which declines as 

we increase in size?   What could cause a fraction of the body’s cells to enter into a state of mitotic quiescence, the internal 

block to cell division, which is set in motion by external signaling molecules?60-62 Curiously, as we shall see below, this 

decline in the Mitotic Fraction, by the Universal Mitotic Fraction Equation (#4), 𝒎 = 𝒂(𝑵𝒘
𝒃 ), might well trace its origin 

to the deceptively simple and unobvious discrete allocation of ligand molecule among cells83. To picture how this might 

occur, consider the case of an embryo growing in a constant volume, such as a bird’s egg or mammal’s uterus, whose cells 

produce an inhibitory growth factor and carry a receptor for that inhibitory molecule. Early in development, when our 

idealized embryo is just a few cells, those few cells would produce only a small number of inhibitory molecules, and thus 

the concentration of these inhibitory molecules would be low, and thus very few cells would have bound the number of 

inhibitory molecules needed to prevent cell division. Thus, at the beginning of development, most cells would divide, with 

the value of the Mitotic Fraction, m, being close to 1. However, as the embryo grows, more and more cells are present to 

produce inhibitory molecules, the concentration of these inhibitory molecules would increase, more and more cells would 

have bound the number of inhibitory molecules needed to prevent cell division, fewer and fewer cells would be able to 

divide, and the value of the Mitotic Fraction, m, would decline.  Remarkably, as we shall see next, when we rephrase this 

idealized case in mathematical terms, such a decline in the Mitotic Fraction, m, can be seen to occur in exactly the form of 

the Universal Mitotic Fraction Equation (#4), 𝒎 = 𝒂(𝑵𝒘
𝒃 ) . 
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Let us consider growth factor molecules in terms of integers.83 Thus, when growth factor molecules bind to cells, 

they shall display a discrete allocation among cells, that is, as a Poisson process, which can be comprehended in terms of a 

Poisson probability (Equation #611 below). 

Let Ic be the number of inhibitory growth factor molecule made by each cell which makes the molecule. (This 

number is a constant, being the result of the rates of synthesis and decay, most likely being  first order reactions.) 

Let N be the number of cells in the organism. We shall consider growth from conception, that is, from when 

𝑵 = 𝟏.  

Let 𝑵𝒃 be the number of cells producing the inhibitory growth factor molecules.  If every cell produces the 

molecules, 𝒃 = 𝟏. If only the cells on the surface produce the molecule, 𝒃 =
𝟐

𝟑
, since this captures the relationship between 

the surface of an isomorphic 3-dimensional shape, such as a sphere, and its volume.  

Let V be the volume in which the embryo develops. (For a bird V is the volume of the egg; for a mammal it is the 

volume of the uterus.) 

The total number of molecules of I in the body is 𝑰𝒄 ∙ 𝑵𝒃. 

[I] is the concentration of inhibitory growth factor molecule in the body, assuming uniform diffusion. 

Let us now put all this into mathematical form. 

It follows that: 

[𝐈] =
𝑰𝒄∙𝑵𝒃

𝑽
                                     (601) 

[𝐈] = (𝑰𝒄 ∙ 𝑵𝒃) (
𝟏

𝑽
)                                    (602) 

Let Pi be the probability of a receptor molecule binding an inhibitory growth factor molecule, where [R] is the 

concentration of receptor molecules.  

𝐏𝐢 =
[𝐈𝐑]

[𝐑]
                                     (603) 

[𝐈][𝐑]

[𝐈𝐑]
= 𝐤                                     (604) 

according to the Law of Mass Action, thus 
[𝐈𝐑]

[𝐑]
=

[𝐈]

𝐤
                                     (605) 

𝐏𝐢 = [𝐈] ∙
𝟏

𝐤
                                     (606) 

𝐏𝐢 = (𝐈𝐜 ∙ 𝐍𝐛) (
𝟏

𝐕
) (

𝟏

𝐤
)                                    (607) 

𝐏𝐢 = 𝐍𝐛(𝐈𝐜) (
𝟏

𝐕
) (

𝟏

𝐤
)                                    (608) 

𝐏𝐢 = 𝐍𝐛 (
𝐈𝐜

𝐕∙𝐤
)                                    (609) 

𝐏𝐢 = (
𝐈𝐜

𝐕∙𝐤
) 𝐍𝐛                                    (610) 

Let Ro be the number of receptors per cell. 

We shall use the Poisson probability84 to calculate the value of m: 

 𝐏(𝐱; 𝛍) =
(𝐞−𝛍)(𝛍𝐱)

𝐱!
                                    (611) 

where x is the actual number of successes that result from the experiment. 

e: A constant equal to approximately 2.71828 

𝛍: The mean number of successes that occur in a specified region. 

x: The actual number of successes that occur in a specified region. 

𝐏(𝐱; 𝛍): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of 

successes is 𝛍. 

It follows that   

𝒎 = 𝐏(𝐱; 𝐮) =
(𝐞−𝛍)(𝛍𝐱)

𝐱!
                                  (612) 

It follows that 𝒙 = 𝟎 (since we want to calculate the chance of a cell binding 0 molecules of inhibitory growth 

factor). 

And where 𝛍 = 𝐑𝐨 ∙ 𝐏𝐢 (since the mean number of successes for each cell is the number of receptors, time the 

chance that a molecule will bind one of those receptors): 

           𝒎 = 𝐏(𝐱; 𝛍) =
(𝐞−𝛍)(𝛍𝟎)

𝟎!
                                 (613) 
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𝒎 = 𝐏(𝐱; 𝛍) =
(𝐞−𝛍)(𝟏)

𝟏
                                  (614) 

𝒎 = 𝐏(𝐱; 𝛍) = 𝐞−𝛍                                  (615) 

𝒎 = 𝐏(𝐱; 𝛍) = 𝐞−𝐑𝐨∙𝐏𝐢                                  (616) 

or 

𝒎 = 𝐞−𝐑𝐨𝐏𝐢                                  (617) 

 

It follows that 

𝒎 = 𝐞
−𝐑𝐨(

𝐈𝐜

𝐕∙𝐤
)(𝐍𝐛)

                                 (618) 

Let 𝒁 = 𝑹𝒐 (
𝑰𝒄

𝑽∙𝐤
) 

𝒎 = 𝐞−𝐙(𝐍𝐛)                                 (619) 
    

Let 𝒂 = 𝒆−𝒁 

𝒎 = 𝒂(𝐍𝐛)                                     (4) 

Which is the Universal Mitotic Fraction Equation! 

 

This leads to our Universal Growth Equation, when combined with Equation #5a:  

 
𝒅𝑵

𝒅𝒕
=

𝐥𝐧(𝟐)

𝒄
∙ 𝑵 ∙ 𝒂(𝑵𝒃)                                  (5a) 

where  

𝒂 = 𝐥𝐧 (𝑹𝒐 (
𝑰𝒄

𝑽∙𝐤
))                                 (620) 

 

Note that all of the biochemistry (the rate of growth factor synthesis, abundance of receptors, dissociation constants, 

etc.) is in the parameter a, while all of the geometry (size of the tissues that making the growth factor in relationship to the 

size of the organism) is in the parameter b (see “Let 𝑵𝒃 be …” above).  

  

Having worked through Equation #601-620, let us step back and review the core implications of this math. This 

math is telling us that little more than the discrete allocation of mitotic signaling molecules among cells is all that is needed 

to explain how cell division becomes limited to a faction of cells, m, the Mitotic Fraction, as captured by the Universal 

Mitotic Fraction Equation (#2), and its two parameters a and b, and from this, to cause our growth to occur by the Universal 

Growth Equation. These mitotic signaling molecules, the receptors on the cells to which they bind, and the internal mitotic 

control molecules that respond to these signals, are all ruled by ordinary chemistry. Thus, little more than the conventional 

thermodynamics of all chemical reactions is sufficient to account for growth by the Universal Growth Equation, and thus 

the biological process of UNI-GROWTH.  Let us also recall that since signaling molecules, their receptors, and the internal 

mitotic control molecules that determine whether cells divide, are the products of our genes, and thus genetic polymorphism 

in the value of a or b might well be expected to identify genetic polymorphisms of the proteins that do this mitotic signaling, 

a possibility that would certainly be worthy of experimental examination. 

 

UNI-GROWTH: Summary Definition 

Let us summarize: UNI-GROWTH is the process by which growth slows as we increase in size.  UNI-GROWTH 

is captured by the Universal Mitotic Fraction and Growth Equations, and their parameters, a, b, and c, the average Cell 

Cycle Time.  UNI-GROWTH occurs by the decline in the fraction of cells dividing, the Mitotic Fraction, occurring by the 

form of Universal Mitotic Fraction Equation, m=a^(N^b).  From this expression, we could then derive, and test, the 

Universal Growth Equation, whose accuracy was confirmed, from fertilization until maturity, for 13 species, including 

nematodes, mollusks, amphibians, fish, birds, rodents, cows, and humans.   
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ALLO-GROWTH 
The Cellular Phylodynamic Analysis of the growth and development of the parts of the body 

The Allometric Growth Equation 

              For more than a century, biologists have been studying relative growth, that is, the growth of one part of the 

body, p, against another part, p2, or against the body as a whole, w.15,18  These studies of relative growth, usually carried out in 

units of weight, volume, or length, had found that the relationships between p and w often form straight rows of dots on log-log 

graphs.15-19   This log-linearity of relative growth, called allometric growth85, can be captured by: 

log(𝒘) =
𝟏

𝑺
∙ log(𝒑) + log(𝑩)                                                                      (630) 

which is equivalent to: 

 𝒘 = 𝑩 ∙ 𝒑
𝟏

𝑺                                                                                    (631) 

Here, we shall call B the “allometric birth” and S the “allometric slope”.  Below, it will become clear why we have 

named the parameters in this fashion, as their meanings emerge when relative growth is framed in terms of numbers of cells, N.   

While the empirical validity of the log-linearity of allometric growth has been evident from countless studies of the 

growth of many parts of the body, in many animals,15-19 the meaning of this phenomenon has long been a mystery, as have been 

the biological meanings of the parameters B and S.19,86,87  However, as we shall outline next, when we frame the relationship of 

the growth of one part of the body, p, against the body as a whole, w, in terms of the number of cells in the part of the body, Np, 

against the number of cells in the body as a whole, Nw, the biological basis and significance of the log-linear feature of allometric 

growth becomes evident, together with the biological meanings of the two parameters that define it, B and S. 

 

Cellular Allometric Growth Analysis 

             The approach that we have taken to deciphering the nature of the relative growth of each part of the body is the 

same as the approach we described above for examining the growth of the body as a whole: Cellular Phylodynamic Analysis, by 

which we again mean examining growth in terms of integer numbers of cells, N.  To do so, we examined the sizes of the various 

parts of the body, p, in these integer units of numbers of cells, Np, in comparison to the numbers of cells in the body as a whole, 

w, also in these integer units of numbers of cells, Nw , an approach we call “Cellular Allometric Growth Analysis” (FIGURES 

A8-A17).  Graphically, such a Cellular Allometric Growth Analysis of relative growth is carried out by examining paired Np:Nw 

values on log-log graphs (FIGURES A8-A17).  

When we have a full lineage chart for an animal, which characterizes each cell from the first fertilized egg onward, we 

call this “Cellular Allometric Lineage Growth Analysis.” When we are carrying this out without lineage data, but simply with 

cell numbers, whether these cell numbers have been counted, or estimated from weight values, based on the finding that there are 

about 108 cells in every gram of tissue,57 we call this approach “Cellular Allometric Batch Growth Analysis.”   

 

Early development: Cell lineages: Cellular Allometric Lineage Growth Analysis:   

                           To carry out a Cellular Phylodynamic Analysis of the relative growth of the various parts of the body 

early in development, we assembled values of Np vs. Nw for each of the cell lineages (FIGURE A8) that have been characterized 

in the cell lineage charts of Caenorhabditis elegans20 and Meloidogyne incognita21 nematode worms, as well as for Oikopleura 

dioica chordate tunicates (FIGURES A9-A11).88 To accomplish such Cellular Allometric Lineage Growth Analysis, we simply 

counted the number of cells in each lineage, Np, from the first Founder Cell onward (𝑵𝒑 = 1), together with the corresponding 

values for the number of cells in the embryo as a whole, Nw (FIGURES A9-A11). 

                           Such a Cellular Allometric Lineage Growth Analysis was easily carried out for the M incognita, whose 

cell lineage chart fits on a single sheet of paper (FIGURES A9). However, Cellular Allometric Lineage Growth Analysis was 

considerably more difficult for C elegans and O dioica, whose cell lineage charts have to be 6 feet long to see each cell, requiring 

many months of work to assemble the values of Np and Nw shown in FIGURES A10 AND A11. This motivated the development 

of a new technique, which we shall describe below, the BinaryCellName Method, for carrying out such Cellular Allometric 

Lineage Growth Analysis computationally. 

 

Late development: Tissues, Organs, and Anatomical structures: Cellular Allometric Batch Growth 

Analysis: 

                          To carry out a Cellular Phylodynamic Analysis of the relative growth of the various parts of the body 

later in development, that is, Cellular Allometric Batch Growth Analysis, we assembled values of Np vs. Nw for the tissues, 

organs, and anatomical structures evident in embryos and juveniles from published weight and volume values, again relying on 

the observation that there are about 108 cells in every gram of tissue.57  We assembled these values for the body parts of chicks 

(gizzards, livers, hearts, kidneys),89 rats (livers, brains, kidneys, forelegs, ears, stomachs, spinal cords),90 humans (brains, livers, 

kidneys, lungs, pancreases, adrenals, thymuses, spleens, lower extremities, upper extremities, stomach, heart, intestines),91 

zebrafish (eye lens),92-95 mice (livers, brains, kidneys, forelegs),90,96 clams and goldfish (FIGURES A12-A17). 
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FIGURE A8: Cell lineage chart of the cell lineages of the developing root knot nematode, Meloidogyne incognita.  

Shown are the conventional and BinaryCellName Lineage naming methods. The AB lineage of nematodes forms the 

skin while the E lineage forms the intestine.  Cell lineage chart and data from Calderón-Urrea et al21 

 
FIGURE A9: Cellular Allometric Lineage Growth Analysis of the cell lineages of the developing root knot nematode, 

Meloidogyne incognita.21 
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FIGURE A10: Cellular Allometric Lineage Growth Analysis of the cell lineages of the developing C elegans nematode
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FIGURE A11:  Cellular Allometric Lineage Growth Analysis of the cell lineages of the chordate tunicate Oikopleura 

dioica. Unlike C elegans and M incognita, all of the cases of Cellular Selection for this species reflect reductions in cell 

number, although this could be due to the limited size of the dataset rather than a biological difference. Cell lineage chart 

data from Stach et al88
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FIGURE A12:  Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the chick embryo.  Growth of the parts of the chick 

embryonic gizzard, liver, heart, and kidney, in units of numbers of cells, in comparison to the number of cells in the embryo as a whole shown on log-log graphs, showing how the 

fraction of cells comprising in the gizzard and liver increases as the number of cells in the embryo increase with development and how the fraction of cells comprising in the heart 

decreases as the number of cells in the embryo increase with development, and how the fraction of cells comprising in the kidney remains roughly constant as the number of cells in 

the embryo increases with development.  
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FIGURE A13:  Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the rat embryo .   

Growth of body parts of the rat embryonic liver, brain, kidney and foreleg, in units of numbers of cells, in comparison to the number of cells in the 

embryo as a whole, are shown on log-log graphs.  Note how the fraction of cells comprising in the liver kidney and foreleg increases as the number of 

cells in the embryo increase with development, while the fraction of cells comprising the brain decreases. 
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FIGURE A14: Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the mouse embryo.  Growth of body parts of the mouse embryonic liver, 

brain, kidney and foreleg, in units of numbers of cells, Np, in comparison to the number of cells in the embryo as a whole, Nw, shown on log-log graphs. Note how the fraction of cells comprising 

in the liver kidney and foreleg increases as the number of cells in the embryo increase with development, while the fraction of cells comprising the brain decreases. 
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FIGURE A15: Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the 

developing human fetuses, from autopsy data, of individual fetuses.  

For additional human relative growth data, see FIGURE A16  



24 
 

 

 
 FIGURE A16: Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the 

developing human fetuses, from autopsy data, averaged values.91,97 

For additional human relative growth data, see FIGURE A15  
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FIGURE A17: Cellular Allometric Batch Growth Analysis of the Zebrafish Lens.  



26 
 

 

The Meaning of ALLO-GROWTH, and its defining abstraction, the Cellular Allometric Growth Equation  

 

The Cellular Allometric Growth Equation 

             With the data outlined above, we were able to compare, on log-log graphs, the number of cells in various 

parts of the body (cell lineages, tissues, organs, and anatomical structures), Np, with the number of cells in the embryo as 

a whole, Nw.  Remarkably, in the great majority of these cases, comparisons of Np vs. Nw appeared as ramrod-straight rows 

of dots on log-log graphs (FIGURES A9-A17).  The high r2 values attest to the strength of these observations of cellular 

log-linearity.  These empirically based observations make plain that relative body-part growth, when examined in numbers 

of cells, Np vs Nw, often takes the form of the Allometric Equation: 

 

log(𝑵𝒘) =
𝟏

𝑺𝑵
∙ log(𝑵𝒑) + log(𝑩𝑵𝟏)                                                                 (4) 

which is equivalent to: 

𝑵𝒘 = 𝑩𝑵 ∙ 𝑵𝒑

 
 𝟏

 𝑺𝒏                                                                                (4b) 

 

We call these expressions “Cellular Allometric Growth Equations” (FIGURE A18), and the biological process 

which is captured “ALLO-GROWTH”. We call the parameter BN1 the “Cellular Allometric Birth”’ and SN, the “Cellular 

Allometric Slope”.  

 
FIGURE A18:  The Cellular Allometric Growth Equation, log(Nw) = (1/SN) log(Np) + log(BN1).                       
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              Body part ALLO-GROWTH results from whole body UNI-GROWTH. 

Recall that the Cellular Allometric Growth Equation captures the rate of growth of the whole embryo, 

while the rate of growth for each body-part is: 
𝒅𝑵𝒑

𝒅𝒕
=

𝒍𝒏(𝟐)

𝒄𝒑
∙ 𝑵𝒑 ∙ (𝒎𝒑)                                                                 (650)                                                                     

where cp is the Cell Cycle Time, and mp the Mitotic Fraction of the cells of the body part. Thus, the ratio of the rate 

of growth of the body to the body-part is:  

𝒅𝑵𝒘

𝒅𝑵𝒑
= [

𝒍𝒏(𝟐)

𝒄
∙ 𝑵𝒘 ∙ (𝒎)]  ∙  [

𝒍𝒏(𝟐)

𝒄𝒑
∙ 𝑵𝒑 ∙ (𝒎𝒑)]

−𝟏

      , where    𝒎 = 𝒂(𝑵𝒘
𝒃 )    and     𝒎𝒑 = 𝒂𝒑

(𝑵𝒘

𝒃𝒑
)          (651)                                                                     

Consider the case where mp=m and c p= c, that is, where a body part has the same Mitotic Fraction and Cell Cycle 

Time as the embryo, and starts sometime later than the first cell:  
𝒅𝑵𝒘

𝑵𝒘
=

𝒅𝑵𝒑

𝑵𝒑
                                                                                (652)                                                                     

Integration1 reveals: 

𝒍𝒐𝒈(𝑵𝒘) = log(𝑵𝒑) + log(𝑩𝑵)                                                         (652)                                       

which is the allometric relationship, with SN=1. Thus, growth of a part of the body by the Cellular Allometric 

Growth Equation is the consequence of Founder Cells giving rise to cell lineages in animals growing by the Universal 

Growth Equation. 

Parameter SN, the Cellular Allometric Slope of the Cellular Allometric Growth Equation, tells us how the 

embryo uses the Cell Cycle Time to drive Cellular Selection to adjust the size of each part of the body: 

The Cellular Allometric Slope, SN, can be traced to the Cell Cycle Time, cp. 

                          Now, let us consider the case where mp=m but c p≠ c, that is, where a body part has the same Mitotic 

Fraction as the embryo but a different Cell Cycle Time:  
𝒅𝑵𝒘

𝑵𝒘
=

𝒄𝒑

𝒄
 ∙  

𝒅𝑵𝒑

𝑵𝒑
                                                                                (653)                                                                     

Integration reveals: 

𝒍𝒐𝒈(𝑵𝒘) =
𝒄𝒑

𝒄
∙ log(𝑵𝒑) + log(𝑩𝑵)                                                         (653)  

where: 
 

𝑺𝑵 =  
𝒄

𝒄𝒑
                                                                             (655)                                      

which is the allometric relationship, with SN,≠1. Thus, SN, the Cellular Allometric Slope of the Cellular Allometric 

Growth Equation, can be traced to the Cell Cycle Time, cp in each part of the body (FIGURE A18). 

On the other hand, similar analysis revealed the Mitotic Fraction, mp, that is, a change in the fraction of cell 

dividing, to be an unlikely source for allometric log-linearity. Indeed, changes in the value of either a or b of the Universal 

Mitotic Fraction Equation (#4), which sets the value of mp, does not result in straight lines on log-log graphs but in curves 

(not shown).  

The Cellular Allometric Slope, SN, and Cellular Selection. 

                          The value of SN, the Cellular Allometric Slope of the Cellular Allometric Growth Equation, 

appears on log-log graphs at a measure of whether a part of the body is growing faster (SN>1), slower (SN<1), or at the same 

speed (SN=1) as the body as a whole. Thus, SN, the Cellular Allometric Slope of the Cellular Allometric Growth Equation 

(#7b) (FIGURE A18) shows how embryos adjust the size of each body part by differential cellular proliferation.  These 

changes in the value of cp are small, and thus have minor impact on the average Cell Cycle Time in the embryo as a whole, 

c, but can have dramatic cumulative impacts on the relative sizes of body parts (FIGURES A8-A17). Thus ALLO-

GROWTH, and its mathematical abstraction, the Cellular Allometric Growth Equation (#7), distills Cellular Selection, 

that is, differential cellular proliferation,98,99down to a single value, SN.  Embryos accomplish this by Cell-Heritable change 

the Cell Cycle Time, cp.  

 

1 For a superb YouTube discussion of why the integration of Equation #10 that leads to Equations #7c and #7d, which Salman 

Khan asserts is "one of the two coolest derivatives in all of calculus", see: 
https://www.khanacademy.org/math/in-in-grade-12-ncert/in-in-advanced-differentiation-two/copy-of-proofs-for-derivatives-of-ex-and-lnx-ab/v/proof-d-dx-ln-x-1-x-old 

and 
https://www.khanacademy.org/math/ap-calculus-ab/ab-antiderivatives-ftc/ab-common-indefinite-int/v/antiderivative-of-x-1 

https://www.khanacademy.org/math/in-in-grade-12-ncert/in-in-advanced-differentiation-two/copy-of-proofs-for-derivatives-of-ex-and-lnx-ab/v/proof-d-dx-ln-x-1-x-old
https://www.khanacademy.org/math/ap-calculus-ab/ab-antiderivatives-ftc/ab-common-indefinite-int/v/antiderivative-of-x-1


28 
 

Parameter SN, the Cellular Allometric Slope, at work in adjusting the size of each part of the body 

             What does the Cellular Allometric Slope, SN, of the Cellular Allometric Growth Equation (FIGURE A18) 

tell us about how embryos create our anatomy?  The value of SN, the Cellular Allometric Slope, provides us with a measure 

of how the embryo adjusts the sizes of each of our parts by Cellular Selection, that is, differential cellular proliferation, a 

remarkably subtle but powerful force in shaping the composition of the embryo.98,99  We see in SN, the Cellular Allometric 

Slope, nothing less than the determination of the size of the embryo’s cell lineages, tissues, organs, and anatomical 

structures, by Cellular Selection, driven by the Cell-Heritable, average Cell Cycle Time, cp, of the cells in each of these 

parts of the body.  Thus, the Cellular Allometric Growth Equation allows us to distill the action of the fundamental 

morphogenetic force of Cellular Selection down to a single value, SN. 
 

   Parameter SN, the Cellular Allometric Slope, at work early in development 

                          Early in development, we can see Cellular Selection at work in molding the composition of the 

first structures of the embryo, the cell lineages. For example, note in FIGURE A10 how the nematode C elegans AB lineage, 

which forms the skin of the worm, has a Cellular Allometric Slope, SN, slightly greater than 1 (𝑺𝑵 ≈ 𝟏. 𝟏); this results in 

the AB lineage growing from 50% of the cells of the worm at its creation in the AB Founder Cell to almost 70% of the 

worm’s body at hatching (FIGURE A10).  In the other direction, the C elegans E lineage, which forms the intestine, also 

grows as a straight line on a log-log graph, but with a Cellular Allometric Slope, SN, of less than 1 (𝑺𝑵 ≈ 𝟎. 𝟕); this results 

in the E intestinal lineage declining from about 12% of the cells of the C elegans when it first arises from its E Founder 

Cell to about 3% at hatching (FIGURE A10). Even more dramatically, the C elegans germ cell lineage rises by log-linear 

Cellular Selection from a single cell, comprising about 0.02% of the embryo. to about 20% of the adult, roughly a 100-fold 

increase, through the action of a Cellular Allometric Slope, SN, of ~9 (FIGURE A10). A similar dramatic log-linear post-

embryonic increase can be seen for the C elegans M lineage, which form muscle cells (FIGURE A10).  Many other cell 

lineages display such Cellular Selection, as can be seen in FIGURES A9 and A11. 
 

   Parameter SN, the Cellular Allometric Slope, at work late in development 

                          Later in development, we again see Cellular Selection at work molding body part size, this time 

for tissues, organs, and anatomical structures (FIGURES A12 - A17). For example, note in FIGURE A12 how the chick’s 

liver starts out as just 0.17% of the cells of the embryo 2 days after the egg is laid, but has grown, with a Cellular Allometric 

Slope, SN, of ~1.3, to about 5.5% of the embryo by day-21, a 33-fold increase.  In the other direction, the chick’s heart 

contains just 1.35% of the embryo’s cells at day 2, declining with a Cellular Allometric Slope, SN, of ~0.84, to about 0.64% 

of the embryo by day-21, a ~2-fold decrease (FIGURE A12). Such Cellular Selection can be seen to be at work in molding 

the sizes of many of the tissues, organs, and anatomical structures of animals, whose log-log graphs can be seen in 

FIGURES A12 - A17. We found this log-linearity of Cellular Selection in the relative growth of these embryonic structures 

of developing mice, rats, clams, and goldfish (data not shown), and human embryos as well (FIGURES A15 and A16). 
 

   Parameter, SN, the Cellular Allometric Slope, SN, and the Cell Cycle Time, cp, 

                          Where does the Cellular Selection captured by the Cellular Allometric Slope, SN, come from?  By 

expanding Cellular Allometric Growth Equation (#8c), we have been able to see above that the underlying cause of 

Cellular Selection can be traced to the average Cell Cycle Time of the cells in a part of the body, cp, in comparison to the 

average Cell Cycle Time of the cells in the body as a whole, c, with this expression, which we repeat here for convenience: 

𝑺𝑵 =
𝒄

𝒄𝒑
                                                                                         (655) 

In short, the Cellular Allometric Growth Equation, and the relative growth data that it summarizes, tell us that our 

bodies adjust the size of our body-parts by adjusting the average Cell Cycle Time, cp, of the cells in each of our parts, in a 

Cell-Heritable fashion.  The Cellular Allometric Growth Equation is also pointing to possible times when this specification 

of body part size occurs: the Cellular Allometric Birth. These graphs shown in FIGURES A9-A17, empirical summaries 

of actual data, of many body parts, in many animals, are also pointing to Cellular Allometric Births for virtually all body 

parts, whether large or small, as mapping to very early in development.  This suggests that many parts of the body could 

arise from small numbers of cells, experiencing cell heritable changes in the Cell Cycle Time, cp, very early in development. 

The changes in the Cell Cycle Time, cp, that occur within us, and which drive the changes in relative growth that 

we have seen in the Cellular Allometric Slope, SN, from all of the Np vs. Nw comparisons we have carried out 

(FIGURES A9-A17), are generally very small, just a few percentage points. Indeed, these change in the Cell Cycle Time, 

cp, that occur within the body are tiny in comparison to the hundred-fold differences in the Cell Cycle Times, c, which we 

have seen between different species of animals (Table 2). Nonetheless, these small internal changes in the Cell Cycle Time 

can accumulate, often leading to dramatic changes in the body’s composition, such as the 33-fold increase noted above in 

the size of the liver in chick embryos caused by an SN value of ~1.3.  
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The role of DNA methylation in the change in the Cell Cycle Time, cp in body parts 

                           What could cause such a Cell-Heritable change in Cell Cycle Time that lies behind the Cellular 

Allometric Slope, SN, and drives the Cellular Selection, and thus determine the sizes of our cell lineages, tissues, organs, 

and anatomical structures?  There are a number of Cell-Heritable biological processes that influence the time it takes for 

a cell to divide, of which DNA methylation has been the most widely studied; methylated DNA takes longer to copy, and 

thus causes cells to take more time to divide.100,101  

When might DNA methylation, or some similar Cell-Heritable process, set the value of the Cell Cycle Time, cp, 

and thus the Cellular Allometric Slope, SN, of the cells of a part of the body, and thus, ultimately, the size of that part?  An 

appealing possibility for consideration is the moment when that part could have been created, is it arose form a single cell, 

that is, at its Cellular Allometric Birth BN1, when the part could have been but a single cell.  Should this be found to be the 

case, then the Cellular Allometric Birth BN1, would appear to be the moment when both the part, and its size, are determined 

by the embryo. 
 

The Parameter, BNa, the Cellular Allometric Birth of the Cellular Allometric Growth Equation, tells us 

how embryos create body parts from single cells 

             The value of BNa, the Cellular Allometric Birth of the Cellular Allometric Growth Equation, can be seen 

easily on log-log graphs (FIGURE A18), as the place where the Cellular Allometric Growth Equation crosses the x-axis, 

and thus where 𝐥𝐨𝐠(𝑵𝒑) = 𝟎, and, therefore, where 𝑵𝒑 = 𝟏.  

Should a part of the body come into existence as a single Founder Cell, the Cellular Allometric Birth, BN1, 

corresponds to the number of cells in the body of the embryo, Nw), when that single Founder Cell arose by mitosis       (i.e. 

𝑩𝑵 = 𝑵𝒘 when 𝑵𝒑 = 𝟏).  In fact, this is precisely what has been seen for those animals for which we have cell lineage 

charts, which have been collected to describe every cell in the embryo from the zygote onward (FIGURE A8), that is, for 

nematode worms Caenorhabditis elegans20 and Meloidogyne incognita21, and for tunicates, Oikopleura dioica,88 which 

are chordates quite closely related to ourselves. 

For the tissues, organs, and anatomical structures for which we have growth data later in development, we seldom 

have data on their cellular origins.  There has been much scholarship on this point, but, fortunately, modern light sheet 4D 

microscopy should allow us to answer these questions,22,23,102 and the Cellular Allometric Growth Equation points us to 

where we should look. Furthermore, whether a body part arises from a single Founder Cell, or multiple Founder Cells, 

Cellular Phylodynamic Analysis allows us to characterize the features of the process.  For example, should a part of the 

body come existence from z Founder Cells, each of which is born at the same time, and has the same Cell-Heritable Cell 

Cycle Time, cp, the part made of these z Founder Cells will also grow by the Cellular Allometric Growth Equation. Even 

more complex such examples are amenable to this Cellular Phylodynamic Analysis approach, a topic we shall address 

below. 

When the parts of the body are born: The Cellular Allometric Birth in Time, BT  

                          The Cellular Allometric Growth Equation tells us that embryos create our body parts from 

individual Founder Cells. When does this occur? In terms of the size of the embryo, each part is born when the size of the 

embryo is BN1  (𝑩𝑵 = 𝑵𝒘 when 𝑵𝒑 = 𝟏).  In terms of the time when each part is born (relative to the time of fertilization, 

when 𝒕 = 𝟎), which we call the “Cellular Allometric Birth in Time”, BT, we can reach back to the Universal Growth 

Equation (#5): 

𝑩𝑻 = [Ei(−𝑩𝑵
𝒃 𝒍𝒐𝒈(𝒂)) − Ei(− 𝒍𝒐𝒈(𝒂))] 

𝒄

𝒃 𝒍𝒐𝒈(𝟐)
                                          (660) 

where BT is the time of a Cellular Allometric Birth, when a Founder Cell becomes a body part. 

Furthermore, early in development, when most Founder Cells appear, growth is quite close to exponential, as most 

cells are dividing.  Thus, building from Equation #2: 

𝑩𝑻 ≈ 𝒄 ∙ (𝒍𝒏(𝑩𝑵)) ∙ [𝒍𝒏𝟐]−𝟏                                                                   (661) 

The time of the Cellular Allometric Birth of a body part affects its size. 

                          An interesting functional correlate of the single cell origin of cell lineages is that the structures they 

form can be big or small by having earlier or later Cellular Allometric Births, BN1.  For example, while the MS, C, and D 

lineages of C elegans all grow on log-log graphs right along with the embryo as a whole, thus with Cellular Allometric 

Slopes, SN, close to 1, the cells of the MS lineage make up about 12%-14% of the worm because it is born at the 8-cell 

stage (𝑩𝑵 = 𝟖), while the cells of the C lineage make up about 8% of the worm by being born at about the 16-cell stage  

(𝑩𝑵 = 𝟏𝟔), and the cells of the D lineage makes up about 3% of the worm by being born at about the 32-cell stage (𝑩𝑵 =
𝟑𝟐) (FIGURE A11).  Thus, the option of generating structures from single cells at various points in the growth of the body 

as a whole gives the embryo another trick for adjusting the relative sizes of its many parts. 
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Data on the number of Founder Cells that make various parts of the body. 

                          Early in development, we can see the creation of body parts from single Founder Cells for those 

animals for which cell lineage charts have been made. For example, note in FIGURES A9 and A10, how the nematode 

C elegans AB Founder Cell arises when the embryo is just 2 cells in size, whose progeny go on to form the AB lineage, 

which forms the skin from the Cellular Allometric Birth of 𝑩𝑵 = 𝟐 (i.e., 𝑵𝒘 = 𝟐 when 𝑵𝒑 = 𝟏). Similarly, note in 

FIGURES A9 and A10, how the C elegans E Founder Cell arises when the embryo is 8 cells in size, whose progeny go on 

to form the E lineage, which forms the intestine from the Cellular Allometric Birth of 𝑩𝑵 = 𝟖  

(i.e., 𝑵𝒘 = 𝟖 when 𝑵𝒑 = 𝟏).  Many other such examples of the creation of body parts from single Founder Cells can be 

seen for C elegans and M incognita nematode worms and O dioica chordate tunicates in FIGURES A9 and A10. 

Later in development, we get hints of the creation of body parts from single Founder Cells, as the Cellular 

Phylodynamic Analysis of the tissues, organs, and anatomical structures of the body shows that the line of the Cellular 

Allometric Growth Equation points down to the spot on the x-axis where the Cellular Allometric Birth, BN1, lies (FIGURES 

A12-A17). Remarkably, in almost every case, the line of the Cellular Allometric Growth Equation points to a Cellular 

Allometric Birth, BN1, that corresponds to the number of cells in the body of the embryo, Nw when the embryo was quite 

early in its development, and never to numbers of cells less than 2. For example, as can be seen in FIGURE A12, 𝑩𝑵 ≈ 𝟖 

for the chicken heart, suggesting that the heart could have arisen from just 1 cell when the embryo was ~8 cells in size.  For 

the chicken liver, 𝑩𝑵 ≈ 𝟐, 𝟎𝟎𝟎, suggesting that the liver could have arisen from just 1 cell when the embryo was ~2,000 

cells in size (FIGURE A12). Many other such examples of the creation of body parts from single Founder Cells can be 

seen in the relative growth of these embryonic structures of developing mice, rats, clams, and human embryos as well 

(FIGURES A15 and A16).  While few of these large structures have been measured down to the BN1 intersection point, the 

zebrafish eye lens comes close, as Greiling and Clark documented its growth from just 8 cells, when the embryo is 16 hours 

post fertilization, with the lens’s Cellular Allometric Growth Equation pointing down to a Cellular Allometric Birth when 

the embryo was about 2000 cell in size, and thus 𝑩𝑵 ≈ 𝟐, 𝟎𝟎𝟎 when 𝑵𝒑 = 𝟏 (FIGURE A17).93-95  These observations 

complement other studies that have also suggested that large anatomical structures may arise from small numbers of 

cells,103,104 including recent CRISPR/Cas9 cell lineage labeling studies.105,106   

 

Body parts can be made of one Founder Cell or more than one Founder Cell  

                          Curiously, whether a part of the body arises from 1 Founder Cell, or more than 1 Founder Cell, 

ALLO-GROWTH will result in body parts growing by the Cellular Allometric and Allometric Growth Equations, and, 

early in development, by the Exponential Growth Equation, if all Founder Cells of a body part arise at the same time and 

with the same Cell Cycle Time, cp.    This could be seen in a simple calculation of an idealized part of the body that is made 

from 3 Founder Cells, arising early in development, when growth is close to exponential (FIGURE A19). As can be seen 

in the top two graphs of FIGURE A19, if all three Founder Cells, arise at the same time, and have the same Cell Cycle 

Time, cp, their growth together will be indistinguishable from a part made of 1 Founder Cell (once it gets up to 3+ cells!).  

Furthermore, as can be seen in the other graphs of FIGURE A19, no matter when the three Founder Cells are born, or what 

their Cell Cycle Times, cp, are, the aggregate growth of the part will still appear as a quite straight row of datapoints on a 

log graph. Thus, the fact that the growth of a body part points back to a single Cellular Allometric Birth, doesn’t mean that 

it arose from a single cell; we still have to do the microscopy work to see what actually happened.22,23,93,107  

 This simple excise also shows, however, that body parts made of more than a single Founder Cell do have some 

challenges. Note for example, that Founder Cells born after the first Founder Cell, or having a lower Cell Cycle Time, cp, 

than the fastest growing Founder Cell, will soon become irrelevant, and the body part will become functionally monoclonal. 

A Founder Cell born three Cell Cycle Times, c, after the first Founder Cells, which in a human or a mouse is about three 

days, will make up only about 10% of the part, while a Founder Cell born eight Cell Cycle Times, c, after the first Founder 

Cell will make up only about 1% of the part.  Founder Cells that have Cell Cycle Times, cp, slower than the fastest Founder 

Cell will soon loose in the race to make up a significant percentage of the part. 

While these this simple exercise examined the idealized case of a part of the body arising early in development, 

when growth is close to exponential, the results shown here are likely to be similar later in development as well, when 

UNI-GROWTH begins to be felt, although exploring precise details for this would be worthwhile. 

Of course, we can imagine all sorts of complicated multi-clonal anatomical structures.  Perhaps their 

Cell Cycle Times are elegantly intertwined, or they adjusted their Mitotic Fractions to stay in league.  Fortunately, however, 

whatever the cellular behavior, if one collects the cell numbers, Cellular Phylodynamic Analysis provides us with a way to 

isolate the underlying processes.  
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FIGURE A19: Calculations for an idealized part of the body that is made from 3 Founder Cells, arising early in development 

C:\_1\BBCDG V6 growth DATA\_______J im Multiple Founder Cells  June 2021\Jim Mult iple Founder Cells V7 July 11 2021.xls  
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Body Part Size to Body Part Size Relationships; Body Part Proportion Equations 

Let us now consider the growth of two parts of the body, p1 and p2, both of which display allometric growth with 

reference to the growth of the body as a whole, w. 

For part 1:                                             

𝐥𝐨𝐠(𝑵𝒘) = (
𝑺𝑵𝟏

𝒄
) 𝐥𝐨𝐠(𝑵𝒑𝟏) + 𝐥𝐨𝐠(𝑩𝑵𝟏)                                                      (719) 

For part 2:                                             

𝐥𝐨𝐠(𝑵𝒘) = (
𝑺𝑵𝟐

𝒄
) 𝐥𝐨𝐠(𝑵𝒑𝟐) + 𝐥𝐨𝐠(𝑩𝑵𝟐)                                                      (720) 

It follows that: 

𝐥𝐨𝐠(𝑵𝒘) = (𝑺𝑵𝟏) 𝐥𝐨𝐠(𝑵𝒑𝟏) + 𝐥𝐨𝐠(𝑩𝑵𝟏) = (𝑺𝑵𝟐) 𝐥𝐨𝐠(𝑵𝒑𝟐) + 𝐥𝐨𝐠(𝑩𝑵𝟐)                               (721)  

which is equivalent to: 

𝐥𝐨𝐠(𝑵𝒑𝟏) = (
𝑺𝑵𝟐

𝑺𝑵𝟏
) 𝐥𝐨𝐠(𝑵𝒑𝟐) + 𝐥𝐨𝐠 (

𝑩𝑵𝟐

𝑩𝑵𝟏
)                                                   (721b) 

In other words, if two parts of the body show log-linear allometric growth with respect to the size of the body as a 

whole, they will also show log-linear allometric growth with respect to each other, with each part’s Cellular Allometric 

Birth, BN and Cellular Allometric Slope, SN repackaged into the slope and intercept of this new variation on the Cellular 

Allometric Growth Equation. 

It follows that if the body parts in question are in units of mass or volume or length, we can repeat the treatment 

outlined in the previous section. Thus: 

𝐥𝐨𝐠(𝒑𝟏) = (
𝟏

𝑺𝟏,𝟐
) 𝐥𝐨𝐠(𝒑𝟐) + 𝐥𝐨𝐠(𝑩𝟏,𝟐)                                                       (722) 

which is equivalent to: 

𝒑𝟏 = 𝑩𝟏,𝟐 ∙  𝒑𝟐

 
 𝟏

 𝑺𝟏,𝟐                                                                         (722b) 

We call these expressions Body Part Proportion Equations.   
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Clones Within Clones 

As can be seen in Equation #722 above, if each of two parts of the body are seen by Cellular Allometric Growth 

Analysis to conform to the Cellular Allometric Growth Equation (#7), when each is compared with the body as a whole, 

they will also conform to the Cellular Allometric Growth Equation when compared with each other.  An actual example 

of this can be seen in FIGURE A23, in which we display the number of cells in the anterior part of the drosophila wing, Np-

a, in comparison to the number of cells in the wing as a whole, Np-w.  These values were generated from measurements of 

the area of the whole wing disc, and of its anterior part, that have been collected by Parker and Shingleton,108 translated into 

likely cell numbers, Np-a, and Np-w, with cell number per area data derived by Ulrike.109   

These log-log comparisons of Np-a (number of cells in the anterior part of the drosophila wing), and Np-w (number 

of cells in the wing as a whole), are shown in FIGURE A23. This log(Np-a) vs log(Np-w) comparison reveals that the Cellular 

Allometric Growth Equation captures the growth of the anterior part of the wing, pointing to a Cellular Allometric Birth, 

BN1, growing from when the wing as a whole was 8 cells in size (BN1=23=8), should the anterior part have arisen from a 

single Founder Cell.  Furthermore, the Cellular Allometric Slope, SNp, is greater than 1, indicating an increase in speed of 

the cell cycle time, cp, of the cells in the anterior part of the wing, thus accounting for the progressively increasing relative 

size of the anterior part of the wing in relationship to the wing as a whole (FIGURE A24). We call this process “Clones 

Within Clones”, a mechanism which provides animals a way to create functional modularity. 

 
FIGURE A23:  Left.  Cellular Allometric Growth Analysis of the anteriors wing vs whole wing.                                                                   

FIGURE A24:  Right. Percentage of anteriors wing cells in the whole wing vs number of cells in the whole wing. 
[Jims Shingletoon  Data V5 5 29 21.xlsx]Sheet1 (3). ln  then log 2'!$Y $69  

These observations are also strikingly complementary to the long appreciated finding the anterior and posterior 

parts of the fly’s wing are clonally separate entities, called compartments.  

Whether the anterior part of the wing grew from a single Founder Cell, at the Cellular Allometric Birth, BN1, or 

from more than 1 Founder Cell, after the Cellular Allometric Birth, BN1, cannot be known from the data we have, since 

the values for Np-a, and Np-w only point down to that origin at when the wing as a whole was 8 cells in size (BN1=23=8). 

Nonetheless, this poses an eminently answerable question, which could be settled by light sheet microscopy, again providing 

motivation for experiment.22,23,93 

The formation of Clones Within Clones occurs in many instances of embryonic development of many animals.  For 

example, the melanocytes of the skin of mice appear to be derived from 34 Founder-Cells (17 on each side of the body) 

created around the 12th day of life.110    Clones Within Clones are most dramatically at work in the immune system, where 

clonal selection selects individual cells and expand them up to large populations of cells through the action of antigens 

stimulating cell division by attaching to antibodies or T-cell receptors at the cell surface.98,99,111  Such a viewpoint may be 

especially useful in comprehending and learning how to maximize COVID-19 vaccines’ impact.  Similar processes may 

well occur in other systems, such as in the production of plasma proteins by the liver, in which each of the hundred-or-so 

blood proteins produced by the liver appears to be made by separate cells, in separate clones, that arise as patches 

continuously throughout life.83,99  Anatomically, the creation of such functional diversity by the creation of Clones Within 

Clones has been seen time after time, such as in the clones that form the crypts of the intestine,112 and in the sequential 

clones of spermatocytes that produce the spermatozoa,113 as well as the many anatomical structures that seem to be made of 

countless subunits, such as in the lungs, the liver, the kidney, and so on.  Cellular Phylodynamic Analysis seems poised to 

make sense of how cells create such modular structures.  
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ALLO-GROWTH: Summary Definition 

               Let us summarize: ALLO-GROWTH is the process by which body parts are created from Founder Cells.  

ALLO-GROWTH is captured by the Cellular Allometric and Allometric Growth Equations, and their parameters, S, B, 

SN, the Cellular Allometric Slope, and BN1, the Cellular Allometric Birth.  ALLO-GROWTH occurs by a Founder Cell 

acquiring a Cell-Heritable, Cell Cycle Time, cp at the Founder Cell’s Cellular Allometric Birth, BN1, and then undergoing 

mitotic expansion, as captured by the Cellular Allometric Slope, SN, of the Cellular Allometric Growth Equation.  Whether 

a body part arises from a single Founder Cell, or multiple Founder Cells arising at the same time with the same Cell Cycle 

Time, growth by the Cellular Allometric and Allometric Growth Equations will occur.  For body parts arising from a single 

Founder Cell, the Cellular Allometric Birth, BN1, corresponds to the number of cells in the body when the Founder Cell 

arose.   
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AGING  

Mitotic Fraction and Age 

The relationship between age, t, and Mitotic Fraction, m, can be calculated by combining Equations #1 and #3: 

𝒕(𝒎) =   
𝒄

𝒃∙𝒍𝒐𝒈(𝟐)
∙     [Ei(−𝒍𝒐𝒈(𝒎))  −   Ei (−𝒍𝒐𝒈(𝒂))]                                 (5) 

We call this expression, the Universal Mitotic Fraction in Time Equation.  With it, we could generate curves for 

the 10 species listed above, and in TABLE II, which, when ended at the age of the longest known individual in each species, 

reveals lifespan to be correlated with an age when fewer than 1-in-1,000 cells are dividing (FIGURE 2 in text, FIGURES 

A 26 and A21). We call this region the Death Zone, marking the thousand+fold decline in Mitotic Fraction from conception 

to death. 

 

 
FIGURE A20: The Universal Mitotic Fraction in Time Equation (#5) captures change in Mitotic Fraction, m, with 

Age, t. 

𝒕(𝒎) =   
𝒄

𝒃∙𝒍𝒐𝒈(𝟐)
∙     [Ei(−𝒍𝒐𝒈(𝒎))  −   Ei (−𝒍𝒐𝒈(𝒂))]                                                  (4) 

The graph on the right side shows the bottom 0.2% of the Y-axis of the graph on the left side: the Death Zone occurs 

when fewer the 0.03% of the cells of the body are dividing. Each curve ends at the age of the oldest known member of its 

species.  

 

 
FIGURE A21: The inverse of the Universal Mitotic Fraction in Time Equation (#5) visualizes the change in the 

fraction of cell not dividing with age. 
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Lifespan 

All three parameters of the Universal Growth Equation, a, b and c, considered genetically, allow species to evolve 

to patterns of growth that give the greatest chances of survival, and to lifespans calculable with this expression: 

𝑳𝒊𝒇𝒆 𝑺𝒑𝒂𝒏 =   
𝒄

𝒃∙𝒍𝒐𝒈(𝟐)
∙     [Ei(−𝒍𝒐𝒈(𝒁))   −   Ei (−𝒍𝒐𝒈(𝒂))]                           (6) 

Z is the Mitotic Fraction at the end of life. We call Equation#5 the Universal Lifespan Equation, whose 

calculations, based on a, b, and c values from growth data, distinguished between the longest lifespans (humans and cows), 

and the shortest (nematodes), lumping in between animals with 1-to-20-year lifespans (FIGURE 3 in text, FIGURE A22). 

For the ten species we have examined, the average Z value of the average lifespan for each species, ZA≈0.000037. The 

average Z value of the longest known lifespans, ZL≈0.000024.  

 

 

 

 
FIGURE A22: Life Span - Actual vs Predicted from Growth Data with the Universal Lifespan Equation (#6). 

Datapoints are for Humans, Frogs, Nematodes, Chickens, Cows, Geese, Mice, Quail, Rats, Turkeys. 

 

The Pace and Shape of Lethality 

While Z provides a single measure of lifespan, death occurs continuously, frequently increasing in 

magnitude, sometimes exponentially, as noted by Gompertz in 1825114. The Universal Mitotic Fraction in Time 

Equation also displays an accelerating decline in Mitotic Fraction, although of different form than Gompertz’s.  

Of course, mortality probably doesn’t directly reflect the decrease in the Mitotic Fraction, but the increase in the 

times since last mitoses, which can be calculated with Cellular Population Tree Visualization Simulation 

(Reference).  

Species have lifespans that are short and long, whose risk of death may increase exponentially with age, 

as Gompertz showed for humans, or in other ways, or not at all, as Vaupel and colleagues made clear in the 

taxonomically wide survey of aging.115This variety has been described as the pace and shape of lethality, 

appearing as the “two orthogonal axes of life history”.116  Note that for the 10 species we have examined, the 

curves of the Universal Mitotic Fraction in Time Equation (#5) cross over each other (FIGURE A21). Such 

interweaving is ascribable to the capacity of the parameters a and b to twist these curves and the capacity of the 

parameter c to stretch or contract them.  This suggests a useful place to begin to consider the possible basis for 

the quantitative pathways of aging and their consequences. 
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The Gompertzian Force of Mortality 

Not all creatures in a species live to the same age.  In 1835, Gompetz reported that the chance of death for 

humans, D, increases exponentially with age, t (FIGURE A29): 

 

𝑫 = 𝑮𝑯 ∙ 𝒆𝑮𝒔 ∙ 𝒕                                                          (7) 

which is equivalent to: 

   𝒍𝒐𝒈(𝑫) =  (𝑮𝒔 ∙  𝒕) + 𝐥𝐨𝐠 (𝑮𝑯)                                              (8) 

 

This expression is called the Gompertz Mortality Equation, and the exponential increase in the chance of 

death that occurs with age that it captures is called the Gompertzian Force of Mortality. One can visualize these 

concepts by comparing the chance of death, D, against age, t, on a log graph, a Gompertz Plot, yielding a straight 

line, a Gompertz Line, whose slope, Gs, we call the Gompertzian Slope, and whose height is seen in GH, the 

Gompertzian Height.  Gompertz Plots for humans and mice can be seen in FIGURE A29.  This same log-linear 

Gompertz Line has also been found to capture the chance of death after exposure to a variety of pathogens, 

including COVID-19 (FIGURE A29). In the accompanying manuscript, we shall outline how this fit to the 

Gompertz Mortality Equation allows one to tease out the impact of vaccination, and other considerations, on 

COVID-19 lethality and transmission, and the illnesses of old age generally.117  

       

FIGURE A29 
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Growth, Decay, and Aging                                                                     
As we have seen above, the examination of body size in units of numbers of cells, N, reveals that the rate of 

animal growth declines with age by the reduction in the fraction of cells that are dividing, by the Mitotic Fraction in 

Time Equation.  This decline begins gradually early in life, gains speed early in development, and then settles to a 

more regular rate as one enters adulthood.  For example, the Mitotic Fraction in Time Equation tell us that after the 

age 50, the decline in the Mitotic Fraction, m, appears like a slightly bent straight line (FIGURE A30), that is: 

𝒎 ≈ 𝒎𝟎 − (𝒎𝒅) ∙ 𝒕                                                            (9) 

Where m0 is the Mitotic Fraction projected back to the time of conception (t=0, not biologically relevant, 

because the linearity in Equation #9 does not apply to early life, but mathematically convenient for studying old 

age), and md is the approximate rate of decline in the Mitotic Fraction in old age. 

Consider that once a cell has divided, it will remain functional for F days, unless it divides again. It follows 

that a part of the body with Np cells will contain Npf functional cells: 

𝑵𝒑𝒇 = 𝑵𝒑 ∙ 𝑭 ∙ 𝒎                                                            (10) 

Combining Equations #9 and #10: 

𝑵𝒑𝒇 ≈ (𝒎𝟎 − (𝒎𝒅 ∙ 𝒕)) ∙ 𝑵𝒑 ∙ 𝒎                                              (11) 

Body parts have specialized cells, doing different things. For example: in the pancreas, some cells make insulin, 

while others make digestive enzymes; in the heart some cells are muscle, others gristle; in the liver, some cells make blood 

proteins, others modify bile; etc.; etc.  The immune system embraces this specialization with enthusiasm, with lymphocytes 

of many specialized types, starting from T-cells and B-cells, then subtypes, then yet more specialized cells as the results of 

massive cut-and-paste randomization of antibody and T-cell receptor genes, and then, somatic mutation, just to name 

a few.  Generally, each cell of a part of the body has a probability, p, of being able to do a certain task, where:  
 
 

p = (number of specialized cells in the body part) / (number of all cells in the body part)   (12) 

 

Let us consider the special case of pa as the chance of any single lymphocyte making an antibody to the 

COVID-19 virus spike protein.  The body can make that antibody as long as it has at least one such functional 

lymphocyte with its genes arrayed to make that antibody. However, the Mitotic Fraction, m, declines as we age, 

as seen in equation #9, the number of capable lymphocytes also declines, as seen in equation #11. Indeed, the 

chance of the body NOT having even one such capable lymphocytes, DL, is: 

𝑫𝑳 = (𝟏 − 𝒑𝒂)𝑵𝒑𝒇                                                           (13) 

By plugging in Equation #e, which captures the approximately linear decline in Mitotic Fraction, m, 

that occurs in late adult life, we arrive at: 
DL =(1 – pa)^[(m0 -  md * t)  *  Np * F ]                                         (14a) 

  DL =(1 – pa)^(m0 *  Np * F -  md * t  *  Np * F )                                 (14b) 

DL =(1 – pa)^(m0 *  Np * F) * (1 – pa)^(-  md  *  Np * F * t)                            (14c) 

DL =(1 – pa)^(m0 *  Np * F) * e^(- log(1 - pa) md *  Np * F * t )                        (14d) 

 

𝑫𝑳 = 𝑮𝑯𝑳 ∙ 𝒆𝑮𝑺𝑳                                                           (15) 

 

Which, remarkably, is the Gompertz Mortality Equation, with: 

𝑮𝑯𝑳 = (𝟏 − 𝒑𝒂)𝒎𝟎  ∙ 𝑵𝒑 ∙ 𝑭                                                 (16) 
and: 

𝑮𝑺𝑳 = −𝒎𝒅  ∙ 𝑵𝒑  ∙ 𝑭 ∙  𝒍𝒐𝒈(𝟏 − 𝒑𝒂)                                     (17) 

 Thus, Cellular Phylodynamics, the analysis of growth in units of numbers of cells, N, has allowed us to see 

that aging’s exponential Gompertzian Force of Mortality is the natural, and direct, result of the deceleration of growth 

that marks animal’s approach to adult size, as captured by the Universal Growth Equation.      
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FIGURE A30  
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Bear in mind that we have used lymphocytes making anti-COVID-19 antibodies to illustrate how the Gompertzian 

Force of Mortality will arise as a result of the decline in growth. However, this finding applies to lethality arising by 

failure of any type of specialized cell, in any of the body’s organs and tissues. 

It may seem a bit surprising that a linear reduction in the fraction of functional cells that occurs in the Death 

Zone will lead to an exponential decline in the chance of having at least one such functional cell.  However, this is a 

curious consequence of the subtle fact that cells are discrete things.  We can picture what’s going in by considering a 

game played with dice, in which a player is allowed to continue, as long as at least one Snake Eye appears. However, 

with each sequential throw, one of the dice will disappear. Let’s imagine that the player begins with a ten dice, and 

thus the odds of continuing are rather good at 1-(5/6)^10 = 83%. At nine dice, the odds are slightly less favorable, with 

a 1-(5/6)^9 = 80% chance of continuing. With four dice, the odds have dropped to roughly 52%; three dice, the odds 

are 42.1%; with two dice, it becomes 30.6%; and with one die, there is only a 16.7% chance.  As we can see, while the 

number of dice goes down linearly with time, the chance of having at least one Snake Eye goes down exponentially 

(FIGURE A31).  In a similar fashion, the chance of having at least one lymphocyte with the capacity to keep a person 

alive after being exposed to a potentially lethal agent such as COVID also declines exponentially as we age. Thus, we 

have seen in general terms that the roughly linear decline in the Mitotic Fraction, m, by the Universal Mitotic Fraction 

Equation, can lead to an exponential decline in survival to COVID, and survival generally, as captured by the 

Gompertz Mortality Equation.  A much more rigorous examination of this process, yielding qualitatively the same 

conclusions noted above, but with greater rigor, can be seen in the APPENDIX and will be published later. 

Finally, let us note that Np is the number of cells in a body part from which specialized cells may arise.  The 

specific example noted above examined the task of any single lymphocyte making an antibody to the COVID virus 

spike protein.  As we shall show in the accompanying paper, immunization appears to decrease the chance of death 

after COVID infection through lowering the Gompertzian Height, GHL. Equation #g shows that this may occur by 

increasing the number of functional cells that might make such an antibody in an unimmunized individual, or Npf. 

Specifically, equation #h shows that the Gompertzian Height, GHL, may be lowered by increasing m0,  or the mitotic 

fraction projected back to the time of conception. However, immunization appears to not affect the Gompertzian Slope, 

GSL. Equation #i shows this may occur if the approximate rate of decline in the Mitotic Fraction in old age, md, is not 

affected by immunization. As a result, this rate of decline in the Mitotic Fraction in old age, md, may be intrinsic. 

Immunization is the process which increases the number of such cells, and vaccination is the method of 

immunization done before infection occurs.  Since mice, like humans, display the log-linear Gompertzian Force of 

Mortality (FIGURE A31), and since immunology encompasses the study of the number of such cells, this give us an 

experimental entry into understanding how immunization may be applied to maximum effect. All one has to do is 

count the lymphocytes.  We shall return to this opportunity below, briefly, and in greater details in the accompanying 

paper.  

                      

FIGURE A31  
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BOX 1 

TERMS, EXPRESSIONS, AND FINDINGS FOR  

THE CELLULAR PHYLODYNAMICS OF ANIMAL GROWTH  

  

Cellular Phylodynamics: 

The analysis of growth and development in units of integer numbers of cells, N.  Nw is the number of cells in an animal as a whole 

while Np is the number of cells in a part of the body, such as a cell lineage, tissue, organ, or anatomical structure. 

  

The Mitotic Fraction, m: 

A measure of the fraction of cells dividing, derived from growth data.  

  

Mitotic Fraction Method  

The Cellular Phylodynamic Analysis method, Equation #3b, which gives a measure how many cells would have to divideto account 

for the amount of growth that occurs over each period of time, the mitotic fraction. 

  

The Universal Mitotic Fraction Equation: 

An empirically derived expression, 𝒎 = 𝒂(𝑵𝒘
𝒃 ), which captures a close approximation of the decline in the mitotic fraction, m, that 

occurs as animals increase in size, Nw, potentially traceable to the discrete allocation of growth factor molecules among cells.  

  

The Universal Growth Equation 

An empirically derived expression for the rate of animal growth, 
𝒅𝑵𝒘

𝒅𝒕
= (

𝐥𝐨𝐠 𝟐

𝒄
) 𝑵𝒘𝒂(𝑵𝒘

𝒃 ).  c is the cell cycle time, the amount of time 

it takes cells to divide, traceable to how much DNA the genome contains. 

  

The Integrated Form of the Universal Growth Equation 

An empirically derived expression that captures a close approximation of how animals increase in size, Nw, with time, t, such that 

𝑵𝒘 = ∫ (
𝐥𝐨𝐠 𝟐

𝒄
) 𝑵𝒘𝒂(𝑵𝒘

𝒃 )    [Closed form: 𝒕 = 𝒄 ∙ (𝐄𝐢[−𝑵𝒘
𝒃 ∙ 𝐥𝐨𝐠(𝒂)] − 𝐄𝐢[− 𝐥𝐨𝐠(𝒂)])

𝟏

𝒃
𝐥𝐨𝐠(𝟐)].  

  

UNI-GROWTH.   

The biological process captured by the Universal Mitotic Fraction Equation and the Universal Growth Equation. 

  

Cellular Allometric Growth Analysis.  

The Cellular Phylodynamic Analysis of relative growth carried out by examining paired Np / Nw values on log-log graphs.  When 

carried out a full lineage chart for an animal, which characterizes each cell from the first fertilized egg onward, this is called Cellular 

Allometric Lineage Growth Analysis.  When carried out without lineage data, but simply with cell numbers, this is called Cellular 

Allometric Batch Growth Analysis. 

  

Cellular Allometric Lineage Growth Analysis.  

The Cellular Phylodynamic Analysis of cell lineages, carried out by counting the number of cells in each lineage, Np, from the 

first Founder Cell onward (𝑵𝒑 = 1), 

  

Cellular Allometric Batch Growth Analysis.  

The Cellular Phylodynamic Analysis of tissues, organs, and anatomical structures based on aggregate size, which is then 

converted into cell number, relying on the observation that there are about 108 cells in every gram of tissue57, or by other such 

batch methods, such as by making cell counts microscopically, or measuring DNA content.    

  

The Cellular Allometric Growth Equation: 

An empirically derived expression that captures the relationship between the number of cells in an individual part of the body, Np, 

with the number with the number of cells in the embryo as a whole, Nw, such that 

log(𝑁𝑤) = (
1

𝑆𝑁
) log(𝑁𝑝) + log(𝐵𝑁).  

  

The Cellular Allometric Birth, BN1, of the Cellular Allometric Growth Equation: 

An empirically derived measure of the number of cells in the body as a whole, Nw, at the point where the cellular allometric growth 

equation indicates that a body part could have been a single cell (𝑵𝒑 ≈ 1). For a cell lineage, BN1 is the number of cells in the body 

as a whole, Nw, when the cell lineage is exactly 1 single cell (𝑵𝒑 = 1). 

  

Cellular Allometric Slope, SN, of the Cellular Allometric Growth Equation: 

An empirically derived measure of the relative growth of each part of the body, whose value can be traced to subtle cell-heritable 

changes in the cell cycle time, potentially caused by processes such as DNA methylation. 

  

ALLO-GROWTH 

The biological process captured by the Cellular Allometric Growth Equation. 

  

Cellular Population Tree Visualization Simulation 

The creation of likely approximations of cell lineage charts with the parameters of the Universal Growth and Cellular 

Allometric Growth Equations, derived from macroscopic growth data. 
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FIGURE LEGENDS 

 
FIGURE A1: Growth, in units of numbers of cells, Nw, from fertilization until maturity, in units of days, t. 

Datapoints for animal size’s (Nx) versus time (t), for C elegans, chickens, mice, turkeys, quail, geese, frogs, and humans, 

and their fit to the numerically integrated form of the Universal Growth Equation (#5b). 

 

 

FIGURE A2: Fit of human growth to the Universal Growth Equation (red), the logistic equation (blue), and the 

Gompertz equation (green).   Data values as black circles. 

 

FIGURE A3: Analysis of the closed form integration of the Universal Growth Equation (#3). 

 

FIGURE A4:  Decline in fraction of cells dividing, the Mitotic Fraction, m, calculated by the Mitotic Fraction Method, 

that occurs as animals increase in size, as seen by the Universal Mitotic Fraction Equation.  Data points for size, Nw, in 

integer units of numbers of cells, vs. the Mitotic Fraction, m, from fertilization, until maturity, for humans.  

 

FIGURE A5:  Values of the Mitotic Fraction, m, calculated by the Mitotic Fraction Method, as a function of animal 

size, Nw, as shown at various scales.  Data points for animal size, Nw, in integer units of numbers of cells, vs. the Mitotic 

Fraction, m, from fertilization, until maturity, for humans, chickens, C elegans nematode worms, and mice. 

 

FIGURE A6: Comparison of the fit of Mitotic Fraction, m, as a function of size, Nw, with human growth data, to the 

Universal Mitotic Fraction Equation (green) and West equation (red). 

 

FIGURE A7:  Wave-like deviations (“ripples”) from the Universal Growth Equation curve, for human growth. 

 

FIGURE A8: Cell lineage chart of the cell lineages of the developing root knot nematode, Meloidogyne incognita.  

Shown are the conventional and BinaryCellName Lineage naming methods. The AB lineage of nematodes forms the skin 

while the E lineage forms the intestine.  Cell lineage chart and data from Calderón-Urrea et al21 
 

FIGURE A9: Cellular Lineage Growth Analysis of the cell lineages of the developing root knot nematode, Meloidogyne 

incognita.21  

 

FIGURE A10: Cellular Lineage Growth Analysis of the cell lineages of the developing C elegans nematode 

 

FIGURE A11:  Cellular Lineage Growth Analysis of the cell lineages of the chordate tunicate Oikopleura dioica. 

Unlike C elegans and M incognita, all of the cases of Cellular Selection for this species reflect reductions in cell number, 

although this could be due to the limited size of the dataset rather than a biological difference. Cell lineage chart data from 

Stach et al88 

 

FIGURE A12:  Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the chick 

embryo. 

Growth of the parts of the chick embryonic gizzard, liver, heart, and kidney, in units of numbers of cells, in comparison to 

the number of cells in the embryo as a whole shown on log-log graphs, showing how the fraction of cells comprising in the 

gizzard and liver increases as the number of cells in the embryo increase with development and how the fraction of cells 

comprising in the heart decreases as the number of cells in the embryo increase with development, and how the fraction of 

cells comprising in the kidney remains roughly constant as the number of cells in the embryo increases with development,  
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FIGURE A13:  Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the rat 

embryo.   

Growth of body parts of the rat embryonic liver, brain, kidney and foreleg, in units of numbers of cells, in comparison to 

the number of cells in the embryo as a whole, are shown on log-log graphs.  Note how the fraction of cells comprising in 

the liver kidney and forleag increases as the number of cells in the embryo increase with development, while the fraction of 

cells comprising the brain decreases. 

 

FIGURE A14: Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the mouse 

embryo.   

Growth of body parts of the mouse embryonic liver, brain, kidney and foreleg, in units of numbers of cells, Np, in comparison 

to the number of cells in the embryo as a whole, Nw, shown on log-log graphs. Note how the fraction of cells comprising in 

the liver kidney and foreleg increases as the number of cells in the embryo increase with development, while the fraction of 

cells comprising the brain decreases. 

 

FIGURE A15: Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the 

developing human fetuses, from autopsy data, of individual fetuses.  

For additional human relative growth data, see FIGURE A16 

 

FIGURE A16: Cellular Allometric Batch Growth Analysis of tissues, organs, and anatomical structures of the 

developing human fetuses, from autopsy data, averaged values.118   

For additional human relative growth data, see FIGURE A15 

 

FIGURE A17: Cellular Allometric Batch Growth Analysis of the Zebrafish Lens.FIGURE A18: The Cellular 

Allometric Growth Equation, log(Nw) = (1/SN) log(Np) + log(BN1). 

 

FIGURE A19: Calculations for an idealized part of the body that is made from 3 Founder Cells, arising early in 

development 

 

FIGURE A20: The Universal Mitotic Fraction in Time Equation (#5) captures change in Mitotic Fraction, m, with 

Age, t. 

𝒕(𝒎) =   
𝒄

𝒃∙𝒍𝒐𝒈(𝟐)
∙     [Ei(−𝒍𝒐𝒈(𝒎))  −   Ei (−𝒍𝒐𝒈(𝒂))]                                                  (4) 

The graph on the right side shows the bottom 0.2% of the Y-axis of the graph on the left side: the Death Zone occurs 

when fewer the 0.03% of the cells of the body are dividing. Each curve ends at the age of the oldest known member of its 

species.  

FIGURE A21: The inverse of the Universal Mitotic Fraction in Time Equation (#5) visualizes the change in the 

fraction of cell not dividing with age. 

 

 

FIGURE A22: Life Span - Actual vs Predicted from Growth Data with the Universal Lifespan Equation (#6). 

Datapoints are for Humans, Frogs, Nematodes, Chickens, Cows, Geese, Mice, Quail, Rats, Turkeys.. 
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TABLE A1 

FILES WITH GROWTH DATA, FOR DISTRIBUTION TO INTERESTED READERS 

Species Genus Species Basic Data Files Calculations Files 

Human Males Homo sapiens 
Boys Basic Growth Data  jsm 2 12 2013.xlsx 140330 Human males.xlsx 

Frogs Rana pipiens 
Rana Basic Growth Data  jsm 2 15b 2013.xlsx 140330 Rana Pipiens.xlsx 

Nematodes C. elegans 
BASIC FORM Celegans SingleSheet jsm 2 13 13 LogMethod.xlsx 140426 C elegans.xlsx 

Chickens Gallus gallus  
CHikcens Aggrey and Byerley and cleavage Data 2 14 2013.xlsx 140426 Chickens.xlsx 

Cows Bos taurus 
COW Basic Growth Data  jsm 1 27 2013.xlsx 140426 Cows.xlsx 

Geese Anser anser 
BASIC FORM Geese SingleSheet jsm 2 14 2013 Log Method.xlsx 140426 Geese.xlsx 

Mice Mus musculus 
BASIC FORM MicePoiley M AKR  jsm 1 28 2013 Log&LinearMethods.xlsx 140426 Mice.xlsx 

Quail Colinus virgianus 
BASIC FORM Quail SingleSheet jsm 2 16 2013.xlsx 140426 Quail.xlsx 

Rats Rattus norvegicus 
RAT Basic Growth Data  jsm 2 14 2013.xlsx 140426 Rats.xlsx 

Turkey Meleagris gallopavo 
BASIC FORM TURKEYwithOvaposition SingleSheet jsm 2 8 2013.xlsx 140426 Turkey.xlsx 

Clams Merceneria mercenaria BASIC FORM LOG METHOD mercenaria 1 11 2013 v2 from Boys SingleSheet 

jsm 2 12 2013  140705 Mercenaria.xlsx 

LOCATION: 
 

C:\_0\My Papers\Growth\_DRAFTS\__final Excell Files\_Basic Data 7 7 14 

C:\_0\My 

Papers\Growth\_DRAFTS\__final 

Excell Files\_Phils Analysis  7 7 14 
 

 

 

TABLE A2  
Universal Growth Equation. 

Parameters and goodness-of-fit metrics 
 

Organism 
 

 
Genus species 

Fit of the data to the rate of growth 

g=N*a^N^b 

(c=Cell Cycle Time, in days) 

Fit of the data to growth 

N=∫[log(2)/c]*N*a^N^b 

 

  c a b R^2 (linear fit) R^2 (log fit) R^2 (log fit) 

Humans (♂)  Homo sapiens 1.016 0.943 0.169 89.9% 95.0% 99.5% 

Frogs Rana pipiens 0.070 0.925 0.269 57.0% 82.3% 97.3% 

Nematodes C. elegans 0.011 0.946 0.680 66.7% 91.6% 99.8% 

Chickens Gallus gallus  0.127 0.906 0.166 80.8% 97.8% 99.8% 

Cows Bos taurus 0.921 0.882 0.128 76.8% 95.1% 100.0% 

Geese Anser anser  0.048 0.898 0.170 77.0% 92.9% 97.1% 

Mice Mus musculus 0.508 0.990 0.281 65.0% 96.2% 99.7% 

Quail Colinus virgianus 0.292 0.795 0.126 76.5% 95.3% 94.2% 

Rats Rattus norvegicus 0.417 0.950 0.197 66.5% 90.6% 99.5% 

Clams M. mercenaria 0.033 0.962 0.275 79% 91% 99.5% 

Turkeys Meleagris gallopavo 0.028 0.757 0.122 65.3% 92.2% 99.7% 

Zebrafish (Danio rerio) and European sea bass (Dicentrarchus labrax) also show these features of growth (data not shown) 
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