Proteome Wide Association Studies of LRRK2 variants

identify novel causal and druggable for Parkinson's disease

Bridget Phillips^{1,2,3}, Daniel Western^{1,2,3}, Lihua Wang^{1,2,3}, Jigyasha Timsina^{1,2,3}, Yichen Sun^{1,2,3}, Priyanka Gorijala^{1,2,3}, Chengran Yang^{1,2,3}, Anh Do^{1,2,3,4}, Niko-Petteri Nykänen^{1,2,3}, Ignacio Alvarez⁵, Miquel Aguilar⁵, Pau Pastor⁶, John C. Morris^{3,7,8}, Suzanne E. Schindler⁷, Anne M. Fagan^{3,7}, Raquel Puerta^{9,10}, Pablo García-González^{9,10}, Itziar de Rojas^{9,10}, Marta Marquié^{9,10}, Mercè Boada^{9,10}, Agustin Ruiz^{9,10}, Joel S. Perlmutter^{3,7}, Dominantly Inherited Alzheimer Network (DIAN) Consortia, Laura Ibanez^{1,2,7}, Richard J. Perrin^{3,7,8}, Yun Ju Sung^{1,2,3,4}, Carlos Cruchaga^{1,2,3}

Author affiliations:

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
 NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
 Division of Biostatistics, Washington University
 Mamory Disorders Unit, Department of Neurology, University Hospital Mutua Tarrassa

5 Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain

6 Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain

7 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA

8 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA

9 Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain 10 Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain

Correspondence to: Carlos Cruchaga, PhD Full address: 4444 Forest Park Ave, Washington University School of Medicine, St. Louis, MO 63110, USA E-mail: cruchagac@wustl.edu **Running title**: Protein PheWAS of LRRK2 variants

Keywords: Parkinson's disease; LRRK2; Proteomics; PheWAS; GRN

Supplementary Table 1 Basic demographics of the cohorts included in the study Supplementary Table 2 Annotation of the variants associated with protein levels on the LRRK2 locus

Supplementary Table 3 pQTL SNP p-values

Supplementary Table 4 Parkinson's Disease risk table of LRRK2 associated proteins

Supplementary Table 5 PWAS p-values and z-scores

Supplementary Table 6 PPMI cohort validation

Supplementary Table 7 Brain cell types of SomaScan7K and LRRK2 associated proteins Supplementary Table 8 Brain cell types of LRRK2 associated proteins

Supplementary references

Supplement 2: Dominantly Inherited Alzheimer Network (DIAN) consortia investigators and coordinators

Supplementary Figure 1: PheWAS and LD matrix of LRRK2 variants Supplementary Figure 2: Protein-protein correlation Supplementary Figure 3: PPMI significant TWAS Violin plots Supplementary Figure 4: Interaction pathways of LRRK2 associated proteins

Supplementary Table I Basic demographics of the cohorts included in the study

Cohort	# Samples	Avg. Age (SD)	% Male
ADNI	689	73.7 (7.5)	58.2
DIAN	193	38.6 (10.7)	48.4
MAP	805	71.4 (8.7)	46.7
Barcelona-I	197	68.8 (7.5)	52.3
Fundació ACE	438	71.9 (8.3)	41.1
PPMI	785	61.8 (9.4)	55.1

Sample sizes of each of the six cohorts included (3,107 total samples). The three discovery cohorts are DIAN, MAP, and Pau. The three replication cohorts are ADNI, Fundació ACE, and PPMI.

ADNI = Alzheimer's Disease Neuroimaging Initiative; DIAN = Dominantly Inherited Alzheimer Network; MAP = Memory and Aging Project; Barcelona-I = Hospital Sant Pau; PPMI = Parkinson's Progression Markers Initiative.

Supplementary Table 2 Annotation of the variants associated with protein levels on the LRRK2 locus

Variant	RSID	Туре	Gene : Consequence	MAF	PD SNP r ²
chr12:10160315:G:A	rs3816844	Non-coding	OLR1 : Intron Variant	0.495	1.11×10 ⁻⁴
chr12:10178088:G:T	rs113181367	Non-coding	TMEM52B : Intron Variant	0.075	3.35×10 ⁻⁴
chr12:33273740:G:A	rs529679490	N/A	None	0.006	1.57×10⁻⁵
chr12:39994307:C:T	rs140722239	Non-coding	SLC2A13: Intron Variant	0.047	0.030
chr12:40035894:C:T	rs11564199	Non-coding	SLC2A13: Intron Variant	0.047	0.031
chr12:40039522:G:A	rs78131768	Non-coding	SLC2A13 : Intron Variant	0.047	0.031
chr12:40189191:A:G	rs2263418	Non-coding	LRRK2-DT : Non-Coding Transcript Variant	0.105	0.472
chr12:40194013:T:C	rs11175546	Non-coding	LRRK2-DT : Non-Coding Transcript Variant	0.046	0.291
chr12:40198262:T:G	rs79410089	N/A	None	0.080	0.362
chr12:40204350:T:G	rs11564273	N/A	None	0.069	0.435
chrl2:40220632:C:T	rs76904798	Non- coding	LRRK2 : Intron variant	0.134	1.0
chr12:40259708:G:A	rs28903073	Non-coding	LRRK2 : Intron variant	0.032	0.005
chr12:40320097:T:C	rs35303786	Exonic	LRRK2 : Missense Variant	0.021	0.003
chr12:40342447:C:T	rs919174	Non-coding	LRRK2 : Intron Variant	0.131	0.171
chr12:40397605:G:A	rs117929583	Non-coding	MUC19 : Intron Variant	0.024	0.110
chr12:41349642:C:T	rs190000583	Non-coding	PDZRN4 : Intron Variant	0.036	0.003

Variant name, Rs-id, and intron/exon type of the 16 independently associated chromosome 12 SNPs ordered by bp position. Only rs35303786 (chr12:40320097:T:C) is known to be exonic. Top PD and CSF GRN SNP rs76904798 (chr12:40220632:C:T) is shown in bold.

Supplementa	ry Table 3 pQTI	L SNP P-value	S			
Protein	Aptamer	SNP #I	SNP #2	SNP #3	SNP #4	SNP #5
GPNMB	X8240.207	4.79×10-304	3.16×10 ⁻²⁸	4.79×10 ⁻⁸		
GPNMB	×5080.131	6.76×10 ⁻²²⁵	1.45×10 ⁻³³	7.41×10-9		
CHITI	X3600.2	3.47×10 ⁻¹⁷⁵	3.63×10-11	1.00×10 ⁻⁸	2.24×10 ⁻⁸	
LCT	X9017.58	5.89×10 ⁻¹⁴²	3.47×10 ⁻⁸	3.72×10-8		
TLR3	X16918.198	4.68×10 ⁻¹³⁷	2.09×10 ⁻¹²			
HLA-DQA2	X7757.5	1.07×10 ⁻¹¹⁶	1.38×10 ⁻²⁸	5.01×10 ⁻¹²	6.92×10 ⁻⁹	7.08×10 ⁻⁹
GPNMB	X8606.39	2.75×10-103				
CD68	X20528.23	4.37×10 ⁻⁶³	1.29×10 ⁻¹⁰	3.72×10-9	5.37×10 ⁻⁹	
CD68	X18922.27	1.58×10 ⁻⁵⁷	4.37×10 ⁻¹⁰	2.34×10-9	1.91×10 ⁻⁸	
CIQTNFI	X6304.8	1.86×10 ⁻³⁰	1.41×10 ⁻⁹			
ENTPDI	X3182.38	3.72×10 ⁻²⁹	7.59×10-9			
LGALS9	X9197.4	1.45×10 ⁻²⁷	3.09×10 ⁻¹²			
GRN	X4992.49	1.26×10 ⁻²⁰	3.16×10 ⁻¹⁷			
AGFG2	X23597.11	8.71×10 ⁻²⁰	3.39×10 ⁻⁹			
ITGB2	X12750.9	1.91×10 ⁻¹⁷	2.82×10 ⁻¹⁵	4.27×10 ⁻⁸		
TMEM106A	X10499.1	2.57×10-17	7.59×10 ⁻¹⁰			
OLRI	X3636.37	6.03×10 ⁻¹⁶	1.23×10 ⁻¹⁰			
OLRI	X7893.19	4.79×10 ⁻¹⁵	4.07×10 ⁻¹⁰			
GAA	X9385.4	2.24×10 ⁻¹⁰				
SDCBP2	X19261.12	5.37×10 ⁻¹⁰				
GREM2	×5598.3	7.94×10- ⁹	3.98×10 ⁻⁸			
NIPAL4	X12864.9	4.79×10 ⁻⁸				
CAI	X4969.2	7.24×10 ⁻⁸				
FCGRIA	X3312.64	8.51×10 ⁻⁸				
SRI	×12356.65	1.10×10 ⁻⁷				
FTL	X15324.58	1.48×10 ⁻⁷				
FEV	X12740.55	1.62×10 ⁻⁷				
EID3	X8079.39	1.66×10 ⁻⁷				
FTL	X5934.I	3.80×10 ⁻⁷				
CD63	X9190.7	5.75×10-7				
DNAJC15	X7197.2	6.46×10 ⁻⁷				

SNP p-values of the top SNPs for the 31 significant aptamers. Sorted by SNP #1 p-value.

Supplementary Table 4 Parkinson's disease risk table of LKKK2 associated pr

Gene	PD	Neurodegen eration	Function/Expression	Experiment Type	Citation
CD63	Yes	Yes	Decreased in PD	Multiplex immunoassay of circulating small EVs (sEVs)	[Picca et al., 2020]
ENTPDI	Yes	Yes	Decreased in PD	RT-qPCR of substantia nigra mRNA	[Garcia-Esparcia et al., 2015]
GRN	Yes	Yes	Decreased in PD	Meta-analysis of PD GWAS	[Nalls et al., 2019]
HLA-DQA2	Yes	Yes	HLA region PD association	Haplotype analysis and step-wise conditional analysis	[Hill-Burns et al., 2011]
GAA	Yes	Yes	Increased in PD	Lysosomal enzymatic activity assay	[Alcalay et al., 2018]
GPNMB	Yes	Yes	Increased in sporadic PD	Induction of lipidopathy and immunohistochemical staining	[Moloney et al., 2018]
SRI	Yes	Yes	Increased in PD	Immunoprecipitation and cell lines	[Genovese et al., 2020]
LCT	Yes	Yes	Increased in PD	Two-sample Mendelian Randomization	[Domenighetti et al, 2022]
CD68	Yes	Yes	LRRK2 Expression	Human and mouse cell culture Immunohistochemistry	[Xu et al., 2020] Preprint
EID3	Yes	Yes	PD candidate gene	Differential expression analysis and PPI networks	[George et al., 2019]
TLR3	Yes	Yes	Reduced risk EOPD	SNP genotyping and odds ratios analysis	[Wang et al., 2020]
CIQTNFI	Related	Yes	Downregulated in PD patients	PD-patient specific dopaminergic cultures DE analysis	[Momcilovic et al., 2016]
DNAJC15	Related	Yes	OGC pesticide exposure PD DML	Genome-scale methylation profiling	[Go et al., 2020]
AGFG2	No	Yes	AD pathology	Differential gene expression (DGE) analyses	[Fernandez et al., 2022]
ITGB2	No	Yes	Aging and neurodegeneration	Human aging and neurodegenerative disease microarray datasets	[Mukherjee et al., 2019]
OLRI	No	Yes	Neuroinflammatory gene	Single-nuclei sequencing	[Agarwal et al., 2020]
SDCBP2	No	Yes	Neurexin protein interactor	Protein–protein interaction network and co-expression analysis	[Cuttler et al., 2021]
GREM2	No	Yes	Neuroprotection by downregulating GREM2 genes	Microarray expression profiling	[Forcella et al., 2020]
CHITI	No	Yes	Microglia/macrophage activation in ALS	LC-MS/MS CSF proteomics	[Karayel et al., 2022]
FTL	No	Yes	Neurodegeneration, brain iron accumulation	Postmortem brain iron histochemistry, mtDNA variant analysis	[Kurzawa-Akanbi et al., 2021]
FEV	No	Related	Serotonergic (5-HT) neuron expression	Whole-exome data analyses and Biallelic burden calculations	[Doan et al, 2019]
LGALS9	No	Related	Enhances microglial TNF production	Glial culture immunocytochemistry and cytokine measurement	[Steelman et al., 2014]
CAI	No	Related	Neuropathic pain	Carbonic anhydrase inhibition and Ischaemic brain damage	[Dettori et al., 2021]
TMEM106A	No	No	Increased in AD, TMEM106B paralog	qPCR, western blot, and immunohistochemistry	[Zhao et al., 2021]
NIPAL4	No	No	Congenital Ichthyosiform Erythroderma	Mutational screening and sequence	[Laadhar et al., 2020]
FCGRIA	No	No	Leptomeningeal Metastasis Biomarker	LC-MS/MS CSF proteomics and	[Juanes-Velasco et al., 2022]

Proteins are organized by having prior studies involving PD risk and/or neurodegeneration, such as AD and ALS, and neurological disorders such as stroke. The columns are the protein name, whether the protein has been shown to be associated with PD, whether there has been an article on the protein being involved in neurodegeneration, the function/effect of the protein in the chosen article, types of experiments done in the article to prove association, and the article's citation. The 11 proteins with predicted PD risk gene association are shown in bold.

Supplementary Table	2 5	PWAS	p-values	and	z-score	s
---------------------	-----	------	----------	-----	---------	---

Protein	Aptamer	PWAS.P-value	PWAS.Z
HLA-DQA2	X7757.5	2.61×10-47	14.44715
ITGB2	×12750.9	4.49×10 ⁻⁴⁷	14.40981
CIQTNFI	X6304.8	6.96×10 ⁻⁴⁶	14.21923
GRN	X4992.49	4.32×10-42	13.59439
GPNMB	X8240.207	2.32×10-41	13.47087
GPNMB	×5080.131	1.48×10 ⁻³⁸	12.98536
ENTPDI	X3182.38	1.59×10 ⁻³⁴	12.25466
TMEM106A	×10499.1	1.5 ×10 ⁻³²	11.87987
CD68	×20528.23	3.66×10-25	10.36289
CD68	×18922.27	6.83×10 ⁻²⁴	10.07916
SDCBP2	×19261.12	2.88×10-18	8.71598
TLR3	X16918.198	1.35×10-15	7.98963
OLRI	×3636.37	0.576	-0.55992
OLRI	X7893.19	0.717	-0.36238
AGFG2	X23597.11	NA	NA
CAI	X4969.2	NA	NA
CD63	X9190.7	NA	NA
CHITI	X3600.2	NA	NA
DNAJC15	X7197.2	NA	NA
EID3	×8079.39	NA	NA
FCGRIA	X3312.64	NA	NA
FEV	×12740.55	NA	NA
FTL	X5934.I	NA	NA
FTL	X15324.58	NA	NA
GAA	X9385.4	NA	NA
GPNMB	×8606.39	NA	NA
GREM2	×5598.3	NA	NA
LCT	×9017.58	NA	NA
LGALS9	X9197.4	NA	NA
NIPAL4	X12864.9	NA	NA
SRI	×12356.65	NA	NA

PWAS top hits from TWAS/FUSION. 12 aptamers (10 proteins) (bolded) had significant PWAS p-values. Sorted by PWAS p-values. PWAS p-value as NA refers to TWAS/FUSION excluding the gene from the analysis due to the aptamer's SNP-heritability p-value < 0.05.

Supplementary Table 6 PPMI cohort validation

	FDR SNP	PWAS	PPMI	Control Vs.				
Protein	Direction	p-value	Direction	Case	Prodromal	LRRK2+	GBA+	SNCA+
HLA-DQA2	++	2.61×10 ⁻⁴⁷	++	*	***	***	NS	NS
ITGB2	++	4.49×10 ⁻⁴⁷	++	NS	***	***	NS	NS
CIQTNFI	++	6.96×10 ⁻⁴⁶	++	NS	***	***	NS	NS
GRN	++	4.32×10 ⁻⁴²	++	NS	***	**	NS	NS
GPNMB (X8240.207)	++	2.32×10-41	++	NS	***	***	NS	NS
GPNMB (X5080.131)	++	1.48×10 ⁻³⁸	++	NS	***	***	NS	NS
ENTPDI	++	1.59×10 ⁻³⁴	++	NS	**	**	NS	NS
TMEM106A	++	1.51×10 ⁻³²	++	NS	***	NS	NS	NS
OLRI (X3636.37)		0.576	NS	NS	*	NS	NS	NS
OLRI (X7893.19)		0.717	NS	NS	*	NS	NS	NS
FEV		NA	NS	*	NS	NS	NS	NS
GREM2	++	NA	++	**	**	NS	NS	NS
GAA	++	NA		***	*	NS	NS	NS
LCT		NA		NS	**	**	*	NS
LGALS9	++	NA	++	NS	**	***	NS	NS
DNAJC15		NA	NS	NS	NS	NS	**	NS
CAI		NA	NS	NS	NS	NS	NS	NS
CD63	++	NA	NS	NS	NS	NS	NS	NS
CHITI		NA	NS	NS	NS	NS	NS	NS
EID3		NA	NS	NS	NS	NS	NS	NS
FCGRIA	++	NA	NS	NS	NS	NS	NS	NS
FTL (X5934.1)		NA	NS	NS	NS	NS	NS	NS
GPNMB (X8606.39)	++	NA	NS	NS	NS	NS	NS	NS
NIPAL4	++	NA	NS	NS	NS	NS	NS	NS
SRI		NA	NS	NS	NS	NS	NS	NS

Direction of the top FDR corrected SNP, PWAS p-value, direction of PPMI protein levels, and violin plot significance of control vs. case, prodromal, and mutation (*LRRK2+*, *GBA+*, *SNCA+*) of the 22 proteins (25 aptamers) with PPMI cohort protein data. Proteins are sorted by PWAS p-value. Bolded proteins are control vs. *LRRK2+* and/or control vs. case significant. Only HLA-DQA2 is significant for both case Vs. control and case Vs. *LRRK2+*. PWAS p-value as NA refers to TWAS/FUSION excluding the gene from the analysis due to the aptamer's SNP-heritability p-value < 0.05.

NS (not significant).

Supplementary Table 7 Brain cell types of SomaScan7K and LRRK2 locus associated proteins

Brain Cell Type	SomaScan7K Proteins (>50% total expression)	26 Proteins (>50% total expression)	Enrichment (FC / p-value)
Neuron	525 (9.20%)	I (3.85%)	-0.58 / 0.241
Microglia/Macrophage	418 (7.32%)	9 (34.61%)	3.73 / 4.91×10 ⁻⁵
Endothelial	227 (3.98%)	I (3.85%)	-0.03 / 0.376
Mature Astrocyte	227 (3.98%)	3 (11.54%)	1.90 / 0.064
Oligodendrocyte	108 (1.89%)	2 (7.69%)	3.09 / 0.073
Non-specific	4204 (73.64%)	10 (38.46%)	-0.47 / 1.31×10 ⁻⁴

Unique proteins

from CSF SomaScan7K with cell type data (N=5,709) and 26 LRRK2 associated proteins. The most common cell-type specific (>50% total expression) cell type in the CSF SomaScan7K was neuronal. The most common cell type of the 26 LRRK2 associated proteins was microglial/macrophage. Enrichment p-values by hypergeometric distribution using dhyper function in R.

Supprentientally ruble o Brain cen cypes of Entitle associated proteins	Supplementary	y Table 8	Brain cell	types of L	LRRK2	associated	proteins
---	---------------	-----------	------------	------------	-------	------------	----------

Gene	Max Cell Proportion	Max Cell Type
CIQTNFI	0.71	Endothelial
AGFG2	0.66	Mature astrocyte
SRI	0.59	Mature astrocyte
SDCBP2	0.58	Mature astrocyte
OLR I	0.93	Microglia/Macrophage
ITGB2	0.91	Microglia/Macrophage
CD68	0.91	Microglia/Macrophage
FCGRIA	0.87	Microglia/Macrophage
TMEM106A	0.85	Microglia/Macrophage
HLA-DQA2	0.83	Microglia/Macrophage
TLR3	0.79	Microglia/Macrophage
LGALS9	0.60	Microglia/Macrophage
GRN	0.56	Microglia/Macrophage
ENTPDI	0.49	Microglia/Macrophage
FTL	0.45	Microglia/Macrophage
GAA	0.42	Microglia/Macrophage
EID3	0.42	Microglia/Macrophage
GREM2	0.84	Neuron
NIPAL4	0.82	Oligodendrocyte
GPNMB	0.68	Oligodendrocyte
CD63	0.37	Mixed
DNAJC15	0.31	Mixed
CAI	0.22	Mixed
FEV	0.20	Mixed
LCT	0.20	Mixed
CHITI	0.20	Mixed

The sum column is the sum of the proportions of human mature astrocytes, neurons, microglia/macrophages, oligodendrocytes, and endothelial expression. Mixed cell type refers to either no cell type had a max proportion of expression (>40%) or all cell types had equal proportions. Genes are sorted by cell type and max cell proportion.

Supplementary References

- Picca A, Guerra F, Calvani R, Marini F, Biancolillo A, Landi G, et al. Mitochondrial Signatures in Circulating Extracellular Vesicles of Older Adults with Parkinson's Disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study. *J Clin Med.* 2020;9(2):504.
- Garcia-Esparcia P, Hernández-Ortega K, Ansoleaga B, Carmona M, Ferrer I. Purine metabolism gene deregulation in Parkinson's disease. *Neuropathol Appl Neurobiol*. 2015;41(7):926-40.
- Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. *Lancet Neurol.* 2019;18(12):1091-1102.
- Hill-Burns EM, Factor SA, Zabetian CP, Thomson G, Payami H. Evidence for more than one Parkinson's disease-associated variant within the HLA region. *PLoS One*. 2011;6(11):e27109.
- Alcalay RN, Wolf P, Levy OA, Kang UJ, Waters C, Fahn S, et al. Alpha galactosidase A activity in Parkinson's disease. *Neurobiol Dis*. 2018;112:85-90.
- Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. *Neurobiol Dis*. 2018;120:1-11.
- Genovese I, Giamogante F, Barazzuol L, Battista T, Fiorillo A, Vicario M, et al. Sorcin is an early marker of neurodegeneration, Ca2+dysregulation and endoplasmic reticulum stress associated to neurodegenerative diseases. *Cell Death Dis*. 2020;11(10):861.
- Domenighetti C, Sugier PE, Ashok Kumar Sreelatha A, Schulte C, Grover S, Mohamed O, et al. Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. *Mov Disord*. 2022;37(4):857-864.
- Xu E, Boddu R, Abdelmotilib HA, Kelly, K, Sokratian A Harms AS, et al. Pathologic α-Synuclein Species Activate LRRK2 in Pro-Inflammatory Monocyte and Macrophage Responses. *bioRxiv*. 2020.
- George G, Singh S, Lokappa SB, Varkey J. Gene co-expression network analysis for identifying genetic markers in Parkinson's disease - a three-way comparative approach. *Genomics*. 2019;111(4):819-830.

- Wang J, Liu Y, Liu Y, Zhu K, Xie A. The association between TLR3 rs3775290 polymorphism and sporadic Parkinson's disease in Chinese Han population. *Neurosci Lett.* 2020;728:135005.
- Momcilovic O, Sivapatham R, Oron TR, Meyer M, Mooney S, Rao MS, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. *PLoS One*. 2016 May 18;11(5):e0154890.
- 13. Go RCP, Corley MJ, Ross GW, Petrovitch H, Masaki KH, Maunakea AK, et al. Genome-wide epigenetic analyses in Japanese immigrant plantation workers with Parkinson's disease and exposure to organochlorines reveal possible involvement of glial genes and pathways involved in neurotoxicity. *BMC Neurosci.* 2020;21(1):31.
- 14. Fernandez MV, Budde JP, Eteleeb A, Wang F, Martinez R, Norton J, Gentsch J, et al. Functional exploration of AGFG2, a novel player in the pathology of Alzheimer disease. *Alzheimer's Dement*. 2021;17:e054240.
- Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. *Front Neurosci.* 2019;13:2.
- 16. Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzón-Sandoval J, Bowden R, et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. *Nat Commun.* 2020;11(1):4183.
- Cuttler K, Hassan M, Carr J, Cloete R, Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. *Open Biol.* 2021;11(10):210091.
- 18. Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, et al. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. *Neurotoxicology*. 2020;76:162-173.
- Karayel O, Virreira Winter S, Padmanabhan S, Kuras YI, Vu DT, Tuncali I, et al. Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson's disease. *Cell Rep Med.* 2022 Jun 21;3(6):100661.
- 20. Kurzawa-Akanbi M, Keogh M, Tsefou E, Ramsay L, Johnson M, Keers S, et al. Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of

major mitochondrial or oxidative stress. *Neuropathol Appl Neurobiol*. 2021;47(1):26-42.

- Doan RN, Lim ET, De Rubeis S, Betancur C, Cutler DJ, Chiocchetti AG, et al. Recessive gene disruptions in autism spectrum disorder. *Nat Genet*. 20191;51(7):1092-1098.
- 22. Steelman AJ, Li J. Astrocyte galectin-9 potentiates microglial TNF secretion. J Neuroinflammation. 2014;11:144.
- Dettori I, Fusco I, Bulli I, Gaviano L, Coppi E, Cherchi F, et al. Protective effects of carbonic anhydrase inhibition in brain ischaemia in vitro and in vivo models. J Enzyme Inhib Med Chem. 2021;36(1):964-976.
- 24. Satoh J, Kino Y, Kawana N, Yamamoto Y, Ishida T, Saito Y, et al. TMEM106B expression is reduced in Alzheimer's disease brains. *Alzheimers Res Ther*. 2014;6(2):17.
- 25. Laadhar S, Ben Mansour R, Marrakchi S, Miled N, Ennouri M, Fischer J, et al. Identification of a novel missense mutation in NIPAL4 gene: First 3D model construction predicted its pathogenicity. *Mol Genet Genomic Med*. 2020;8(3):e1104.
- 26. Juanes-Velasco P, Galicia N, Pin E, Jara-Acevedo R, Carabias-Sánchez J, García-Valiente R, et al. Deciphering Biomarkers for Leptomeningeal Metastasis in Malignant Hemopathies (Lymphoma/Leukemia) Patients by Comprehensive Multipronged Proteomics Characterization of Cerebrospinal Fluid. *Cancers (Basel)*. 2022;14(2):449.

Supplement 2: Dominantly Inherited Alzheimer Network (DIAN) consortia investigators and coordinators
Name Email Affiliation

Name	Eman	Anniation
Sarah Adams	sladams@wustl.edu	Washington University in St. Louis School of Medicine
Ricardo Allegri	rallegri@fleni.org.ar	Institute of Neurological Research Fleni, Buenos Aires, Argentina
Aki Araki	araki-aki@bri.niigata-u.ac.jp	Nigata University
Nicolas Barthelemy	barthelemy.nicolas@wustl.edu	Washington University in St. Louis School of Medicine
Randall Bateman	batemanr@wustl.edu	Washington University in St. Louis School of Medicine
Jacob Bechara	j.bechara@neura.edu.au	Neuroscience Research Australia
Tammie Benzinger	benzingert@wustl.edu	Washington University in St. Louis School of Medicine
Sarah Berman	bermans@upmc.edu	University of Pittsburgh
Courtney Bodge	Cbodge@Butler.org	Brown University-Butler Hospital
Susan Brandon	brandons@wustl.edu	Washington University in St. Louis School of Medicine
William (Bill) Brooks	w.brooks@NeuRA.edu.au	Neuroscience Research Australia
Jared Brosch		Indiana University
Jill Buck	jilmbuck@iu.edu	Indiana University
Virginia Buckles	bucklesv@wustl.edu	Washington University in St. Louis School of Medicine
Kathleen Carter	emma.kathleen.carter@emory.edu	Emory University School of Medicine
Lisa Cash	cashl@wustl.edu	Washington University in St. Louis School of Medicine
Charlie Chen	chenc@wustl.edu	Washington University in St. Louis School of Medicine
Jasmeer Chhatwal	Chhatwal.Jasmeer@mgh.harvard.e du	Brigham and Women's Hospital–Massachusetts General Hospital
Patricio Chrem	pchremmendez@fleni.org.ar	Institute of Neurological Research Fleni, Buenos Aires, Argentina
Jasmin Chua	chuajk@wustl.edu	Washington University in St. Louis School of Medicine
Helena Chui	helena.chui@med.usc.edu	University of Southern California
Carlos Cruchaga	cruchagac@wustl.edu	Washington University in St. Louis School of Medicine
Gregory S Day	Day.gregory@mayo.edu	Mayo Clinic Jacksonville
Chrismary De La Cruz		Columbia University
Darcy Denner	drdenner@wustl.edu	Washington University in St. Louis School of Medicine
Anna Diffenbacher	Anna.dieffenbacher@dzne.de	German Center for Neurodegnerative Diseases (DZNE) Munich
Aylin Dincer	aylin.dincer@wustl.edu	Washington University in St. Louis School of Medicine
Tamara Donahue	tammie@wustl.edu	Washington University in St. Louis School of Medicine
Jane Douglas	jane.douglas@ucl.ac.uk	University College London
Duc Duong	dduong@emory.edu	Emory University School of Medicine
Noelia Egido	negido@fleni.org.ar	Institute of Neurological Research Fleni, Buenos Aires, Areentina
Bianca Esposito	bianca.esposito@mssm.edu	Icahn School of Medicine at Mount Sinai
Anne Fagan	fanana@wustl.edu	Washington University in St. Louis School of Medicine
Marty Farlow	mfarlow@iupui.edu	Indiana University
Becca Feldman	rebeccaf@wustl.edu	Washington University in St. Louis School of Medicine
Colleen Fitzpatrick	cdfitzpatrick@bwh.harvard.edu	Brigham and Women's Hospital-Massachusetts
Shaney Flores	sflores@wustl.edu	Washington University in St. Louis School of Medicine
Nick Fox	n.fox@ucl.ac.uk	University College London
Erin Franklin	efranklin@wustl.edu	Washington University in St. Louis School of Medicine
Nelly Friedrichsen	n.joseph@wustl.edu	Washington University in St. Louis School of Medicine
Hisako Fujii	hfujii@med.osaka-cu.ac.jp	Osaka City University

Samantha Gardener	s.gardener@ecu.edu.au	Edith Cowan University, Perth
Bernardino Ghetti	bghetti@iupui.edu	Indiana University
Alison Goate	alison.goate@mssm.edu	Icahn School of Medicine at Mount Sinai
Sarah Goldberg	goldbergs2@upmc.edu	University of Pittsburgh
Jill Goldman	JG2673@cumc.columbia.edu	Columbia University
Alyssa Gonzalez	alyssa.gonzales@wustl.edu	Washington University in St. Louis School of Medicine
Brian Gordon	bagordon@wustl.edu	Washington University in St. Louis School of Medicine
Susanne Gräber-Sultan	susanne.graeber-sultan@dzne.de @dzne.de	DZNE-Tübingen
Neill Graff-Radford	graffradford.neill@mayo.edu	Mayo Clinic Jacksonville
Morgan Graham	Graham.Morgan@mayo.edu	Mayo Clinic Jacksonville
Julia Gray	gray@wustl.edu	Washington University in St. Louis School of Medicine
Emily Gremminger	egremminger@wustl.edu	Washington University in St. Louis School of Medicine
Miguel Grilo	m.grilo@ucl.ac.uk	University College London
Alex Groves	amgroves@wustl.edu	Washington University in St. Louis School of Medicine
Christian Haass	Christian.Haass@mail03.med.uni- muenchen.de	Ludwig-Maximilians University - Munich
Lisa Häsler	Lisa.Haesler@dzne.de	German Center for Neurodegenerative Diseases (DZNE), Tübingen
Jason Hassenstab	hassenstabj@wustl.edu	Washington University in St. Louis School of Medicine
Cortaiga Hellm	cortaiga.hellm@wustl.edu	Washington University in St. Louis School of Medicine
Elizabeth Herries	e.herries@wustl.edu	Washington University in St. Louis School of Medicine
Laura Hoechst-Swisher	goodl@wustl.edu	Washington University in St. Louis School of Medicine
Anna Hofmann	Anna.Hofmann@med.uni- tuebingen.de	German Center for Neurodegenerative Diseases (DZNE), Tübingen
David Holtzman	holtzman@wustl.edu	Washington University in St. Louis School of Medicine
Russ Hornbeck	russ@wustl.edu	Washington University in St. Louis School of Medicine
Yakushev Igor	lgor.yakushev@tum.de	German Center for Neurodegnerative Diseases (DZNE) Munich
Ryoko Ihara	ihara-tky@umin.ac.jp	Tokyo University
Takeshi Ikeuchi	ikeuchi@bri.niigata-u.ac.jp	Niigata University
Snezana Ikonomovic	ikonomovics@upmc.edu	University of Pittsburgh
Kenji Ishii	ishii@pet.tmig.or.jp	Niigata University/Tokyo University
Clifford Jack	jack.clifford@mayo.edu	Mayo Clinic Rochester
Gina Jerome	ginajerome@wustl.edu	Washington University in St. Louis School of Medicine
Erik Johnson	erik.johnson@emory.edu	Emory University School of Medicine
Mathias Jucker	mathias.jucker@uni-tuebingen.de	German Center for Neurodegenerative Diseases (DZNE), Tübingen
Celeste Karch	karchc@wustl.edu	Washington University in St. Louis School of Medicine
Stephan Käser	Stephan.kaeser@uni-tuebingen.de	German Center for Neurodegenerative Diseases (DZNE), Tübingen
Kensaku Kasuga	ken39@bri.niigata-u.ac.jp	Niigata University
Sarah Keefe	sarahkeefe@wustl.edu	Washington University in St. Louis School of Medicine
William (Bill) Klunk	klunkwe@gmail.com	University of Pittsburgh
Robert Koeppe	koeppe@umich.edu	University of Michigan
Deb Koudelis	delanod@wustl.edu	Washington University in St. Louis School of Medicine
Elke Kuder-Buletta	elke.kuder-buletta@dzne.de	German Center for Neurodegenerative Diseases (DZNE), Tübingen
Christoph Laske	christoph.laske@med.uni- tuebingen.de	German Center for Neurodegenerative Diseases (DZNE), Tübingen
Allan Levey	alevey@emory.edu	Emory University School of Medicine

Johannes Levin	Johannes.Levin@med.uni- muenchen.de	German Center for Neurodegnerative Diseases (DZNE) Munich
Yan Li	yanli833@wustl.edu	Washington University in St. Louis School of Medicine
Oscar Lopez	lopezol@upmc.edu	University of Pittsburgh
Jacob Marsh	jacobmarsh@wustl.edu	Washington University in St. Louis School of Medicine
Rita Martinez	Ritamartinez@wustl.edu	Washington University in St. Louis School of Medicine
Ralph Martins	r.martins@ecu.edu.au	Edith Cowan University
Neal Scott Mason	masonss@upmc.edu	University of Pittsburgh Medical Center
Colin Masters	c.masters@unimelb.edu.au	University of Melbourne
Kwasi Mawuenyega	mawuenyegak@wustl.edu	Washington University in St. Louis School of Medicine
Austin McCullough	amccullough@wustl.edu	Washington University in St. Louis School of Medicine
Eric McDade	ericmcdade@wustl.edu	Washington University in St. Louis School of Medicine
Arlene Mejia	am4717@cumc.columbia.edu	Columbia University
Estrella Morenas-Rodriguez	Estrella.Morenas- Rodriguez@dzne.d	Ludwig-Maximilians University, Munich
John Morris	jcmorris@wustl.edu	Washington University in St. Louis School of Medicine
James MountzMD	mountzjm@upmc.edu	University of Pittsburgh
Cath Mummery	c.mummery@ucl.ac.uk	University College London
Neelesh Nadkarni	nadkarnink@upmc.edu	University of Pittsburgh
Akemi Nagamatsu	mail:akm77-tky@umin.ac.jp	Tokyo University
Katie Neimeyer	kn2416@cumc.columbia.edu	Columbia University
Yoshiki Niimi	niimiy-crc@h.u-tokyo.ac.jp	Tokyo University
James Noble	jn2054@columbia.edu	Columbia University
Joanne Norton	nortonj@wustl.edu	Washington University in St. Louis School of Medicine
Brigitte Nuscher	Brigitte.Nuscher@mail03.med.uni- muenchen.de	Ludwig-Maximilians University, Munich
Antoinette O'Connor	antoinette.o'connor@ucl.ac.uk	University College London
Ulricke Obermüller Biddhi Patira	ulrike.obermueller@klinikum.uni- tuebingen.de patirar@upmc.edu	Hertie Institute for Clinical Brain Research
Richard Perrin	rperrin@wustl.edu	Washington University in St. Louis School of Medicine
		Emory University School of Medicine
	Oliver Projecto @mod uni	Corman Contor for Neurodoganarative Disassos (DZNE)
Alan Renton	tuebingen.de alan.renton@mssm.edu	Tübingen Icahn School of Medicine at Mount Sinai
John Ringman	john.ringman@med.usc.edu	University of Southern California
Stephen Salloway	SSalloway@Butler.org	Brown University-Butler Hospital
Peter Schofield	p.schofield@neura.edu.au	Neuroscience Research Australia
Michio Senda	michio_senda@kcho.jp	Osaka City University
Nick Seyfried	nseyfri@emory.edu	Emory University School of Medicine
Kristine Shady	kesh238@g.uky.edu	Washington University in St. Louis School of Medicine
Hiroyuki Shimada	h.shimada@med.osaka-cu.ac.jp	Osaka City University
Wendy Sigurdson	sigurdsonw@wustl.edu	Washington University in St. Louis School of Medicine
Lori Smith	macedonials@upmc.edu	University of Pittsburgh
Jennifer Smith	smith.jennifer@wustl.edu	- Washington University in St. Louis School of Medicine
Beth Snitz	snitbe@upmc.edu	University of Pittsburgh
Hamid Sohrabi	h.sohrabi@ecu.edu.au	Edith Cowan University
Sochenda Stephens	Stephens.Sochenda@mayo.edu	Mayo Clinic Jacksonville

Kevin Taddei	k.taddei@ecu.edu.au	Edith Cowan University
Sarah Thompson	thompsons24@upmc.edu	University of Pittsburgh
Jonathan Vöglein	Jonathan.voeglein@med.uni- muenchen.de	German Center for Neurodegnerative Diseases (DZNE) Munich
Peter Wang	guoqiao@wustl.edu	Washington University in St. Louis School of Medicine
Qing Wang	wangqing@wustl.edu	Washington University in St. Louis School of Medicine
Elise Weamer	weamerea@upmc.edu	University of Pittsburgh
Chengjie Xiong	chengjie@wustl.edu	Washington University in St. Louis School of Medicine
Jinbin Xu	jinbinxu@wustl.edu	Washington University in St. Louis School of Medicine
Xiong Xu	xxu@wustl.edu	Washington University in St. Louis School of Medicine

Supplementary Figure 1: PheWAS and LD matrix of *LRRK2* **variants.** PheWAS plot of 10 SNPs in chr12 LRRK2. FDR corrected -log10(p-value) y-axis. 26 unique CSF proteins pass FDR with 11 having known PD risk association (red triangles). LD plot of 12 independently associated Chr12 SNPS, 10 are present with chr12:40220632:C:T (*) and $r^2 > 0.85$ per LD block removed (X). The 5 independently associated SNPs within the *LRRK2* region (Chr12:40,196,744-40,369,285) is below the LD plot with a blue line.

Supplementary Figure 2: Protein-protein correlation. (A) Pearson correlation coefficient matrix of the 26 proteins. (B) Chart correlation of the significant regions of OLR1 and FTL analytes above and GRN below. The distribution of each protein is shown on the diagonal with the bottom displaying the bivariate scatterplots with a fitted line. The top of the diagonal shows the correlation value and the significance level as stars with p-value equal to or less than 0.001 (***), 0.01 (**), and 0.05 (*).

Supplementary Figure 3: PPMI significant PWAS Violin plots. Plot of *HLA-DQA2, C1QTNF1, ITGB2, ENTPD1, GPNMB*, & *GRN* gene expression. Control Vs. PD case and mutation carriers (*LRRK2*⁺, *GBA*⁺, and *SNCA*⁺) (light to dark blue). The significance level as stars with p-value equal to or less than 0.001 (***), 0.01 (**), and 0.05 (*).

Supplementary Figure 4: Interaction pathways of LRRK2 associated proteins. (A) GeneMANIA identified 20 affiliated genes with network interaction and pathways of 26 genes and *LRRK2*. (B) LRRK2 interactions. (C) GRN & GPNMB interactions.