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Abstract 
 
Backround: Transcriptomic profile differences between patients with bipolar disorder 
and healthy controls can be identified using machine learning and can provide 
information about the potential role of the cerebellum in the pathogenesis of bipolar 
disorder.With this aim, user-friendly, fully automated machine learning algorithms can 
achieve extremely high classification scores and disease-related predictive 
biosignature identification, in short time frames and scaled down to small datasets. 
 
Method: A fully automated machine learning platform, based on the most suitable 
algorithm selection and relevant set of hyper-parameter values, was applied on a 
preprocessed transcriptomics dataset, in order to produce a model for biosignature 
selection and to classify subjects into groups of patients and controls. The parent 
GEO datasets were originally produced from the cerebellar and parietal lobe tissue of 
deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST 
Array.   
 
Results: Patients and controls were classified into two separate groups, with no 
close-to-the-boundary cases, and this classification was based on the cerebellar 
transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and 
Average Precision 0.955. Using 6 of the characteristic features (genes) discovered 
during the selection process, 99,6% of predictive performance was achieved. The 3 
genes contributing most to the predictive power of the model (92,7% predictive 
performance) are also deregulated in temporal lobe epilepsy. KEGG analysis 
revealed participation of 4 identified features in 6 pathways which have been 
associated with bipolar disorder. 
 
Conclusion: 93% Area Under Curve, 96% Average Precision, and complete 
separation between unaffected controls and patients with bipolar disorder, were 
achieved in ~2 hours. The cerebellar transcriptomic biosignature suggests a potential 
genetic overlap with temporal lobe epilepsy and new genetic contributions to the 
pathogenesis of bipolar disorder. 
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A. Information about the GSE35974 and GSE35978  
and BioDataome datasets and studies produced. 
 
Original Dataset :  
 
Expression data from the human cerebellum and parietal cortex brain.  
 
Gene Expression Omnibus Accession Viewer link for GSE35974 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35974 
Gene Expression omnibus Accession Viewer link for GSE35978: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35978 
  
Protocol Information for GSE35974 
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-35974/protocols/ 
Protocol Information for GSE35978 
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-35978/protocols/ 
 
Full Subject list for GSE35978 
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-
35978/samples/?s_page=1&s_pagesize=500&s_sortby=col_12&s_sortorder=ascendi
ng  
 
BioDataome Processed Dataset 
http://dataome.mensxmachina.org/data/Homo%20sapiens/GPL6244/GSE35978.csv  
 
BioDataome Process Documentation:  
http://dataome.mensxmachina.org/docs  
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Images 1A – 1B. Preliminary GSE35978 dataset with 50 unaffected subjects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Images 1C – 1D. Preliminary GSE35978 dataset with 37 bipolar disorder patients. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Images 2A – 2B. Unaffected Subject Subgroups, matched by age and sex. 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Images 2A – 2B. Bipolar Disorder patient Subgroups, matched by age and sex. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Image 3. Threshold Dependent metrics of the analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Image 4. Box Plot of the analysis. 
 
 
 
 
 
 
 
 
 

APPENDIX 1 
 

CNS functions for the genes RNU6-576P , MIR194-2 / MiR-194-5p , GDPD5 

1 . RNU6-576P in the CNS  

(Small nuclear RNA, pseudogene) 

1. Pathological Epilepsy Overexpression Cortex (mesial temporal lobe) Hippocampus 

[1]  

2. Non-Pathological Development - 5 five postnatal years (mainly) Dorsolateral 

Prefrontal Cortex hypermethylation (neurons) hypomethylation (Glia) [2]  

3. Possible connection to autism [3]  

4. Contribution to Psychiatric-Immune Genetic Correlation (schizophrenia – Crohn’s 

Disease) [4] 

References for RNU6-576P in the CNS 
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2020;134:104612. doi:10.1016/j.nbd.2019.104612 

2. Price AJ, Collado-Torres L, Ivanov NA, et al. Divergent neuronal DNA methylation 

patterns across human cortical development reveal critical periods and a unique role 

of CpH methylation. Genome Biol. 2019;20(1):196. Published 2019 Sep 26. 

doi:10.1186/s13059-019-1805-1 

3. Rosenfeld JA, Ballif BC, Torchia BS, et al. Copy number variations associated with 

autism spectrum disorders contribute to a spectrum of neurodevelopmental 

disorders. Genet Med. 2010;12(11):694-702. doi:10.1097/GIM.0b013e3181f0c5f3 

4. Tylee DS, Sun J, Hess JL, et al. Genetic correlations among psychiatric and immune-

related phenotypes based on genome-wide association data. Am J Med Genet B 

Neuropsychiatr Genet. 2018;177(7):641-657. doi:10.1002/ajmg.b.32652 

 

2. MIR194-2 / Hsa-MiR-194-5p / MiR-194-5p in the CNS * 

(micro RNA) 

1. Schizophrenia- related (in mice disease model) Downregulation Prefrontal Cortex 

Hippocampus [5] , [6] 

2. Major Depression, Important classification feature (Patients vs Controls), Peripheral 

Blood [7]  

3. Stress- induced Depression , differential expression (in mice disease vs control 

models) amygdale [8]  

4. Alzheimers Disease , cmiRNA , downregulation , Cerebrospinal fluid [9] 

5. Epilepsy , downregulation , serum [10] , [11]  

6. Temporal lobe epilepsy , downregulation, serum [10] , [12]  

7. Epilepsy (rat model) , downregulation , hippocampus [10] , [13]  

8. Focal and generalized epilepsy, downregulation, serum [14] , [15]  

9. Treatment Resistant Epilepsy (vs treatment responding epilepsy and healthy 

controls) , downregulation, serum/plasma [16] , [17]  

10. Temporal lobe epilepsy (children), downregulation, peripheral blood [18]  

11. Temporal lobe epilepsy (rat model), regulation of the proliferation and apoptosis of 

neurons in the hippocampus , neuronal cell culture [18]. 

12. Focal cortical dysplasia (epilepsy one of the core symptoms) , dowregulation , serum 

exosomes [19] 

13. 22q11 Deletion Syndrome , downregulation , peripheral blood leukocytes [20] 

14. lipopolysaccharide (LPS)-induced astrocytes , downregulation , cell culture  [21] 

15. Autism Spectrum Disorder , Upregulation , lymphoblastoid cell lines [22] , [23] 

 

References for MIR194-2 / Hsa-MiR-194-5p / MiR-194-5p in the CNS 

5. Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis. 

2012;46(2):263-271. doi:10.1016/j.nbd.2011.12.029 



6. Stark KL, Xu B, Bagchi A, et al. Altered brain microRNA biogenesis contributes to 

phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008;40(6):751-

760. doi:10.1038/ng.138 

7. Qi B, Fiori LM, Turecki G, Trakadis YJ. Machine Learning Analysis of Blood microRNA 

Data in Major Depression: A Case-Control Study for Biomarker Discovery. Int J 

Neuropsychopharmacol. 2020;23(8):505-510. doi:10.1093/ijnp/pyaa029 

8. Shen M, Song Z, Wang JH. microRNA and mRNA profiles in the amygdala are 

associated with stress-induced depression and resilience in juvenile 

mice. Psychopharmacology (Berl). 2019;236(7):2119-2142. doi:10.1007/s00213-019-

05209-z 

9. van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briedé JJ. 

Circulating microRNAs as potential biomarkers for psychiatric and 

neurodegenerative disorders. Prog Neurobiol. 2020;185:101732. 

doi:10.1016/j.pneurobio.2019.101732 

10. Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs as 

Theranostic Biomarkers of Epilepsy. Mol Ther Nucleic Acids. 2018;13:275-290. 

doi:10.1016/j.omtn.2018.09.008 

11. Wang J, Yu JT, Tan L, et al. Genome-wide circulating microRNA expression profiling 

indicates biomarkers for epilepsy. Sci Rep. 2015;5:9522. Published 2015 Mar 31. 

doi:10.1038/srep09522 

12. An N, Zhao W, Liu Y, Yang X, Chen P. Elevated serum miR-106b and miR-146a in 

patients with focal and generalized epilepsy. Epilepsy Res. 2016;127:311-316. 

doi:10.1016/j.eplepsyres.2016.09.019 

13. Li MM, Jiang T, Sun Z, et al. Genome-wide microRNA expression profiles in 

hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep. 2014;4:4734. 

Published 2014 Apr 22. doi:10.1038/srep04734 

14. Wang J, Zhao J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic 

Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front 

Mol Neurosci. 2021;14:650372. Published 2021 Mar 12. 

doi:10.3389/fnmol.2021.650372 

15. An N, Zhao W, Liu Y, Yang X, Chen P. Elevated serum miR-106b and miR-146a in 

patients with focal and generalized epilepsy. Epilepsy Res. 2016;127:311-316. 

doi:10.1016/j.eplepsyres.2016.09.019 

16. Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities 

and challenges for clinical application. Dev Dyn. 2018;247(1):94-110. 

doi:10.1002/dvdy.24582 

17. Wang J, Tan L, Tan L, et al. Circulating microRNAs are promising novel biomarkers for 

drug-resistant epilepsy. Sci Rep. 2015;5:10201. Published 2015 May 18. 

doi:10.1038/srep10201 

18. Niu X, Zhu HL, Liu Q, Yan JF, Li ML. MiR-194-5p serves as a potential biomarker and 

regulates the proliferation and apoptosis of hippocampus neuron in children with 

temporal lobe epilepsy. J Chin Med Assoc. 2021;84(5):510-516. 

doi:10.1097/JCMA.0000000000000518 

19. Chen SD, Pan HY, Huang JB, et al. Circulating MicroRNAs from Serum Exosomes May 

Serve as a Putative Biomarker in the Diagnosis and Treatment of Patients with Focal 



Cortical Dysplasia. Cells. 2020;9(8):1867. Published 2020 Aug 10. 

doi:10.3390/cells9081867 

20. Sellier C, Hwang VJ, Dandekar R, et al. Decreased DGCR8 expression and miRNA 

dysregulation in individuals with 22q11.2 deletion syndrome. PLoS One. 

2014;9(8):e103884. Published 2014 Aug 1. doi:10.1371/journal.pone.0103884 
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23. Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional 

gene regulatory networks associated with autism spectrum disorders by microRNA 

expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2(4):23. 

Published 2010 Apr 7. doi:10.1186/gm144 

 

3. GDPD5 in the CNS 

1. Treatment Responsive Schizophrenia , Upregulation , Blood Plasma , Unknown 

Mechanism [24]  

2. Schizophrenia , Hypomethylation , Superior Frontal Gyrus , Tissue , DNA methylation 

[25] 

3. Epilepsy / Status Epilepticus (mouse model) , Upregulation,  Hippocampus , Post-

mortem , RNA expression [26] 

4. Tissue samples (healthy subjects), healthy gene expression identification, human 

brain, hydrolysis of deacylated glycerophospholipids to glycerol phosphate and 

alcohol, overexpression leads to suppression of SRE-mediated transcriptional 

activation/ possible negative regulation role in MAPK signaling pathway.  

References for GDPD5 in the CNS 
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12;30(6):986]. Cancer Cell. 2016;30(4):548-562. doi:10.1016/j.ccell.2016.08.016  
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34. Poplawski SG. The Regulation of Gene Expression During Memory Consolidation in 

the Hippocampus. Dissertation. University of Pennsylvania. 2014. Accessed October 

20, 2021. https://repository.upenn.edu/edissertations/1408/       

35. Wang X, Wang H, Figueroa BE, et al. Dysregulation of receptor interacting protein-2 
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activation in Huntington's disease. J Neurosci. 2005;25(50):11645-11654. 
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36. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, et al. Altered expression of genes 

involved in inflammation and apoptosis in frontal cortex in major depression. Mol 

Psychiatry. 2011;16(7):751-762. doi:10.1038/mp.2010.52 

 

* Hsa-MiR-194-5p is an alias of both Mir-194-1 and Mir-194-2.  

 

 

 
 



Image 5. Welsh t- test for RNU-576P, MIR194-2, GDPD5 expression differences 
between BD patients and Unaffected Controls.  
 

 

SI-Appendix 2 

JADBio Description of Performed Analysis 

Visit analysis 

Setup 

JADBio version 1.4.14 ran on dataset GSE35978_BDHC_CEREBELLUM_homog_nocontrols with 72 samples 
and 28869 features to create a predictive model for outcome named Diagnosis. The outcome was discrete leading 
to a classification modeling. 

The preferences of the analysis were set to true for feature selection and false for full feature models tried. 
The AUC metric was used to optimize for the best model. 
The maximum number of features to select was set to 25. 
The effort to spend on tuning the algorithms were set to Extensive. 
The number of CPU cores to use for the analysis was set to 1. 
The execution time was 02:16:25. 

 

Configuration Space 

JADBio’s AI decide to try the following algorithms and tuning hyper-parameter values: 

Algorithm Type Algorithm 
Hyper-

parameter 
Set of Values 

Preprocessing Contant Removal 

  

 

Standardization 

  

Feature Selection 
Test-Budgeted Statistically 

Equivalent Signature (SES) 
alpha 0.05, 0.1, 0.01 

  

maxk 3, 2 

 

LASSO penalties 1.25, 2.0, 0.0, 0.25, 1.0, 1.5, 0.5 

Modeling Linear Support Vector Machines costs 0.1, 1.0, 0.001, 100.0, 10.0, 0.01 

 

Polynomial Support Vector 

Machines 
gammas 1.0, 0.001, 0.1, 0.01, 10.0, 100.0 

  

costs 0.1, 1.0, 0.001, 100.0, 10.0, 0.01 

  

degrees 4, 2, 3 

https://app.jadbio.com/share/b2484058-15af-496c-adff-9e4ee1fd4d3f


Algorithm Type Algorithm 
Hyper-

parameter 
Set of Values 

 

RBF Support Vector Machines gammas 1.0, 0.001, 0.1, 0.01, 10.0, 100.0 

  

costs 0.1, 1.0, 0.001, 100.0, 10.0, 0.01 

 

Logistic Regression lambdas 1.0, 0.001, 0.01, 100.0, 10.0, 0.1, 1.0E-4 

 

Random Forests min leaf sizes 1, 4, 3, 5, 2 

  

vars to split 
0.816 sqrt ( nvars ), 1.0 sqrt ( nvars ), 1.291 sqrt ( nvars ), 0.577 sqrt ( nvars ), 1.414 

sqrt ( nvars ), 1.154 sqrt ( nvars ) 

  

splits to perform 1.0 

  

ntrees 1000, 100 

 

Decision Tree min leaf sizes 2, 1, 4, 3, 5 

  

vars to split nvars // 1.0 

  

splits to perform 1.0 

  

alphas 0.1, 0.05, 0.01 

 

 
   

 

This process led to 3017 combinations and corresponding configurations (machine learning 

pipelines) to try. 

Configuration Estimation Protocol 

JADBio’s AI system decided to estimate the out-of-sample performance of the models 

produced by each configuration using Repeated 10-fold CV without dropping (max. repeats 

= 20). Overall, 3017 configurations × 20 repeats × 10 folds = 603400 models were set out to 

train. Out of those, only 211190 models were eventually trained, as JADBio stopped all 

configuration evaluations when it deemed that no sufficient progress was made. JADBio did 

not use the Early Dropping criterion. 

 

 



 


