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Abstract  

Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA 

methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted 

an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime 

cannabis use (ever vs. never) in a meta-analysis including 9,436 participants (7,795 European and 1,641 

African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry 

EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false 

discovery rate of 0.05 (𝑝 < 5.85 × 10−7): cg22572071 near gene ADGRF1, cg15280358 in ADAM12, 

cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in 

participants who never smoked cigarettes identified another epigenome-wide significant CpG site, 

cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores 

constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance 

in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime 

cannabis use that are independent of cigarette smoking and may serve as a starting point for further 

research on the mechanisms through which cannabis exposure impacts health outcomes.  
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Introduction 

Cannabis use is highly prevalent around the world.1 In the United States, the legal use of cannabis has 

expanded across the states over time.2 Despite the potential therapeutic benefits of medical use,3,4 the 

widespread recreational use of cannabis has raised concerns because of its reported associations with 

many adverse health outcomes, including mental health (anxiety, depression, psychosis, schizophrenia, 

and mania),5-8 cognitive deficits,9-11 and addiction.12 It is a pressing public health issue to better 

understand the full spectrum of the benefits and adverse consequences associated with cannabis use.  

DNA methylation (DNAm), which involves the addition of a methyl group to the C5 position of 

cytosine in the context of CpG dinucleotides, has been extensively studied in relation to gene expression 

and can be influenced by the genome, the environment, and stochastic processes.13-15 The DNAm changes 

induced by environmental exposure are sometimes persistent and long-lasting, while others are transient 

and reversible. For example, cigarette smoking has been shown to induce DNAm changes at CpGs 

throughout the genome. Some of these DNAm changes may revert after smoking cessation, while other 

DNAm changes may persist for years after cessation.16  

In recent years, research toward understanding the effect of cannabis use on DNAm has grown.17 

Previous candidate gene studies identified DNAm changes of CB1 receptor18 and DAT119 in cannabis-

dependent patients, COMT in adolescents defined as high-frequent cannabis users (> four times in the 

past 4 weeks),1 and DRD2 and NCAM2 in moderate to heavy cannabis users (> 10 days in the last 30 

days).20 The first epigenome-wide association study (EWAS) of cannabis use, which compared DNAm 

between 12 cannabis users and 12 non-users in human sperm, found at least 10% DNAm differences at 

3,979 CpG sites.21 Our group performed the first blood-based EWAS of lifetime cannabis use (ever vs. 

never) in 2,583 women and found significant DNAm changes at cg15973234 (CEMIP).22 Cannabis use–

associated DNAm changes in blood have also been reported in heavy cannabis users (N = 96)23 and 

adolescents (N = 525).24 Taken together, these studies provide evidence that cannabis use impacts the 

epigenome, but knowledge of specific DNAm changes remain limited.  
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In this study, we conducted the largest trans-ancestry EWAS meta-analysis for lifetime cannabis use 

(ever vs. never) in 9,436 participants from seven cohorts. The initial model, which adjusted for sex, age at 

blood collection, blood cell proportions, and technical covariates, yielded 608 significant (False 

Discovery Rate (FDR) < 0.05) CpGs, among which 82% overlapped with prior EWAS findings for 

cigarette smoking. We explored this finding further by first adjusting the analyses for cigarette smoking 

status and next conducted the EWAS in participants who never smoked cigarettes. These two analyses 

identified a total of five cigarette smoking–independent CpGs significantly associated with lifetime 

cannabis use. We evaluated these findings by constructing a methylation score, summarizing regional 

DNAm changes using differential methylation region (DMR) analysis, and integrating the DNAm 

findings with gene expression and genetic data. 

Results 

Sample characteristics. The demographic characteristics of 9,436 study participants are summarized 

in Table 1. The sample consisted of 57% females, and the mean age at DNAm sampling ranged from 17.1 

years in the ALSPAC cohort to 58.8 years in the TwinsUK cohort. A total of 44% of the participants 

reported having used cannabis at some point in their lives. DNAm sites were assessed using either the 

Illumina HumanMethylation 450K Bead-Chip (76%) or the Illumina HumanMethylation EPIC (850K) 

Bead-Chip (24%). The sample included individuals of both European ancestry (EA, 83%) and African 

ancestry (AA, 17%).  

EWAS meta-analysis results for lifetime cannabis use. We conducted EWAS meta-analysis on 

peripheral blood DNAm data from 9,436 participants for lifetime cannabis use. In each cohort, we tested 

the association between lifetime cannabis use and DNAm at each CpG site using either a linear model 

(for unrelated participants) or a generalized estimation equation (GEE) model (for related participants) 

with the family ID as the clustering variable. To investigate the confounding effect of cigarette smoking, 

we compared two models. Model 1 included sex (in cohorts with more than one sex), age at blood 

collection, measured or estimated white blood cell proportions, and technical covariates. In addition to 
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these covariates, Model 2 included cigarette smoking status defined as current, former, or never. The 

EWAS meta-analysis with Model 1 identified 608 CpGs significantly associated with lifetime cannabis 

use at an FDR threshold of 5%. Of these, 500 CpGs had been previously reported as being significantly 

associated with cigarette smoking25,26 (Supplementary Fig. 1). After adjusting for cigarette smoking, 

Model 2 EWAS meta-analysis identified four CpGs (Fig. 1; Table 2) significantly (FDR < 0.05) 

associated with lifetime cannabis use. None of these four cannabis use–associated CpGs had been 

reported as being significant in previous EWAS for cigarette smoking after accounting for multiple 

testing (𝑝 > 0.05/4).26 The quantile-quantile (QQ) plots from both models suggested minimal inflation 

(𝜆 = 1.1). Although many CpGs did not reach epigenome-wide significance with Model 2, their effect 

sizes showed consistent directions of associations as in Model 1 (Supplementary Fig. 2), and their effect 

sizes were highly correlated (𝑟 = 0.85). The four cigarette smoking-independent CpGs identified with 

Model 2—cg01101459, cg22572071, cg15280538, and cg00813162—were annotated to LINC01132, 

ADGRF1, ADAM12, and ACTN1, respectively, as the closest genes (Supplementary Fig. 3). The full list 

of top CpGs (𝑝 < 0.001) from the Model 2 EWAS meta-analysis are summarized in Supplementary 

Table 1.  

Considering potential differences by ancestry, we performed EWAS meta-analyses stratified into EA 

(N = 7,795) and AA (N = 1,641) groups. The ancestry-specific results for the top CpGs reported from the 

Model 2 EWAS meta-analysis are shown in Supplementary Table 1. The effect sizes for the top CpGs 

were highly correlated between the EWAS results in the EA and AA groups (𝑟 = 0.77, Supplementary 

Fig. 4).  

EWAS meta-analysis results for lifetime cannabis use in participants who never smoked cigarettes. 

To further explore the confounding effect of cigarette smoking on DNAm, we conducted an EWAS meta-

analysis on the subset of participants who reported never having smoked cigarettes (N = 4,146). The 

EWAS meta-analysis, using Model 1, identified one CpG significantly associated with lifetime cannabis 

use at FDR < 0.05 in this subset of participants (Fig. 2; Table 2). This CpG site, cg14237301, is annotated 
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to the gene APOBR, which has been reported to be significantly associated with lifetime cannabis use in a 

genome-wide association study (GWAS)27 (Fig. 3). The full list of top CpGs (𝑝 < 0.001) from the 

EWAS meta-analysis in participants who never smoked cigarettes is summarized in Supplementary Table 

2. Their effect sizes were highly correlated with the EWAS meta-analysis results in all participants under 

either model (𝑟 > 0.7, Supplementary Fig. 2). 

Methylation scores. To assess the ability of DNAm levels to predict lifetime cannabis use, we 

calculated a methylation score based on summary statistics from the EWAS meta-analyses without the 

Sister Study, the largest cohort in this project. We then compared the performance of multiple models 

with different p-value cutoffs by the variance in lifetime cannabis use explained by the methylation scores 

(Supplementary Table 3). The best-performing methylation score, based on 50 CpGs with 𝑝 < 10−9 in 

the EWAS meta-analysis using Model 1, explained 3.79% of the variance of lifetime cannabis use in the 

Sister Study (𝑝 = 1.71 × 10−17). To further examine the confounding effect of cigarette smoking, we 

also evaluated the variance explained by the methylation score in participants who never smoked 

cigarettes. In this subset of participants, the methylation score based on the same 50 CpGs explained 

0.91% of the variance of lifetime cannabis use (𝑝 = 1.19 × 10−3). In contrast, the methylation score 

constructed based on EWAS meta-analysis results with Model 2 can explain 0.58% of the variance of 

lifetime cannabis use in all participants of the Sister Study, achieved with p-value cutoff at 10−5. 

Sensitivity analysis. We conducted additional analyses to adjust for other factors that influence DNA 

methylation as shown in previous studies: alcohol use28 and BMI.29 We examined if the EWAS results 

with Model 2 differed by expanding Model 2 to also include alcohol use and body mass index (BMI) as 

covariates. The effect sizes of the top cannabis use–associated CpGs (𝑝 < 0.001) from Model 2 

(Supplementary Table 1) were strongly correlated (𝑟 = 0.99) with the results of the sensitivity analyses 

(Supplementary Fig. 5).  

Follow-up of CpGs significantly associated with lifetime cannabis use. We examined the five CpGs 

that were epigenome-wide significantly associated with lifetime cannabis use, four of which were 
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identified using Model 2 in all participants (adjusted for cigarette smoking) and one CpG identified in 

participants who never smoked cigarettes. Using the EWAS Atlas30 (https://ngdc.cncb.ac.cn/ewas/tools), 

we found that three of the five CpGs were significantly correlated with nearby gene expression in brain 

(Supplementary Table 4, 𝑐𝑜𝑟(cg01101459, 𝐿𝐼𝑁𝐶01132) = 0.121, 𝑐𝑜𝑟(cg00813162, 𝐴𝐶𝑇𝑁1) =

−0.135, 𝑐𝑜𝑟(cg14237301, 𝐴𝑃𝑂𝐵𝑅) = −0.389)).  

We also looked up the correlation of DNAm for the five CpGs between whole blood and brain 

regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus, and cerebellum) through an existing 

database (http://epigenetics.essex.ac.uk/bloodbrain/).31 Among the five CpGs, DNAm at cg22572071-

ADGRF1 and cg14237301-APOBR showed moderate correlations between whole blood and prefrontal 

cortex (𝑟 > 0.2). At cg22572071-ADGRF1 and cg15280358-ADAM12, DNAm was moderately 

correlated (𝑟 > 0.2) between whole blood and cerebellum (Supplementary Fig. 6, Supplementary Table 

5). 

Enrichment analyses comparing the top cannabis use–associated CpGs from Model 2 to previously 

reported EWAS results in EWAS Atlas identified associations with other diseases and environment 

exposures (Supplementary Table 6). Among the enriched traits detected, Crohn’s disease, alcohol 

consumption, BMI, and multiple sclerosis were significantly overlapped with our EWAS results. 

Interestingly, cannabis use–associated CpGs identified in participants who never smoked cigarettes 

showed significant overlap with CpGs previously associated with smoking (𝑝 = 5.58 × 10−8), smoking 

cessation, lung function, and lung carcinoma.  

To explore whether the DNAm changes were genetic-driven, we looked up the methylation 

quantitative trait loci (meQTLs) for the five epigenome-wide significant CpGs in the Genetics of DNA 

Methylation Consortium (GoDMC) database32 (http://mqtldb.godmc.org.uk/about), and overlapped them 

with the GWAS results for lifetime cannabis use27 (Supplementary Table 7). None of the meQTLs were 

significantly associated with lifetime cannabis use (𝑝 = 5 × 10−8), indicating that our significantly 

associated CpGs were not directly driven by the genetic variants. The meQTLs for cg00813162-ACTN1 
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and cg14237301-APOBR showed some degree of significance in the GWAS (𝑝 < 0.01, Supplementary 

Table 7).  

Differentially methylated regions. We used an R software tool, ipDMR,33 to identify DMRs based on 

EWAS meta-analysis results (Supplementary Table 8). Model 1 (no adjustment for cigarette smoking) 

yielded 514 significant DMRs (FDR < 0.05) with a minimum of two probes, while Model 2 (accounting 

for cigarette smoking) had 10 significant DMRs, showing that one of the four epigenome-wide significant 

CpGs (cg00813162-ACTN1) reside in a region where proximate CpGs were associated with lifetime 

cannabis use. Additionally, there were nine DMRs that included no single epigenome-wide significant 

CpG, and instead multiple correlated CpGs showed some evidence of association. The DMR analysis in 

participants who never smoked cigarettes identified six DMRs with a minimum of two probes, none of 

which included the epigenome-wide significant CpG sites. The gene set enrichment analysis of the genes 

that overlap with the DMRs from Model 2 identified four Gene Ontology (GO) biological processes 

(Supplementary Fig. 7): growth, response to metal ion, actin filament bundle organization, and cellular 

response to zinc ion. 

Discussion 

In this study, we performed the largest EWAS meta-analyses of lifetime cannabis use to date (9,436 

multi-ancestry participants) using DNAm data from peripheral blood samples. The basic model showed 

that DNAm changes associated with lifetime cannabis use largely overlapped with cigarette smoking–

associated DNAm sites. After additionally adjusting for smoking in the EWAS model, we found four 

CpG sites statistically independent of cigarette smoking that were significantly associated with lifetime 

cannabis use. Additionally, we conducted EWAS in participants who never smoked cigarettes to further 

eliminate the influence of the participants’ cigarette smoking. This analysis showed high consistency with 

the smoking-adjusted model in all participants (Model 2) and yielded one additional CpG significantly 

associated with lifetime cannabis use. The genes annotated to these five cannabis use–associated CpGs 

are relevant to a range of health outcomes.34-44  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.29.22284040doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.29.22284040


9 

 

The five epigenome-wide significant CpGs are annotated to the nearest genes: LINC01132, ADGRF1, 

ADAM12, ACTN1, and APOBR. Of these, cg01101459-LINC01132, cg00813162-ACTN1, and 

cg14237301-APOBR were inversely associated with cannabis use, meaning that individuals who had used 

cannabis had lower DNAm at these CpG sites compared to those who had never used cannabis. 

LINC01132 is a long noncoding RNA gene that has been reported to function as an oncogene that relates 

to the malignant behaviors of cancer cells.34,45,46 Lower expression of LINC01132 has been associated 

with reduced oncogenicity. ACTN1 (Alpha-Actinin-1) encodes a non-muscle cytoskeletal protein that 

binds actin to the cell membrane.35 Genetic variants and differential expression of the ACTN1 have been 

reported in various diseases, including congenital macrothrombocytopenia, Angelman syndrome, Bowen 

disease, postmenopausal osteoporosis, lupus erythematosus, and COVID-19.35-38,47,48 APOBR 

(Apolipoprotein B receptor) encodes a receptor protein that binds to dietary triglyceride-rich lipoproteins. 

Its genetic variants have been associated with obesity,39,49 bladder cancer,42 pneumonia,41 allergy,40 and 

lifetime cannabis use.27 The results from our analyses using EWAS Atlas showed evidence that the 

expression of LINC01132 in brain is positively correlated with the DNAm level of cg01101459, while the 

expression of ACTN1 and APOBR in the brain are negatively correlated with the DNAm levels of the 

corresponding CpGs. However, both DNAm and gene expression patterns are tissue-specific, and their 

correlations merit further investigation in different tissues. Genetic variants in APOBR have been linked 

to lifetime cannabis use in GWAS.27 However, we did not find overlap between the meQTLs and 

significant GWAS SNPs. Future EWAS integrating meQTLs is needed to confirm whether the 

association is genetic-driven. 

On the other side, cg22572071-ADGRF1 and cg15280358-ADAM12 were positively associated with 

cannabis use. ADGRF1 is a receptor gene that that is critical in neurodevelopment and 

neuroinflammation.43,50 The overexpression of ADGRF1 has been reported in breast cancer.51 ADAM12 

encodes protein that involving in cell-cell interaction, muscle development, and neurogenesis. The 

expression of ADAM12 has been reported to be upregulated in various tumor cells and is an emerging 
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prognostic biomarker for cancer.52-56 Genetic variants in ADAM12 have been associated with neurological 

diseases such as multiple sclerosis and Alzheimer’s disease. Further experimental studies are needed to 

determine the potential effects of changes in DNAm levels on the corresponding gene expressions.  

The majority of significant CpGs in EWAS for cannabis use with the basic model (Model 1) 

overlapped with those identified in the EWAS for cigarette smoking.26 The number of significant CpGs 

decreased dramatically after adjusting for smoking status in our Model 2. These findings suggest that 

cigarette smoking is a strong confounder for cannabis use. However, we found that DNAm scores 

calculated as weighted sums of the beta values of significant CpGs from Model 1 explained a greater 

amount of variance in lifetime cannabis use than the DNAm scores based on Model 2 (3.79% vs. 0.58%). 

Even in participants who never smoked cigarettes, the DNAm scores based on Model 1 could explain 

0.91% of the variance in lifetime cannabis use. Additionally, the EWAS results in participants who never 

smoked cigarettes showed enrichment of CpGs associated with cigarette smoking. These results suggest 

that cannabis use and cigarette smoking may independently influence the DNAm levels of these CpGs.  

In previous studies, DNAm scores have been used to predict various outcomes with the variance 

explained ranging from 0.6% in low-density lipoprotein, 2.5% in educational attainment, 12.5% in 

alcohol use, to 60.9% in cigarette smoking.57 The variance in lifetime cannabis use explained by DNAm 

scores was (3.79%) is moderate. Future applications that integrate both polygenic risk scores and DNAm 

scores may improve prediction power.57,58 The accumulation of even larger scale GWAS and EWAS for 

lifetime cannabis use will be necessary to establish reliable biomarkers for clinical purposes. 

As a complement to the main EWAS, the DMR analysis that combined nearby correlated CpGs 

identified additional regions associated with cannabis use. After adjusting for smoking, the EWAS for 

lifetime cannabis use identified fewer epigenome-wide significant hits, and the DMR analysis provides an 

improved power to detect correlated CpGs with small effects influenced by cannabis exposure. The gene 

set enrichment analysis revealed biological processes related to growth, response to metal ion and zinc 

ion, and assembly of actin filament bundle. 
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The large sample set included in this study provides a good representation for a wide range of 

populations across countries, sexes, ancestry groups, and age ranges, empowering more generalizable 

findings in identifying a common and robust DNAm signature for lifetime cannabis use. A recent genetic 

study59 has shown that increased sample sizes of diverse ancestries improved detection power and 

generated more generalizable polygenic risk scores. However, one limitation of this approach is that 

associations with ancestry effects may have been attenuated when all data were combined, as 

heterogeneity across different cohorts would have reduced power to detect such specific associations in 

underrepresented populations. Future studies on more data from diverse populations may reveal ancestry-, 

sex- and age-specific DNAm associations. There may also be relevant confounders that we have not been 

able to adjust for, such as exposures and experiences that lead to cannabis use. 

In this study, we analyzed DNAm profiles from blood samples. While DNAm profiles differ across 

tissues and cell types, our results based on blood samples may not be generalizable to other tissues that 

may be more biologically relevant to the addiction and other behavioral effects of cannabis use, such as 

the brain. Using data from an online database, we found moderate positive correlations between DNAm 

in whole blood and prefrontal cortex or cerebellum at three of the five cannabis use–associated CpG sites. 

Further experimental validation is needed to connect the DNAm changes in blood and other tissues that 

may relate to health effects associated with cannabis use. It should also be noted that the current EWAS 

results may suffer from potential confounding effects caused by blood cell subtype heterogeneity that 

were not fully captured by reference-based deconvolution that we applied.60,61  

The EWAS meta-analysis conducted in this study only reflects the association between lifetime 

cannabis use and DNAm levels, without any causal inference. More precise measurements of cannabis 

use regarding recency and frequency are needed to further investigate the persistent and transient effects 

on DNAm changes. Taken together, we propose future studies to integrate cannabis use patterns, GWAS 

results, DNAm data from multiple tissues, and gene expression data, to infer causal links between 

cannabis exposure and DNAm levels. 
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In conclusion, our EWAS found that a large proportion of DNAm changes that are significantly 

associated with cannabis use overlap with those observed for cigarette smoking. After adjusting for 

smoking status in the EWAS and conducting additional association testing in participants who never 

smoked cigarettes, we identified five cigarette smoking-independent CpGs that were significantly 

associated with lifetime cannabis use. Three of these CpGs showed significant correlations with the 

expression of nearby genes that have been linked to various health outcomes. These findings provide 

insights into DNAm profiles that are shared between smoking and cannabis use or specific to each 

substance, and suggest a substantial proportion of the variance in lifetime cannabis use are captured by 

DNAm. Follow-up studies are warranted to unravel the biological relevance of the differential DNAm to 

health outcomes.  

Methods (less than 3,000 words) 

Study cohorts. This study included data from seven participating cohorts: the Sister Study,62 Gulf 

Long-Term Follow-Up Study (GuLF),63 Netherlands Twin Register (NTR),64 Veteran Aging Cohort 

Study (VACS),65 Finnish Twin Cohort (FinnTwin),66 Avon Longitudinal Study of Parents and Children 

(ALSPAC),67 and UK Adult Twin Registry (TwinsUK).68 The final sample size consisted of 9,436 

participants, including 4,190 individuals who reported ever using cannabis and 5,246 who reported never 

using cannabis (Table 1). Detailed information for each cohort can be found in the Supplementary 

Methods. Informed consent was obtained from each participant, and each study was approved by their 

Institutional Review Boards. 

Cannabis assessment. Our analyses focused on lifetime cannabis use based on self- or parent-report. 

Participants were classified as ever users if they reported using cannabis at least once prior to the blood 

sample collection used to generate DNAm data, and as never users if they reported never using cannabis 

prior to the blood draw. This definition of the phenotype aligns with the “Substances—Lifetime Use” 

variable in the PhenX Toolkit,69 making the results comparable and combinable. 
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DNA methylation measurements. DNAm was measured in peripheral blood using either the Illumina 

Infinium HumanMethylation450 BeadChip (450K array, 76%) or the Illumina Infinium Methylation 

EPIC BeadChip (EPIC array, 24%), as shown in Table 1. DNAm levels were calculated as 𝛽-values, 

which represent the percentage of DNA that is methylated at the interrogated CpG site and ranges from 0 

to 1. Quality control and normalization procedures were implemented consistently across all cohorts, with 

considerations specific to each cohort (detailed in the Supplementary Methods).  

EWAS for lifetime cannabis use. In each cohort, the association between DNAm levels and lifetime 

cannabis use was tested under a linear model or a GEE model if participants were related. We stratified 

the EWAS analyses by ancestry groups (EA and AA) and DNAm array types (450K and EPIC). For each 

CpG site, the DNAm beta value was considered as the outcome with lifetime cannabis use as the predictor 

of interest, and two separate models were applied. In the basic model (Model 1), we included sex (except 

in cohorts with only one sex), age at blood collection, blood cell type estimation, and technical covariates. 

In Model 2, we additionally adjusted for cigarette smoking status defined as current, former, or never. 

Comparing with prior smoking EWAS,25 the results from Model 2 were considered as cigarette smoking–

independent DNAm biomarkers for lifetime cannabis use. Additionally, we implemented EWAS within 

the subset of participants who never smoked cigarettes using Model 1 to minimize the possible 

confounding effect of cigarette smoking. More detailed information for models and covariates used in 

each cohort is provided in the Supplementary Methods.  

Meta-analysis. We summarized cohort- and ancestry-specific EWAS results using inverse variance 

fixed effects meta-analysis implemented in the METAL software,70 with Model 1 (all participants), Model 

2 (all participants), and Model 1 in participants who never smoked cigarettes, respectively. We reported 

overlapping CpGs between 450K and EPIC arrays, which included 452,453 CpG probes. Epigenome-

wide significance was defined as FDR less than 5%. Manhattan and QQ plots were genearted using the 

CMplot function within the R package rMVP.71 Heterogeneity among the studies was assessed using the 

Cochran’s Q-test implemented in METAL. 
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Methylation scores. As the single largest cohort included in this study, the Sister Study was reserved 

as the testing dataset to evaluate DNAm scores. For each individual in the Sister Study, a methylation 

score was calculated as a weighted sum of CpGs significantly associated with lifetime cannabis use in the 

EWAS meta-analysis conducted without the Sister Study.58 At a given CpG site 𝑖, the methylation beta 

value (𝑚𝑒𝑡ℎ𝑖) was multiplied by the effect size of the CpG in the meta-analysis (𝑒𝑓𝑓𝑖). Then a 

methylation score was obtained by summing over a selected CpG set:  

𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  𝑚𝑒𝑡ℎ1 ∙ 𝑒𝑓𝑓1 + 𝑚𝑒𝑡ℎ2 ∙ 𝑒𝑓𝑓2 + ⋯ + 𝑚𝑒𝑡ℎ𝑛 ∙ 𝑒𝑓𝑓𝑛 

We applied different p-value thresholds to select the significant CpG sets for both Model 1 

(𝑝 < 10−1, 10−3, 10−5, 10−7, 10−9, 10−11, 10−13) and model 2 (𝑝 < 10−1, 10−3, 10−5, 10−7). To 

evaluate performance of the methylation scores, we quantified the percentage of variance (𝑅2) explained 

as proposed by Lee et al.72 for binary responses. 

Integrating EWAS results with gene expression. To investigate the potential relationship between 

DNAm and gene expression levels, we used the correlations between DNAm and expression data 

available in six tissues (brain, colon, kidney, liver, stomach, testis) in the EWAS Atlas.30 Specifically, we 

analyzed the DNAm levels of the significant CpGs to determine if they were associated with the 

expression levels of nearby genes.  

Correlation of DNAm between blood and brain tissues. An online database 

(https://epigenetics.essex.ac.uk/bloodbrain/)31 was used to examine the correlations of DNAm between 

whole blood and four brain regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus, and 

cerebellum), respectively. For each CpG site, a boxplot was generated to display the distribution of 

DNAm levels across all five tissues, and the Pearson correlation was calculated between the DNAm level 

in whole blood and each of the four brain tissues.  

Enrichment analysis against previous EWAS results. To determine the potential overlap of our top 

CpGs with previously reported EWAS results, we used the EWAS Atlas toolkit30 to conduct enrichment 
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analyses. To meet the minimum input requirement, we selected the top 20 CpGs from the EWAS meta-

analysis using Model 2 and the top 20 CpGs in participants who never smoked cigarettes, and ran 

enrichment analyses on each group separately.  

Methylation quantitative trait loci (meQTL). To explore the potential genetic basis for DNAm 

changes identified in our study, we looked up genetic variants that are associated with DNAm levels of 

CpG sites within the Genetics of DNA Methylation Consortium (GoDMC) database,32 which includes 

both local (cis) and distal (trans) meQTLs. We examined the overlap between the meQTL variants for 

cannabis use–associated CpG sites and the variants identified in a GWAS for lifetime cannabis use.27 

DMR analyses. We used an R software tool, ipDMR,33 to identify DMRs in which a cluster of 

correlated CpGs showed evidence for association with lifetime cannabis use. ipDMR calculates an overall 

p-value for small intervals bordered by two adjacent CpGs based on the association p-values from an 

EWAS analysis. It then combines all nearby significant intervals (using a seed threshold) and calculates 

an FDR-adjusted p-value for the combined region. We applied ipDMR to summary statistics from our 

EWAS meta-analysis with the following parameters: seed p-value < 0.05, maximum distance to combine 

adjacent intervals 1000bp and bin size 50bp. To assess the biological significance of the identified DMRs, 

we then conducted gene set enrichment analysis using the tool provided by Functional Mapping and 

Annotation of Genome-Wide Association Studies (FUMA)73 to test for enrichment of the genes that 

overlapped with the DMRs in predefined pathways.  

Sensitivity analyses. To evaluate the potential confounding effects of alcohol use and BMI on the 

association between DNA methylation and lifetime cannabis use, we conducted sensitivity analyses. In 

these analyses. We compared the effect sizes and p-values of the significant CpGs identified in the main 

analysis with those obtained in the sensitivity analyses to assess the robustness of our results. Detailed 

definitions of alcohol use in each cohort can be found in the Supplementary Methods section. 

Comparison of results across ethnic groups. Considering the differential DNAm patterns across 

different ethnicity groups, we conducted a separate EWAS meta-analysis in EA (N=7,795) and AA 
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(N=1,641) groups with Model 2. We compared the effect sizes and p-values of the top significant CpGs 

from the main EWAS results with the results in each ancestry group. 
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Figure 1. Manhattan (a) and QQ plots (b) from the EWAS meta-analysis for lifetime cannabis use with 

Model 2 adjusted for cigarette smoking. The dotted red line in (a) indicates the epigenome-wide 

significance cutoff at FDR<0.05 (𝑃 < 5.96 × 10−7).  

 

 

Figure 2. Manhattan (a) and QQ plots (b) from the EWAS meta-analysis for lifetime cannabis use in 

participants who never smoked cigarettes. The dotted red line in (a) indicates the epigenome-wide 

significance cutoff at FDR<0.05 (𝑃 < 2.45 × 10−7). 
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Figure 3. Regional plot for EWAS results in participants who never smoked cigarettes (a) and GWAS 

results (b) for lifetime cannabis use around the genes APOBR/CLN3. The x-axis shows the genomic 

position in base pair (bp) in hg19, while the y-axis shows the significance of associations (-log10 p-

values). (a) Each dot is a CpG probe, and the red dotted line indicates the epigenome-wide significance at 

FDR<0.05. (b) Each dot is a SNP site, and the colors show different levels of LD in 𝑟2. The box in the 

bottom includes the genes within the genomic region, and genes underlined in yellow were significant in 

the gene-based test while those underlined in green were identified in the S-PrediXcan analysis27.  
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Table 1. Characteristics of the cohort participants. 

Study Cohort Total N Countries Ancestry Female % 
Age at blood 

draw* 
DNAm 
array 

Cannabis 
Ever users 

Sister Study 2,583 US 100% EA
§
 100% 57.0±8.8 450K 49% 

GuLF 1,195 US 
56% EA 
44% AA 

0% 44.3±11.8 EPIC 56% 

NTR 2,142 Netherland 100% EUR 70% 37.4±13.2 450K 26% 

VACS 1,116 US 100% AA 0% 48.9±7.9 450K,EPIC 79% 

FinnTwin 1,368 Finland 100% EUR 55% 23.5±1.9 450K,EPIC 27% 

ALSPAC 922 UK 100% EUR 52% 17.1±1.0 450K 40% 

TwinsUK 110 UK 100% EUR 100% 58.8±9.0 EPIC 27% 

*Mean and standard deviation presented; 
§Abbreviations: EA: European American; EUR: European; AA: African American 
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Table 2. Epigenome-wide significant (FDR<0.05) CpGs identified in EWAS meta-analyses for lifetime cannabis use from Model 2, adjusted 

for cigarette smoking. 

CpG 
Chr:Position 

(hg19) 
Closest  
genes 

Location# 

Model 2 in all participants 
(N=9,436) 

Model 1 in  
all participants 

(N=9,436) 

Model 1 in 
participants who 

never smoked 
cigarettes 
(N=4,146) 

EWAS meta-analysis of 
cigarette smoking26 

(current vs. non-current) 

Direction Effect* P-value Effect* P-value Effect* P-value Effect§ 
Directio

n 
P-value 

cg01101459 1:234871477 LINC01132 TFBS -+---+---- -0.0042 3.90E-07 -0.0030 2.27E-04 -0.0034 0.0064 0.18 +++-+ 0.014 

cg22572071 6:47074382 ADGRF1 Enhancer ++++++++++ 0.0040 1.09E-07 0.0028 9.51E-05 0.0024 0.025 0.0074 +-+-+ 0.91 

cg15280358 10:127904472 ADAM12 Gene body +-++?++++- 0.0058 5.15E-07 0.0044 8.32E-05 0.0040 0.016 -0.11 +---+ 0.22 

cg00813162 14:69443362 ACTN1 5'UTR -+-------- -0.0028 2.46E-07 -0.0024 5.51E-06 -0.0025 0.0019 0.023 ++-?+ 0.69 

cg14237301 16:28506477 APOBR 
1st Exon;  
5’ UTR 

-------?- -0.0040 1.76e-05 -0.0032 3.10E-4 -0.0071 9.05E-08 0.070 -++++ 0.37 

#TFBS: Transcription Factor Binding Site; 5′UTR: 5′ untranslated region. 
*Positive effect size means higher methylation (hypermethylation) in ever cannabis users. 
§Positive effect size means higher methylation (hypermethylation) in current cigarette smokers. 
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