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ABSTRACT

Globally, liver cancer poses a serious threat to human health and quality of life.

Despite numerous studies on the microbial composition of the gut in hepatocellular

carcinoma (HCC), little is known about the interactions of the gut microbiota and

metabolites and their role in HCC. We examined the composition of the gut

microbiota and serum metabolic profiles in 68 patients with HCC, 33 patients with

liver cirrhosis (LC), and 34 healthy individuals (NC) using a combination of

metagenome sequencing and liquid chromatography‒mass spectrometry (LC‒MS).

The composition of the serum metabolites and the structure of the intestinal

microbiota were found to be significantly altered in HCC patients compared to

non-HCC patients. We used LEfSe and metabolic pathway enrichment analysis to

identify two key species (Odoribacter splanchnicus and Ruminococcus bicirculans)

and five key metabolites (ouabain, taurochenodeoxycholic acid,

glycochenodeoxycholate, theophylline, and xanthine) associated with HCC, which we

then combined to create panels for HCC diagnosis. We discovered that the diagnostic

performance of the metabolome was superior to that of the microbiome, and a panel

comprised of key species and key metabolites outperformed AFP in terms of

diagnostic value. Spearman's rank correlation test was used to determine the

relationship between the intestinal flora and serum metabolites and their impact on

hepatocarcinogenesis and progression. A random forest model was used to assess the

diagnostic performance of the different histologies alone and in combination. The

panel we developed was very close to the AUC values of the best omics. In summary,

this study describes the characteristics of HCC patients' intestinal flora and serum

metabolism, demonstrates that HCC is caused by the interaction of intestinal flora and

serum metabolites, and suggests that two key species and five key metabolites may be

potential markers for the diagnosis of HCC.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2022. ; https://doi.org/10.1101/2022.12.24.22283879doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.24.22283879
http://creativecommons.org/licenses/by-nc-nd/4.0/


Primary liver cancer is the fourth leading cause of cancer-related deaths worldwide,

with hepatocellular carcinoma (HCC) accounting for approximately 80% of all cases

(1). China represents approximately half of all new cases and deaths related to HCC

worldwide (2). Although surgery can help patients with liver cancer, the 5-year

survival rate is only 50%–70% (3). Furthermore, most HCC patients are diagnosed in

advanced stages with a poor prognosis due to a lack of specific symptoms in the early

stages and no known early diagnostic markers (4). To screen for and diagnose HCC,

imaging methods (e.g., CT and B-ultrasound) and serum biomarkers (e.g.,

alpha-fetoprotein [AFP]) are commonly used. However, imaging alone is insufficient

for distinguishing small HCCs from hepatic sclerosing nodules. In addition, AFP has

a sensitivity of 65% for the clinical diagnosis of HCC and a sensitivity of less than

40% for preclinical prediction (5). As a result, new biomarkers and effective drug

targets are urgently needed to improve the prognosis of HCC patients.

Gut microbes and circulating metabolites have received much attention as

biomarkers for human diseases such as cancer in recent years due to the development

and application of sequencing technologies and LC‒MS-based metabolomics.

Intestinal microbes are recognized as novel virtual metabolic organs, and the gut

microbiota has been demonstrated to play a significant role in the development of

numerous diseases. By altering the permeability of the intestinal mucosa in a way that

disrupts immune or metabolic homeostasis, gut microbiota imbalances can contribute

to the development of autoimmune diseases or cancer (6, 7, 8). The close relationship

between the liver and the intestine is referred to as the "gut-liver axis" (9). An intact

gut-liver axis is dependent on a healthy intestinal microbiota and normal liver

function. In addition, the gut microbiota has been identified as an important player in

chronic inflammatory liver disease, liver cirrhosis, alcoholic liver disease, and

nonalcoholic fatty liver disease (10, 11, 12). Several studies have shown that the gut

microbiota can be used as a noninvasive diagnostic tool for certain diseases and

cancers, such as type 2 diabetes (T2D), colorectal cancer (CRC), and pancreatic

cancer (PC) (13, 14, 15). Although the importance of microbes in HCC has been
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reported in several studies, the profile of the gut microbial community and its

functional contribution to HCC has yet to be thoroughly studied and systematically

characterized (16, 17).

Using microbial metabolites, the gut microbiota has been linked to diseases such as

cancer (18). Food and nutrients are transformed by gut microbes into a metabolite

environment, which controls the equilibrium of the metabolites (19). By providing

metabolic flux to promote anabolism, acting as competitive enzyme inhibitors, or

modifying signaling proteins, among other mechanisms, these metabolites can exert

genotoxic or tumor-suppressive effects (20).

The liver is one of the most active metabolizing organs in our bodies, and it plays

an important role in regulating various metabolic processes (21). The liver receives

metabolites produced by bacteria in the gut via the portal vein and transports them

directly to the liver to perform regulatory functions. Because of the natural connection

between intestinal microbes and the liver, the liver is the first organ to receive

intestinal metabolites and it plays an essential role in the interaction between

extraneous materials and the systemic environment. Metabolomics is a very

promising method for identifying metabolites that can shed light on the etiology,

treatment, and early diagnosis of disease (22).

The process of tumorigenesis is accompanied by an overall shift in metabolic

status, which has an effect not only on the tissue of the tumor but also on the

microenvironment surrounding it (23, 24). Furthermore, metabolic changes can be

observed more directly in the tumor cell state than genomic and proteomic changes

and are thus expected to become useful tumorigenesis biomarkers (25). In the past

few years, much research has been done on the metabolites in the blood that are

linked to liver cancer. This research has shown that metabolites play a major role in

the development of HCC (26, 27).

With increasing research on the gut microbiome and metabolome as biomarkers in

HCC, we have a deeper understanding of possible diagnostic methods for HCC.
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However, little is known about the interactions between gut microbes and metabolites

and how they influence the development of liver cancer. In this study, we performed

metagenome sequencing of stool and metabolomic analysis of serum from three

cohorts (HCC, LC, and NC) to discover changes in gut microbes and serum

metabolites. Simultaneously, matched serum and stool samples were analyzed for

metabolites and microbes, and it was discovered that gut microbes were closely

associated with serum metabolites. Based on these findings, we compared the

diagnostic performance of key gut microbes, key serum metabolites, and key gut

microbial metabolites. Meanwhile, we examined the molecular pathway mechanisms

to learn more about hepatocarcinogenesis.

MATERIALS AND METHODS

Participant information

This study included 68 newly diagnosed hepatocellular carcinoma patients, 33

patients with liver cirrhosis from the Hepatobiliary and Pancreatic Treatment Center

of the Second Hospital of Nanjing, Jiangsu Province, and 34 healthy subjects from the

Health Management Center. Stool and serum samples were collected in accordance

with the protocol approved by the ethics committee of the Second Hospital of Nanjing,

and all participants provided written informed consent. The study subjects'

demographic and clinicopathological data, CT scans, and dietary habits were obtained

from hospital electronic medical records and questionnaires (online Supplementary

Table S1). International guidelines say that HCC or cirrhosis can be diagnosed by

looking at integrated pathology, imaging, laboratory tests, clinical symptoms, and

medical history.

The HCC patients were screened and confirmed. The following were the exclusion

criteria: 1) patients with other diseases, such as tumors in other locations,

gastrointestinal diseases, hypertension, diabetes, and metabolic diseases; 2) patients

who had previously received anticancer treatment; 3) patients who had recently

received antibiotics or probiotics; and 4) patients who lacked critical clinical
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information. Age, sex ratio, and BMI were used to match the patients with the

controls. Individuals who had hypertension, diabetes, obesity, metabolic syndrome,

irritable bowel syndrome (IBD), or had received antibiotics and/or probiotics

treatment within the previous 8 weeks were also excluded.

Sample collection

Fresh fecal samples were collected from each participant and evaluated for fecal

morphology and color. The samples were divided into three 300 mg portions and

immediately snap-frozen in liquid nitrogen. The entire process of moving and

manipulating the samples on ice took less than 20 minutes. After snap-freezing with

liquid nitrogen, the samples were stored at -80 °C until extraction for testing. A

professional nurse collected venous blood in strict accordance with standard asepsis

procedures. The serum was centrifuged and stored at -80 °C until testing.

Microbial DNAExtraction, Metagenome Sequencing and Data Processing

Total DNA was extracted from the stool samples using the QIAamp 96 Power

Fecal QIAcube HT kit (Qiagen, Germany), and the DNA was further purified using

the MGI Easy DNA Magnetic Beads Purification Kit (MGI, China) according to the

manufacturer's instructions. To measure how much purified DNA there was, a Qubit

dsDNA BR Assay Kit (Invitrogen, USA) was used.

The library was built using DNBSEQ (online Supplementary Figure S1) and the

original sequencing data (Raw Data) were filtered using the short oligonucleotide

alignment program SOAP (28) to obtain clean data, and the host sequence was

aligned with Bowtie2 (29) to remove reads derived from the host. MEGAHIT (30)

assembled high-quality short reads from each DNA sample. MetaGeneMark (31) was

used to perform metagenomic gene prediction on the assembled scaffold. CD-HIT (32)

was used to cluster predicted genes, and redundant sequences were removed to

construct the gene catalog. Salmon (33) was used for quantification. Diamond's

(34) BLASTP function was used for functional annotation, and Kraken2's default

parameters were used for taxonomic annotation.
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LC/MS Nontargeted Metabolomics Analysis

Metabolite extraction was performed according to a previously reported method. In

short, samples were extracted by directly adding precooled methanol and acetonitrile

(2:1, v/v), and internal standards mix 1 (IS1) and internal standards mix 2 (IS2) were

added for quality control of the sample preparation. After vortexing for 1 minute and

incubating at -20 °C for 2 hours, the samples were centrifuged for 20 minutes at 4000

rpm, and the supernatant was then transferred for vacuum freeze drying. The

metabolites were resuspended in 150 µL of 50% methanol and centrifuged for 30 min

at 4000 rpm, and the supernatants were transferred to autosampler vials for LC‒MS

analysis. A quality control (QC) sample was prepared by pooling the same volume of

each sample to evaluate the reproducibility of the whole LC‒MS analysis. For

metabolite separation and detection, a Waters 2D UPLC (Waters, USA) tandem Q

Exactive high-resolution mass spectrometer (Thermo Fisher Scientific, USA) was

used. The samples were analyzed using a Waters 2D UPLC (Waters, USA) coupled to

a Q-Exactive mass spectrometer (Thermo Fisher Scientific, USA) with a heated

electrospray ionization (HESI) source and it was controlled by the Xcalibur 2.3

software program (Thermo Fisher Scientific, Waltham, MA, USA). The separation

was carried out on a Waters ACQUITY UPLC BEH C18 column (1.7 m, 2.1 mm, 100

mm, Waters, USA), with the column temperature set to 45 °C. In positive mode, the

mobile phase contained 0.1% formic acid (A) and acetonitrile (B), while in negative

mode, the mobile phase contained 10 mM ammonium formate (A) and acetonitrile

(B). The gradient conditions were as follows: 0–1 min, 2% B; 1–9 min, 2%–98% B;

9–12 min, 98% B; and 12.1–15 min, 2% B. The injection volume was 5 µL, and the

flow rate was 0.35 mL/min. Compound Discoverer 3.1 (Thermo Fisher Scientific,

USA) software was used to process the LC‒MS/MS data, which included peak

extraction, peak alignment, and compound identification (35, 36).

Statistical Analysis

To compare the differences between different microorganisms, the Wilcoxon

rank-sum test, Kruskal‒Wallis (KW), LEfSe analysis, Adonis (37), and ANOSIM (38)
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were used. The metabolomics R package metaX (39) and the metabolome

bioinformatic analysis pipeline were used for data preprocessing, statistical analysis,

metabolite classification annotations, and functional annotations. To compare

metabolites between groups, principal component analysis (PCA), partial least

squares discriminant analysis (PLS-DA), Student's t test, and fold change obtained

from the variability analysis were used. The correlation between microorganisms and

metabolites was evaluated using Spearman correlation and random forest analyses.

Pearson correlation analysis was used to evaluate the correlation of species and

metabolites with the clinical data. The statistical significance level was set at p<0.05.

RESULTS

After a rigorous pathological diagnosis and exclusion process, 68 patients with

hepatocellular carcinoma (HCC), 33 patients with liver cirrhosis (LC), and 34 healthy

controls (NC) were included in the analysis and comparison. We performed

metagenome sequencing and untargeted LC‒MS analysis on the feces and serum of

the participants, respectively. Kruskal‒Wallis, the Wilcoxon rank-sum test, and

abundance restriction were used to screen different subgroups of microbes, and LEfSe

analysis was used to screen HCC-associated species-level key gut microbiota (KGM).

In addition, a metabolic pathway enrichment analysis was performed on the

differential metabolites that were screened based on the untargeted LC‒MS results to

screen for HCC-related key serum metabolites (KSM) in important metabolic

pathways. Using random forest classification models, the potential of various panels

consisting of different species or metabolites as biomarkers was evaluated. Then, in

fecal- and serum-matched enrollees, a combined analysis of differential species and

differential metabolites was performed to determine which omics best separated HCC

from non-HCC by comparing separate and combined modeling of different omics

with the receiver operating characteristic (ROC) curves. Finally, the best panel's

worth was determined by comparing the difference between the best panel and the

best omics model (Figure 1).
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Demographics of the study cohort and quality control of the samples.

Before the experimental design and sample collection, participants were matched

for dietary habits and clinical characteristics (including age, sex, and body mass index)

to ensure that established confounding factors did not affect group differentiation.

Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST),

glutamyl transpeptidase (GGT), and total bilirubin were significantly higher in HCC

patients than in controls, but total protein and platelets were significantly lower (Table

1).

Stool morphology and color were assessed prior to metagenome sequencing.

Except for one stool sample with an abnormal color in the HCC group, all stool

samples were yellow and soft, with no significant differences among the groups

(online Supplementary Table S2). To ensure the accuracy of the subsequent analysis,

the raw sequencing data from 134 stools (67 HCC, 33 LC, and 34 NC) were filtered

and assembled for statistical analysis and gene prediction (online Supplementary

Table S3).

After the removal of hemolyzed serum samples, a total of 132 serum samples (66

HCC, 32 LC, and 34 NC) were included in the analysis (online Supplementary Table

S1). The base peak chromatograms (BPC) of all QC samples overlapped, the

spectrum overlap was good, and the retention time and peak response intensity

fluctuated very little, indicating that the instrument was in good condition and that the

signal was stable throughout the entire sample detection and analysis (supplementary

online figure S2A). The ratio of compounds in the QC sample with a relative peak

area CV of less than or equal to 30% to the total number of compounds was higher

than 60%, indicating that the data quality was sufficient (online supplementary figure

S2B).

Intestinal flora structural changes in hepatocellular carcinoma.

We conducted statistical analyses of microbial abundance for each of the three

groups. The estimated species richness in each group was close to saturation

according to the rarefaction analysis (Figure 2A). The Chao1 indices of the different
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groups differed significantly at both the phylum and genus levels, whereas the

Shannon and Simpson indices differed significantly at the genus level but not at the

phylum level (online Supplementary Figure S3). At the species level (online

Supplementary Table S4), the Chao1 indices revealed that the community richness

differed significantly among the groups, with NC > HCC > LC (Figure 2B); Shannon

indices and Simpson indices demonstrated that the microbiome diversity of HCC and

LC was significantly lower than that of NC, with the diversity of HCC being higher

than that of LC (with no significance) (Figure 2C-D).

We investigated the structure of the intestinal flora communities of the three groups

(online Supplementary Table S5). Bacteroidetes, Firmicutes, and Proteobacteria

accounted for more than 90% of the total abundance and were the dominant phyla in

the three groups (Figure 2E). At the genus level, Bacteroides and Phocaeicola were

the most dominant in all three groups, with the relative abundance of Bacteroides

increasing and Phocaeicola decreasing in HCC and LC compared to NC (Figure 2F).

At the species level, except for Phocaeicola vulgatus, which had the highest

abundance in all three groups, the most abundant species in HCC were

Faecalibacterium prausnitzii (6.48%), Bacteroides fragilis (6.32%), and Bacteroides

thetaiotaomicron (5.35%), and in LC, they were Bacteroides fragilis (11.8%),

Bacteroides ovatus (6.14%), and Faecalibacterium prausnitzii (5.41%). Additionally,

the most prevalent bacteria in NC were Faecalibacterium prausnitzii (8.99%),

Bacteroides uniformis (6.51%), and Phocaeicola dorei (5.16%) (Figure 2G).

Additionally, Venn plots of the intergroup overlap showed that 5755 of the 6640

species found were shared by all three groups, while 274 species were found only in

HCC (Figure 2H).

Differential analysis of intestinal microbes

To compare the differences in fecal microbial communities between groups and to

identify microbes associated with HCC, Kruskal‒Wallis was performed on HCC, LC,

and NC, and microbes with a p value<0.05 and median relative abundance greater

than 0.01% of the total abundance were recognized as differential microbes. The
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results showed that a total of 4 phyla, 49 genera, and 86 species were identified (p <

0.05) (online Supplementary Table S6). The Wilcoxon rank-sum test was used to

compare the differences in microbes among the groups (online supplementary figure

S4A–C).

At the phylum level, the number of Verrucomicrobia was significantly higher in

HCC patients than in LC patients, whereas Cyanobacteria, Euryarchaeota, and

Uroviricota were lower in HCC patients than in NC patients (p<0.05) (online

Supplementary Table S7). At the genus level, 21 genera, including Roseburia,

Lachnospira, and Ruminococcus, were significantly higher in HCC than LC, while 42

genera, excluding Veillonella, were significantly lower in HCC than NC, including

Faecalibacterium, Alistipes, and Phaecolarctobacterium. (online Supplementary Table

S8). Correspondingly, 35 species, such as Phocaeicola vulgatus, Lachnospira eligens,

Bacteroides uniformis, and Ruminococcus bicirculans, differed between HCC and LC

(p<0.05). Compared to NC, except for Veillonella parvula, Veillonella sp. T1–7,

Veillonella atypica, and Veillonella dispar, which were significantly increased in

HCC, all 57 species (Phocaeicola dorei, Bacteroides uniformis, Faecalibacterium

prausnitzii, etc.) were significantly reduced (P<0.05) (online Supplementary Table

S9). Furthermore, we compared the bacterial differences between LC and NC at the

phylum and species levels, and the results are attached (online Supplementary Table

S7-9).

To identify the key gut microbiota, we used linear discriminant analysis (LDA) and

its effect size (LEfSe). After excluding species with relative abundances of less than

0.01%, the HCC, LC, and NC groups contained 2, 9, and 30 species, respectively

(Figure 3). Odoribacter splanchnicus and Ruminococcus bicirculans were

species-level potential biomarkers for the detection of HCC.

Serum metabolite changes in patients with hepatocellular carcinoma

Tumorigenesis is accompanied by a general change in the metabolite status of the

local tissue and circulatory system. Metabolites and fermentation products produced

by the intestinal flora can enter the bloodstream and impact the host's physiological
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functions. The metabolic profile in the serum was examined to investigate the

relationship between metabolites in the serum and HCC. We discovered 8,709

compounds, 2,934 of which were identifiable (online Supplementary Table S10).

Based on the abundance of metabolites detected by untargeted metabolomics, partial

least squares-discriminant analysis (PLS-DA) was performed (Figure 4A–B).

According to the scatter plot, the samples from HCC, LC, and NC were separable, and

the alignment test revealed that the data were not overfitted (Figure 4C–D) (in general,

the closer the slopes of the R2Y and Q2Y lines are to zero, the more likely the model

is overfitted). The PLS-DA analysis for LC versus NC is depicted in online

supplementary figure S5A-B.

PLS-DA yielded "Variable Important for the Projection" (VIP) values, with larger

values indicating a greater contribution of the variable to the subgroup. The following

criteria were used to screen biologically significant differential metabolites: 1) VIP

value≥1 for the PLS-DA's first principal component, 2) p value<0.05 for the t test, and

3) fold-change≥1.2 or ≤0.83. In HCC versus LC, HCC versus NC, and LC versus NC,

424, 823, and 825 differential metabolites were screened for biological significance,

respectively (online Supplementary Table S11). The differences in metabolism

between HCC and non-HCC were demonstrated using volcano plots (Figure 4E–F).

The volcano plots of LC versus NC are shown in online supplementary figure S5C.

To better understand the mechanism of differential metabolites implicated in the

pathogenesis of HCC, we performed metabolic pathway enrichment analysis on the

KEGG IDs of the differential metabolites. We considered metabolic pathways with p

values less than 0.05 to be significantly enriched in differential metabolites and

plotted bubble plots (Figure 5A-C) for these pathways (the metabolites on the

pathways are shown in online Supplementary Table S12). Bile secretion, cholesterol

metabolism, purine metabolism, caffeine metabolism, metabolic pathways, apoptosis,

and vitamin digestion and absorption were all significantly enriched in the HCC

versus LC comparison group. The pathways that were significantly enriched in the

HCC versus NC comparison group included caffeine metabolism, metabolic pathways,

bile secretion, cholesterol metabolism, primary bile acid biosynthesis, drug
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metabolism - other enzymes, prostate cancer, and porphyrin and chlorophyll

metabolism. In the LC versus NC comparison group, the differential metabolites were

involved in caffeine metabolism, bile secretion, cholesterol metabolism, primary bile

acid biosynthesis, metabolic pathways, porphyrin and chlorophyll metabolism, and

cysteine and methionine metabolism.

We discovered that the bile secretion, cholesterol metabolism, and caffeine

metabolism pathways are all associated with the progression of HCC. We focused on

three pathway-related differential metabolites involved in all three comparison groups

to find metabolomic markers: ouabain, taurochenodeoxycholic acid (TCDCA),

glycochenodeoxycholate (GCDCA), theophylline, and xanthine (online

Supplementary Table S13). We researched the expression of these metabolites in

various groups (Figure 5D–H). The findings revealed that the expression of ouabain,

TCDCA, and GCDCA was significantly lower in HCC than in LC but significantly

higher than in NC. Theophylline expression was significantly lower in HCC

compared to non-HCC, whereas xanthine expression was significantly higher in HCC

compared to NC.

Correlation analysis of metagenome and metabolome

We performed correlation analysis and joint analysis of serum and fecal matched

microbiome-metabolome data (65 in HCC, 32 in LC, and 34 in NC) to explore the

relationship between the microbiota and the serum metabolome. We calculated

Spearman correlation coefficients between different species and metabolites and

obtained a correlation coefficient matrix (online Supplementary Table S14), as well as

the top 20 differential species and metabolites with the smallest p values for each

omics, which were chosen for the heatmap (Figure 6A-B), and the results of LC

versus NC are shown in supplementary figure S6A.

We performed an association analysis of Odoribacter splanchnicus and

Ruminococcus bicirculans with differential metabolites to screen for key

species-associated serum metabolites and discovered 66 key species with significantly

associated metabolites in HCC versus LC and 45 in HCC versus NC (p < 0.05)
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(Online Supplementary Table S15). In both comparison groups, nine metabolites

showed significant associations with key species associated with HCC, including

three key metabolites (TCDCA, GCDCA, and xanthine) associated with HCC (Figure

7A).

By comparing the ROC curves between the separate modeling of different omics

and the combined data modeling, we evaluated which omics better separates HCC and

non-HCC, and we discovered that in HCC versus LC, merged > species > metabolites

with AUC values of 0.800, 0.708, and 0.696, respectively (Figure 7B). Metabolites >

merged > species had AUC values of 1.000, 0.944, and 0.582 for HCC versus NC,

respectively (Figure 7C). The results of LC versus NC are shown in Supplementary

Figure S6B.

Evaluation of the contribution of various panels to the prediction of HCC using

ROC curves

To evaluate the biomarker potential of HCC-related keystone species and

metabolites, we constructed a key gut microbiota (KGM) panel with Odoribacter

splanchnicus and Ruminococcus bicirculans and a key serum metabolite (KSM) panel

with ouabain, TCDCA, GCDCA, theophylline, and xanthine. We tested each panel's

ability to distinguish between HCC and non-HCC. Based on the relative abundance of

metagenome and untargeted metabolic profile assays, we divided the data from each

panel into a training set and a validation set, first building a random forest model for

the training set and then using this model to predict the validation set and construct

ROC curves. We perform 10-fold cross-validation and then averaged the resulting

ROC curve. The AUC values of the KGM panel for HCC versus NC and HCC versus

LC were 0.60±0.22 and 0.65±0.19, respectively (Figure 8A), whereas the AUC values

of the KSM panel for distinguishing HCC from NC and LC were 0.95±0.06 and

0.65±0.15, respectively (Figure 8B). It is also worth noting that the KSM panel did

surprisingly well to distinguish LC from the NC group (AUC: 0.93±0.12) (online

supplementary figure S5D). After that, we incorporated the KGM and KSM data into

the random forest model to develop the ROC curve. The AUC values of the
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KGM+KSM panel for HCC versus NC and HCC versus LC were 0.97±0.06 and

0.72±0.18, respectively (Figure 8C).

The clinical indicator alpha-fetoprotein (AFP) (cutoff value of 20 ng/mL) is

commonly used to aid in the diagnosis of HCC. To compare the efficacy of AFP and

our KGM+KSM panel in detecting HCC, we recorded AFP levels in all individuals

included in this study. According to our findings, the AUC values for the AFP panel

for HCC versus NC and LC were 0.75±0.19 and 0.70±0.19, respectively (Figure 8D).

In contrast, our KGM+KSM panel performed better than the AFP panel in terms of

diagnostic value. When KGM+KSM was combined with AFP to build the ROC curve,

the AUC values for distinguishing HCC from NC and LC improved slightly when

compared to the KGM+KSM panel, reaching 0.99 ± 0.02 and 0.76 ± 0.17,

respectively (Figure 8E). Furthermore, we created a KGMSM panel with 9

differential serum metabolites related to key species, which had significantly lower

potential as HCC markers than the KGM+KSM panel, with AUC values of 0.86 ±

0.14 and 0.53 ± 0.18 for HCC versus NC and HCC versus LC, respectively (Figure

8F).

Correlation of key species, key metabolites, and clinical indicators

We performed Spearman correlation on key metabolites and key species associated

with HCC, and the results revealed that ouabain, TCDCA, GCDCA, and xanthine had

a significant negative correlation with Odoribacter splanchnicus and Ruminococcus

bicirculans (Figure 9A–B). Meanwhile, we conducted a Pearson correlation analysis

of key species and key metabolites with AFP, liver function index, and immune cells

(Figure 9C–D). Odoribacter splanchnicus was found to be significantly and positively

correlated with AFP, white blood cells (WBCs), and leukocytes (LYs); GCDCA and

TCDCA were significantly and positively correlated with total bilirubin (TBIL) and

gamma-glutamyl transferase (GGT) but significantly and negatively correlated with

total protein (TP), platelets (PLTs), and immune cells such as LYs, indicating that

HCC-related metabolites were closely related to the deterioration of liver function in

HCC patients.
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DISCUSSION

Our findings confirmed changes in gut microbiota and serum metabolites in HCC

patients. We created panels of key species and key metabolites associated with HCC

as potential markers of HCC, both individually and in combination, and then tested

the diagnostic value of each panel for HCC. We also compared the two omics to

assess the diagnostic performance of different omics alone and in combination. The

control group consisted of individuals who underwent a physical examination at

Nanjing's Second Hospital, whereas the HCC patients were newly diagnosed patients.

We screened study participants for pharmacological factors such as anticancer drugs

and antibiotics to rule out any interference with changes in the intestinal flora. We

discovered differences in gut microbial composition and structure among NC, HCC,

and LC and discovered that the diversity of fecal microbes decreased in that order,

which is consistent with previous research (40).

Fecal Bacteroides are a sign of a healthy gut because they break down

polysaccharides and oligosaccharides and give nutrients and vitamins to the host and

other intestinal microbes (41). Bacteroides acidifaciens in the mouse intestine

alleviated liver injury by reducing hepatocyte apoptosis in a cd95-dependent manner,

according to one study (42). However, it was discovered in another study on the

combined gut microbial and transcriptomic analysis of HCC patients that the extent of

tumor load was positively correlated with the abundance of Bacteroides, which caused

adverse clinical outcomes via increased serum bile acids (43). Furthermore,

Bacteroides has been shown to be a drug target for certain herbal and anticancer drugs

in the treatment of HCC, although whether by increasing or decreasing it remains

debatable. The Shaoyao Ruangan Mixture, for example, may have antihepatocellular

effects by increasing Bacteroides, whereas nimbolide has antihepatocellular effects by

decreasing Bacteroides (44, 45). We hypothesize that these disparities are due to

differences in animal and human flora, subject selection criteria and heterogeneity, or

16S rRNA sequencing limitations. The detection of species levels is also limited by

16S rRNA sequencing, and while some microbes may maintain dynamic equilibrium
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at the genus level, species levels within the genus have different effects on disease

susceptibility. Our metagenome sequencing results revealed that differential species

under the Bacteroides branch, such as Bacteroides_sp. HF-5287, Bacteroides_sp.

A1C1, Bacteroides_sp. CACC_737, Bacteroides_sp. PHL_2737,

Bacteroides_intestinalis, Bacteroides_uniformis, and Bacteroides_cellulosilyticus

were all higher in the NC group than in the other two groups and were also important

markers to distinguish the healthy group from the other two groups.

Veillonella was found to be associated with autoimmune hepatitis (AIH), primary

biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), HBV infection, and

alcoholic hepatitis, among other liver diseases that are highly correlated with liver

function indicators and liver inflammation, according to previous research (46, 47).

Veillonella was also found to be positively related to AFP, a clinical indicator of HCC

(48). This is consistent with our findings that, with the exception of Veillonella

parvula, Veillonella sp. T1–7, Veillonella atypica, Veillonella dispar, and most key

species differing in HCC and LC had a decreasing trend compared to NC. We also

discovered that these four species were more abundant in LC than in HCC, which is

consistent with the findings of a study on the gut flora of HBV-associated early HCC

and LC (49). It is worth noting that the LEfSe analysis results indicate that these four

species have the potential to diagnose LC.

Furthermore, Ruminococcus bicirculans and Odoribacter splanchnicus were

identified as potential species-level microbial markers for the diagnosis of HCC in the

LEfSe analysis. Ruminococcus's benefits and drawbacks are debatable. It has been

proposed that it is a probiotic that could benefit HCC patients receiving anti-PD-1

immunotherapy as well as combat the anxiety and fear associated with cancer

treatment and recurrence (50, 51). Ruminococcus, on the other hand, was strongly

associated with some diseases and significantly enriched in patients with thyroid

cancer, endometrial cancer, and clear cell renal cell carcinoma, and it may serve as a

biomarker for clinical features and prognosis and provide a new therapeutic target for

clinical treatment (52, 53, 54). We discovered that the relative abundances of
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Ruminococcus and Ruminococcus bicirculans in HCC were significantly lower than

those in NC but significantly higher than those in LC.

In contrast, Odoribacter splanchnicus, another potential HCC marker, is widely

regarded as a probiotic that can be used in fecal transplantation to treat disease (55).

Odoribacter splanchnicus was found to be age-enriched in centenarians, and it may

aid in health maintenance (56). Odoribacter splanchnicus was shown to be useful in

treating colitis and colorectal cancer by stimulating IL-6 and IL-1 production and

Th17 cell expansion (57). Odoribacter splanchnicus was found in this study to be

significantly lower in HCC and LC than in NC, and it is expected to be a new

therapeutic target for HCC.

Metabolic pathway enrichment analysis was performed using differential

metabolites to learn the mechanisms of the metabolic pathway changes in the different

groups. Bile secretion, cholesterol metabolism, and caffeine metabolism pathways

were found to be enriched in HCC versus LC, HCC versus NC, and LC versus NC,

which are closely related to HCC progression. Among the various endogenous

metabolites from the host intestinal flora that are synergistically metabolized, bile

acids have received increased attention due to their known pro-tumorigenic properties

(58, 59), which involve two important receptors: the farnesoid X receptor (FXR) and

the G-protein-coupled bile acid receptor (TGR5) (60). There is accumulating evidence

that bile acids play an important role in HCC. TCDCA and GCDCA were discovered

to be involved in the bile secretion and cholesterol metabolism pathways, and their

serum concentrations were both significantly different in pairwise comparisons,

suggesting that they could be used as clinical biomarkers. Previous research has

discovered that TCDCA not only causes oxidative stress in gastrointestinal tumors,

resulting in compensatory upregulation of TR mRNA (61), but it also reduces

expression of the tumor suppressor gene CEBP in HepG2 cell lines (62), which is

correlated with the risk of colon cancer and HCC (63, 64).

GCDCA is a significant human bile salt. GCDCA treatment of HepG2 cell lines

activates ERK1 and ERK2, induces phosphorylation of Mcl-1 at the T163 site and is a

potential carcinogen in the development of HCC (65). Meanwhile, in vitro and in vivo
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studies revealed that GCDCA activated autophagy in HCC cells and significantly

increased their invasive potential (66). These mechanisms may represent a novel

treatment for HCC. TCDCA and GCDCA were significantly higher in the HCC group

than in the NC group in our study.

Another important pathway involving theophylline and xanthine is caffeine

metabolism. In the majority of observational studies and meta-analyses, coffee

consumption has been linked to a lower risk of cancers such as colorectal (67), breast

(68), prostate (69), and liver cancer (70). Theophylline is a xanthine derivative that is

primarily eliminated by liver metabolism and is used to treat respiratory diseases such

as asthma. Studies have shown that increasing coffee consumption raises serum levels

of the metabolite theophylline, which has been shown to have anticancer activity and

a protective effect against cisplatin-induced GFR damage in patients with various

malignancies, although the precise mechanism is unknown (71, 72). Theophylline is a

natural substance that is easily accessible. It has the potential to be modified and used

as a scaffold structure for the creation of effective antitumor medications. Non-small

cell lung cancer (NSCLC) has been reported to be effectively treated with

theophylline derivatives containing 1,2,3-triazole rings (73). According to our

findings, theophylline was significantly reduced in patients with HCC.

Additionally, we discovered that 9 serum metabolites, including TCDCA, GCDCA,

and xanthine, were closely related to the previously screened key species Odoribacter

splanchnicus and Ruminococcus bicirculans and that the KGMSM panel constructed

from the 9 differential metabolites associated with the key species has some

diagnostic potential. The Spearman correlation test showed that ouabain, TCDCA,

GCDCA, and xanthine all had significant negative correlations with Odoribacter

splanchnicus and Ruminococcus bicirculans.

Previous research has shown that both gut microbes and serum metabolites have

great potential for disease diagnosis (40, 74). However, the causal relationship

between gut microbes and metabolites in HCC is unclear, and no articles have been

published that report on which is best for diagnosing HCC: gut microbes or

metabolites. ROC curves were used to assess each panel's potential contribution to
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predicting HCC, and we found that the KSM panel was superior to the KGM panel in

distinguishing HCC from non-HCC but it had an AUC value of less than 0.7 in

distinguishing HCC from LC. When we used the KGM+KSM panel for the diagnosis

of HCC, the AUC values for HCC versus LC (AUC > 0.7) and HCC versus NC

improved, indicating that the KGM+KSM panel is superior to the KGM panel and the

KSM panel as a potential marker for HCC. Using the best ROC results from separate

omics modeling versus combined data modeling, the AUCs for HCC versus LC and

HCC versus LC were 0.800 (merged) and 1.000 (metabolites), which are very close to

the corresponding AUC values of 0.72 and 0.97 for our KGM+KSM panel.

Furthermore, when the clinical indicator AFP was included in the panel, the AUC

values reached 0.76 and 0.99. Our findings suggest that our KGM+KSM panel could

be a promising, noninvasive HCC detection method.

It is worth noting that although the changes and associations of the microbiome and

metabolome in HCC were described in our study, which evaluated and compared

different panels as HCC markers, these results were not validated in a separate

population cohort. In the future, more and larger cohort studies will be needed.

Meanwhile, this study has some limitations. For starters, the prognosis is an

important aspect of disease research. We were unable to study the disease's prognosis

for the time being because it was not possible to follow all patients in the short term.

Second, the strict enrollment criteria resulted in a small number of patients being

enrolled. In the future, we hope to increase the sample size and conduct additional

studies through multicenter collaboration. Finally, we focused on two HCC-related

key species and five HCC-related key metabolites. We discovered their possible

involvement in HCC through pathway enrichment analysis, but this needs to be

validated in vivo and in vitro experiments, which is what we will do next. We hope

that our research will lead to new approaches to the diagnosis and treatment of HCC.

CONCLUSIONS

The intestinal flora and serum metabolism in HCC patients were studied. The

results imply that HCC could be caused by a mutual regulation of key species and key
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metabolites. A comparison of the diagnostic performance of the KGM, KSM, and

KGM + KSM panels and AFP suggested that HCC-related key species (Odoribacter

splanchnicus and Ruminococcus bicirculans) and key metabolites (ouabain, TCDCA,

GCDCA, theophylline, and xanthine) may be potential markers for the diagnosis of

hepatocellular carcinoma.
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Table 1. One-way analysis of variance was used to evaluate the differences among the

three groups. The Wilcoxon rank-sum test was used to compare the variables between

the two groups. BMI, body mass index; AFP, alpha-fetoprotein; ALT, alanine

aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase;

HBV, hepatitis B virus; HCC, hepatocellular carcinoma; LC, liver cirrhosis; NC,

healthy controls; NA, not applicable

Figure Legends

Figure 1. A schematic of the design and the experimental flow diagram. After a strict

pathological diagnosis and exclusion process, 68 patients with HCC, 33 patients with

cirrhosis, and 34 healthy controls were included at the Second Hospital of Nanjing,

Jiangsu Province, China. In total, 132 serum samples and 134 feces samples were

included in the analysis. We characterized the gut microbiome of 67 patients with

HCC, 33 patients with cirrhosis, and 34 healthy controls and identified the microbial

markers. To identify metabolite markers, we simultaneously characterized the serum

metabolites from 66 hepatocellular carcinomas, 32 cases of hepatic sclerosis, and 34

healthy controls. We used random forest analysis to assess the ability of various

marker combinations to distinguish the HCC cohort from the non-HCC cohort

(cirrhosis and healthy controls). We examined the link between the gut microbiota and

serum metabolites that changed significantly in HCC using serum- and fecal-matched

cohorts. HCC, hepatocellular carcinoma.

Figure 2. The gut microbiome community is divided into three groups. (A)

Rarefaction curves between the number of samples and the number of species. In all

samples, the number of species approached saturation. Fecal microbial alpha diversity

at the species level was estimated by the Chao1 index (B), Shannon index (C), and

Simpson index (D). * p < 0.05, ** p < 0.01, *** p < 0.001 (E) The top five

representative phyla and their proportions in each of the three groups. (E) The top 5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2022. ; https://doi.org/10.1101/2022.12.24.22283879doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.24.22283879
http://creativecommons.org/licenses/by-nc-nd/4.0/


representative phyla and their proportions among the three groups. (F-G) The top 30

representative genera and species, as well as their proportions in each of the three

groups. (H) A Venn diagram displaying group overlaps revealed that 274 of the total

richness of 6640 species were unique to HCC. The red circle represents HCC, the blue

circle represents LC, and the green circle represents NC.

Figure 3. Key species selection by linear discriminant analysis (LDA) effect size

(LEfSe). Differential microbial score chart: the higher the score, the greater the

contribution of the microbe to the difference.

Figure 4. Overview of altered serum metabolism in HCC (n=66) and non-HCC (LC

(n=32), NC (n=34)). (A-B) PLS-DA shows the differences between the groups'

metabolites. The abscissa (PC1) and the ordinate (PC2) are the two main coordinates

that explain the greatest difference between the samples. The number is the score of

the principal component, which represents the percentage of the explanation on the

overall variance of the specific principal component. The graph points represent

samples, and different colors represent various sample grouping information; similar

samples are clustered together. (C-D) The two rightmost points in the figure are the

actual R2Y and Q2 values of the model, and the remaining points are the R2Y and Q2

values obtained by randomly arranging the samples used. This result is mainly used to

judge whether the model is overfitting and the validity of the model. A volcano plot is

a graphical representation of differential metabolism. (E) Metabolites that differ

between HCC and NC. (F) Metabolites that differ between HCC and LC. Green

marks the downregulated differential metabolites, red marks the upregulated

differential metabolites, and metabolites without differences are labeled purple‒gray.

Figure 5. (A-C) Bubble plots of pathways with significant enrichment of differential

metabolites. The ordinate is the name of the metabolic pathway, and the abscissa is

the rich factor (rich factor = the number of differential metabolites annotated to the

pathway/all identified metabolites annotated to the pathway). The larger the rich

factor, the greater the proportion of differential metabolites annotated to the pathway.

The color from blue to red indicates that the p value decreases sequentially; the larger

the point, the more differential metabolites are enriched in the pathway. (D-H)
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Distribution of different metabolites in each group. *p < 0.05, **p < 0.01, ***p <

0.001.

Figure 6. The heatmap of the top 20 differential species and differential metabolites

with the smallest p values for every omics in HCC vs. non-HCC. Columns represent

the differential metabolites, and rows represent the differential species. The color

blocks represent the correlation coefficient. The darker the color, the stronger the

correlation between the different species and the different metabolites. Red represents

a positive correlation, and blue represents a negative correlation. * represents p<0.05,

** represents p<0.01.

Figure 7. Correlation analysis of the metagenome and metabolome. (A) Spearman

correlation network interaction diagram of the key species and differential metabolites.

Each point in the figure represents a species or a metabolite. The more lines there are

between the points, the more species or metabolites it may regulate. Green dots

represent species, red dots represent metabolites, red connecting lines between dots

are positive correlations, and green lines are negative correlations. The thickness of

the line represents the level of the correlation coefficient. (B-C) The ROC curves of

the random forest analysis of species and metabolism biomarkers. Random forest

ROC map of species and metabolomes (the ROC map of the metabolome is on the left,

the ROC map of species is in the middle, and the ROC map of the species and

metabolomes is on the right).

Figure 8. The ROC curves of a random forest analysis of different panels. KGM, key

gut microbes; KSM, key serum metabolites; KGMSM, key gut microbial-associated

serum metabolites. The abscissa of the ROC curve is the false-positive rate; the

ordinate is the true positive rate; the blue curve is the average curve after 10 folds; the

AUC is the area under the curve; the shaded region is the upper and lower 1 standard

deviation.

Figure 9. (A) Spearman correlation chord diagram of key species and key metabolites.

Species or metabolites are on the edge of the circle in the figure, and the connecting

line in the circle represents the correlation between the species and metabolites; red is

a positive correlation, and blue is a negative correlation. The darker the color or the
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thicker the line, the stronger the correlation. (C-D) Pearson correlation cluster

heatmap depicting the relationships between the key metabolites (ouabain, TTCDCA,

GCDCA, theophylline, and xanthine), the key species (Odoribacter splanchnicus and

Ruminococcus bicirculans) and the clinical indicators. WBC, white blood cell; LY,

leukocytes; GGT, gamma-glutamyl transferase; EOS, eosinophil; TP, total protein;

PLT, platelets; NE, neutrophilic granulocyte; TBIL, total bilirubin; MONO,

monocytes; BASO, basophil. Red indicates positive correlations, whereas blue

indicates negative correlations. *p < 0.05, **p < 0.01, ***p < 0.001

Supplementary figure S1. Experimental Workflow and Bioinformatic Analysis

Workflow. (A) DNBSEQ library construction and sequencing. We set up strict quality

control in each step in experimental workflow (such as sample processing, library

prepareation, and sequencing). (B) The bioinformatic analysis workflow for

metagenomics. High-quality reads assembly, gene prediction, gene de-redundancy

and subsequent abundance construction, as well as species/function differential

analysis.

Supplementary figure S2. Data Quality Control.(A) BPC overlay of QC samples.

BPC is a map that continuously depicts the intensity of the strongest ions in the mass

spectrum at each time point.The BPC of all QC samples were overlapped, the

spectrum overlap was good, and the retention time and peak response intensity

fluctuated little, indicating that the instrument was in good condition and the signal

was stable during the whole sample detection and analysis. (B) CV distribution of

compounds in each sample. The two lines perpendicular to the X axis in the figure are

20%, 30% CV reference line, and the line parallel to the X axis is 60% of the

reference line. Number of Compounds (CV<=30%): The number of compounds with

a relative peak area CV of 30% or less in the QC sample. Ratio: The ratio of the

number of compounds with a relative peak area CV less than or equal to 30% in the

QC sample to the total number of compounds detected. Ratio >=60%, the data quality

is qualified.
Supplementary figure S3. Alpha diversity at the phylum and genus level. *p < 0.05,
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**p < 0.01, ***p < 0.001
Supplementary figure S4. The Wilcoxon rank-sum test in HCC and non-HCC. (A)

At the phylum level. (B) At the genus level. (C) At the phylum level. Only the relative

abundance of top30 is given in the figure.

Supplementary figure S5. Serum metabolite changes in LC and NC. (A) PLS-DA

shows the differences between LC and NC. The abscissa (PC1) and the ordinate (PC2)

are the two main coordinates that explain the greatest difference between samples.

The number is the score of the principal component, which represents the percentage

of the explanation on overall variance of the specific pricipal component. The graph's

points represent samples, and different colors represent various sample grouping

information; similar samples are clustered together. (B) The two rightmost points in

the figure are the actual R2Y and Q2 values of the model, and the remaining points

are the R2Y and Q2 values obtained by randomly arranging the samples used. This

result is mainly used to judge whether the model is overfit and the validity of the

model. (C) Volcano Plot differ between LC and NC.Green is the down-regulated

differential metabolite (labeled green), red is the up-regulated differential metabolite

(labeled red), and metabolites without difference are labeled purple-gray. (D) The

KSM panel had AUC values of 0.93±0.12 in LC versus NC .KGM, key gut microbes;

KSM, key serum metabolites; ROC, receiver operating characteristic; The abscissa of

the ROC curve is the false positive rate, the ordinate is the true positive rate, the blue

curve is the average curve after 10 folds, the AUC is the area under the curve, and the

shaded region is the upper and lower 1 standard deviation.

Supplementary figure S6. (A) The heat map of top 20 differential species and

differential metabolites with the smallest p-values for every omics in LC vs. NC.

Columns represent the differential metabolites and rows represent the differential

species. The color blocks represent the correlation coefficient. The darker the color,

the stronger the correlation between the different species and the different metabolites.

Red represents positive correlation and blue represents negative correlation. *

represents p<0.05, ** represents p<0.01. (B) The ROC curves of Random Forest

analysis of species and metabolism biomarkers. Random forest ROC map of species
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and metabolome (ROC map of metabolome is on the left, ROC map of species is in

the middle, and ROC map of species and metabolome is on the right).
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