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Technical methodological details

The linear mixed model

In the mixed model framework, each year is considered a unit or cluster and weeks within a year are the
observational units. A linear mixed model involves the modeling of three components: the mean or fixed-
effects structure, the random-effects structure and the serial correlation structure. Using standard notation,
letYi denote the response vector (Ti×1) for year i (i = 1, 2, . . . ,M). Ti refers to the number of epidemiological
weeks of year i and M is the number of years in the historical data (M = 6 for years 2015-2020). For the
period considered, all years have 52 weeks except 2020 that has 53 weeks. However, for the mixed model, 2020
data from weeks 10 to 53 are considered missing since this is the pandemic period and the mixed model will
be used to predict baseline mortality under non pandemic circumstances. The LMM is

Yi = Xiβ + Zibi + εi, (1)

wherein Xi is the mean model matrix (Ti×p); β is the vector of fixed parameters (p×1); Zi is the model matrix
for the random terms (Ti × q); bi ∼ Nq(0; Di) is the year-specific random effects vector and εi ∼ NTi(0; Ri)
is the random measurement errors vector. As standard, bi and εi are assumed independent. There are many
choices for each part of the model. The columns of Xi could be indicators for weeks or could accommodate
some function of weeks, as a quantitative explanatory variable, selected from a wide class of functions. The
selected function should capture seasonal and trend effects. Other relevant covariates for explaining the mean
of death counts could be included as well. The columns of Zi depend on the required random components to
explain clustering and variability from year-to-year death patterns. The forms of the covariance matrices Di

and Ri should account for the variances and correlation patterns of the random terms and depend on other
parameters θi. Usually, it is assumed the random components share the same distribution among units, that
is, θi = θ, Di = D and Ri = R for i = 1, 2, . . . , 6, but that is not a requirement. In that case, θ is a qθ × 1
vector. For the model under these assumptions and further independence among all random terms, that is, D
and R = σ2I diagonal matrices, qθ = q + 1. The model in (1) implies that

E(Yi) = Xiβ and V(Yi) = ZiDZi
⊤ +R = Σi(θ) (2)

the so called marginal model (Zi
⊤ denotes the transposed Zi). Given the year-specific effects bi, we have the

conditional model,
E(Yi|bi) = Xiβ + Zibi and V(Yi|bi) = R (3)

responsible for predicting year-specific baseline mortality once the parameters are estimated. The bar ”|”
refers to the concept of conditional random variables, in this case mortality vector for year i conditioned on
year i specific effects bi.

Classical methods for estimation of the LMM parameters are Maximum Likelihood (ML) and Restricted
Maximum Likelihood (REML) [?, ?, ?]. It is known that, given θ, the β ML estimator can be obtained from
the generalized least squares formula (mixed model equations),

β̂ =

(
M∑
i=1

X⊤
i (Σi(θ))

−1Xi

)−1 M∑
i=1

X⊤
i (Σi(θ))

−1Yi (4)

which is the best linear unbiased estimator (BLUE) for β. Predictions for the random effects are also derived

b̃i = DZi
⊤(Σi(θ))

−1(Yi −Xiβ̂) (5)
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resulting in the best linear unbiased predictor (BLUP) for bi. Note that ̂ is used to imply the function is an
estimator of fixed parameters (population constants), while ˜ is used to refer the function is a predictor of a
latent variable.

For unknown θ, both parameter vectors can be estimated by ML using some iterative procedure, however,
rendering biased estimates for θ. REML, proposed by [?], is preferable since it accounts for the degrees of
freedom loss in the process of β estimation and is expected to yield less biased estimators for θ. Substituting
θ̂ in Eqs (4) and (5) results in the so called empirical BLUE and empirical BLUP, respectively.

Baseline death prediction intervals

Let β̂ be the empirical BLUE of β (Eq 4) and b̃6 be the empirical BLUP of b6 (Eq (5)i = 6 refers to 2020).
The 2020-specific conditional empirical best linear unbiased predictor from the final model was used as the
2020 baseline mortality. It is instructive to write the 2020 prediction vector in two parts, one for weeks 1-9
(pre-pandemic, data is available and used to fit the model), given by

ỹpre
6 |(b6 = b̃6) = Xpreβ̂ + Zpreb̃6, (6)

wherein pre stands for the part of the matrices referring to the pre-pandemic period. For weeks 10-53 (pandemic
period, no data are available) the predictions are

ỹpan
6 |(b6 = b̃6) = Xpanβ̂ + Zpanb̃6 + ε6pan, (7)

wherein pan refers to the pandemic period. For obtaining ỹpan
6 |b̃6 in (7) we substitute ε6pan by its best

predictor available, i.e the null vector, and the distinction between predictions formulae (6) and (7) is with
respect to their variances. The variance-covariance matrix of the complete predicted vector ỹ6|b6 is

V̂(ỹ6|b6) =

(
XpreV̂(β̂)X⊤

pre

XpanV̂(β̂)X⊤
pan + R̂pan

)
, (8)

wherein R̂pan is the block of the matrix R̂ with respect to weeks 10-53 and V̂(β̂) =
(∑M

i=1 X
⊤
i (Σi(θ̂))

−1Xi

)−1

is the first-order approximation estimator of the variance-covariance of β̂. Note that for the pandemic period,
we want to forecast non-observable mortality and variability due to the random measurement error should be
taken into account. The fitted model offers a forecast for week 53 since this time point is close to the upper
limit of the time range of the data used for the baseline modeling, e. g. extrapolation error is not a big issue
here. We need to accommodate R̂pan as well for week 53. Under the homogeneous errors assumption, which
we will see the data show no violation, this is easy do deal with.

For the year 2021 (i = 7), no non-pandemic data is observable and there is no prediction of the year-specific
effect. Thus, ỹ7|b7 is

ỹ7|b7 = Xβ̂ + Zb7 + ε7, (9)

and the best predictors for both, b7 and ε7, are zero, from the assumed model. Then, the variance-covariance
is

V̂(ỹ7|b7) = XV̂(β̂)X⊤ + ZD̂Z⊤ + R̂. (10)

For prediction intervals (PI), standard errors (ŝeit) are estimated by the squared root of the diagonal elements
of (8) and (10). Approximate 95% PI’s are calculated using the standard method (Normal approximation):

PI(yit|bi; 95%) = [ỹit|bi − 2× ŝeit; ỹit|bi + 2× ŝeit] . (11)

Modeling by GEE

Prediction Accuracy

To assess the prediction accuracy of the LMM we used the square root of forecast error (RMSE) and the mean
absolute percentage error (MAPE). For this task, we used data from 2010-2019 such that for each year i in
turn, from 2015 to 2019 (i = 1, 2, . . . , 5), we fitted each model being compared using data from the previous
five-year history and the 9 first weeks of year i. Then, for year i, we obtained forecasts for t = 10, 11, . . . , 52
and evaluated: We used the following statistics to evaluate the forecasting accuracy of the alternative models:
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1. Mean Error

MEi =
1

43

52∑
t=10

eit (12)

2. Mean Absolute Error

MAEi =
1

43

52∑
t=10

|eit| (13)

3. Root Mean Squared Error

RMSEi =

√√√√ 1

43

52∑
t=10

e2it (14)

4. Relative Root Mean Squared Error

RRMSEi = 100×

√∑52
t=10 e

2
it∑52

t=10 yit
(15)

5. Mean Absolute Percentage Error:

MAPEi =
100

43
×

52∑
t=10

|eit|
yit

(16)

6. Mean Percentage Error:

MPEi =
100

43
×

52∑
t=10

eit
yit

(17)
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