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Abstract 
 
A primary aim of precision psychiatry is the establishment of predictive models linking individual 
differences in brain functioning with clinical symptoms. In particular, cognitive impairments are 
transdiagnostic, treatment resistant, and contribute to poor clinical outcomes. Recent work suggests 
thousands of participants may be necessary for the accurate and reliable prediction of cognition, calling 
into question the utility of most patient collection efforts. Here, using a transfer-learning framework, we 
train a model on functional imaging data from the UK Biobank (n=36,848) to predict cognitive 
functioning in three transdiagnostic patient samples (n=101-224). The model generalizes across datasets, 
and brain features driving predictions are consistent between populations, with decreased functional 
connectivity within transmodal cortex and increased connectivity between unimodal and transmodal 
regions reflecting a transdiagnostic predictor of cognition. This work establishes that predictive models 
derived in large population-level datasets can be exploited to boost the prediction of cognitive function 
across clinical collection efforts.   
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Introduction 
 
A key goal of precision psychiatry is the development of predictive models that provide personalized and 
robust estimates of clinically relevant phenotypes that can be used for prognostic and treatment decision 
making. To achieve clinical utility, these models must be accurate, and generalize across samples, 
diagnoses, measurement methods, and data-processing strategies. A primary barrier to progress in this 
area has been the historical use of small sample sizes, which has resulted in inflated prediction accuracies 
that largely fail to generalize across samples, populations, or collection sites1-3. Here, we demonstrate a 
modelling strategy that uses objective measurements of brain function to robustly predict global cognitive 
function across multiple transdiagnostic samples, yielding generalizable models between cohorts despite 
modest sample sizes. The models also simultaneously provide interpretable insight into the neurobiology 
of global cognitive functioning in common psychiatric illness. 
 
Impaired cognitive functioning is a transdiagnostic characteristic of psychiatric illness4-6. It is difficult to 
treat7,8, strongly predicts social, occupational and functional impairment9-11, and is widely regarded by 
patients as a key priority for treatment12,13. Performance on cognitive tasks has repeatedly been linked to 
the structural and functional integrity of regions within transmodal association cortices. These regions are 
responsible for the integration of multiple sources of interoceptive and exteroceptive information and 
believed to underpin “higher-order” associative processes which support cognition untethered from 
immediate sensory inputs14-16, including adaptive goal-directed behavior17, the application of complex 
rules18, and the dynamic control of motor outputs19. Across patient populations, converging evidence 
suggests the presence of altered functioning within the large-scale systems that comprise association 
cortex6,20-24. In particular, impaired connectivity within the default network, encompassing aspects of 
medial prefrontal, posterior/retrosplenial, and inferior parietal cortices, has been observed across 
diagnostic categories20,25-28, while the level of dysconnectivity in the frontoparietal network, 
encompassing aspects of the dorsolateral prefrontal, dorsomedial prefrontal, lateral parietal, and posterior 
temporal cortices29 often tracks the severity of diagnoses and observed cognitive deficits30-32. However, 
despite the importance of establishing network-level predictors of symptom severity, the extent to which 
individual-specific profiles of brain functioning track clinically relevant cognitive impairments remains to 
be determined. 
 
Inter-regional functional coupling of hemodynamic signals measured with functional Magnetic 
Resonance Imaging (fMRI), here termed functional connectivity, has recently emerged as a powerful and 
robust predictor of global cognitive functioning in healthy populations33-37. However, population 
neuroscience studies suggest that sample sizes exceeding thousands of participants may be required to 
develop accurate and stable brain-based predictive models of behavior2,38-40. This requirement far exceeds 
the vast majority of samples available to psychiatric research groups, calling into question both the utility 
and feasibility of developing clinically focused predictive models. Moreover, even brain-cognition 
predictive models derived from consortia-level samples can fail to generalize or show substantially 
reduced accuracy when applied to different datasets2,38,41-43, greatly diminishing the scope of their 
potential applications. In large population-based cohorts, the functioning of specific brain systems can be 
leveraged to predict a broad variety of phenotypes, ranging from demographic factors to physical and 
mental health-related variables44-47. The associated brain-based models, which are derived from tens of 
thousands of healthy individuals, likely contain information that could be translated to smaller clinical 
cohorts, allowing for the prediction of illness- and treatment-relevant phenotypes. In this regard, a 
recently developed framework called ‘meta-matching’47 capitalizes on the fact that a limited set of 
overlapping functional circuits are associated with a wide variety of phenotypes and uses high throughput 
population-based collection efforts to boost predictions of phenotypes in smaller cohorts. Using this 
framework, we have previously demonstrated a substantial increase in prediction accuracies for a board 
range of variables in population-based healthy samples47. However, the extent to which the meta-
matching approach can improve prediction of clinically relevant behaviors in small independent patient 
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samples, yield generalizable predictions, and generate neurobiological insight, all remain to be 
determined.  
 
Here, we use the meta-matching framework to develop an accurate, generalizable, and interpretable 
transdiagnostic model of global cognitive functioning in across a diverse set of psychiatric illnesses. We 
find that across multiple distinct datasets, the meta-matching model results in prediction accuracies that 
are statistically significant, superior to conventional models, and comparable to those observed in much 
larger population-level studies. Moreover, the derived models are generalizable, meaning that they 
maintain performance across independent datasets. The functional networks that drive prediction across 
the datasets consistently implicate increased connectivity within transmodal association networks and 
decreased connectivity between transmodal and unimodal cortices as a fundamental, transdiagnostic 
predictor of global cognition.   
 
Results 
 
Accurate and generalizable prediction of global cognitive functioning across psychiatric populations 
 
Our overall aim was to develop an accurate and generalizable brain-based model that can predict global 
cognitive functioning in patients with psychiatric illness. To this end, we applied the recently developed 
meta-matching framework, which capitalizes on the fact that a limited set of overlapping functional 
circuits are associated with a wide variety of health, cognitive and behavioral phenotypes47. First, we used 
resting-state fMRI data from 36,848 participants from the UK Biobank to derive functional connectivity 
estimates between 419 brain regions (48,49). Next, we used these connectivity values to train a single fully 
connected feed-forward Deep Neural Network (DNN) to predict 67 observed health, cognitive and 
behavioral phenotypes in the UK Biobank.  
 
Using the meta-matching approach47, we then adapted this trained DNN (from the UK Biobank) to predict 
global cognitive function scores in three independent transdiagnostic clinical datasets: 1) the Human 
Connectome Project Early Psychosis (HCP-EP; n = 145), which includes individuals diagnosed with 
affective and non-affective psychosis; 2) the Transdiagnostic Connectomes Project (TCP; n = 101), which 
largely includes individuals diagnosed with mood and anxiety disorders; and 3) the Consortium for 
Neuropsychiatric Phenomics (CNP; n = 224), which is comprised of individuals diagnosed with 
schizophrenia, bipolar disorder or ADHD. All three samples also included a subset of healthy participants 
without psychiatric diagnoses. For a full demographic and diagnostic breakdown of the samples, see 
supplementary Table 1. Global cognitive function scores were derived for each clinical dataset using 
principal component analysis on a range of neuropsychological tests (see supplementary Table 2). Of note, 
the test batteries varied across datasets, allowing for the assessment of model robustness to study design 
and associated phenotype selection. For details about the meta-matching approach, please see Methods in 
the current manuscript.  
 
Our first aim was to determine whether the meta-matching approach can make accurate and statistically 
significant predictions within clinical samples. For each dataset, we trained the meta-matching model 
using a nested cross-validation procedure, where each clinical sample was split into 100 unique training 
(70%) and test (30%) sets and the full meta-matching model was implemented for each train/test split. 
Accuracy was assessed as the mean Pearson correlation between the observed and predicted global 
cognition scores across the 100 test sets and statistical significance was assessed using a permutation 
testing procedure (see Methods for details). As shown in Fig1B, the meta-matching approach yields 
statistically significant predictions (all �� �  0.05 ) across all three datasets, with mean prediction 
accuracies comparable to those found using much larger healthy samples50. We find the same pattern of 
results when using the coefficient of determination to evaluate model accuracy (SFig1). Further, we 
establish that the meta-matching models systematically perform better than a standard prediction method, 
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where a baseline comparison model was trained to predict cognition directly from the clinical sample 
functional connectivity values, with the difference between comparison and meta-matching models 
reaching statistical significance (all �� � 0.05).  
 
Our second aim was to determine whether the meta-matching model generalizes across independent 
clinical collection efforts. Generalizability was assessed as the Pearson correlation between the observed 
and predicted global cognition scores when a model was trained in one dataset and tested on another 
dataset. Here, we trained the meta-matching model on the full sample of one dataset, and evaluated 
prediction accuracy on the other, resulting in six train-test prediction pairs between the three clinical 
datasets. Reflecting the presence of generalizable brain-behavior relationships across independent clinical 
cohorts, we observed that the meta-matching model generalizes across datasets (Fig1C) and reached 
prediction accuracies both comparable to the mean in-sample accuracies shown in Fig1B, and statistically 
significant for all but one train/test pair (train/test: HCP-EP/TCP). In all cases except this same train/test 
pair, higher generalizability was found when using the meta-matching model, compared to a standard 
prediction mode, with boosts in prediction accuracy ranging from 7% to 291% (SFig2). Scatterplots of 
observed and predicted values are provided in SFig3. We note that the meta-matching model generalized 
between datasets, where in addition to differences in diagnostic makeup, MRI scanner and acquisition 
parameters, cognition between each train-test pair were measured using different neurocognitive 
assessments, ranging from at-home online tests to gold-standard clinician-administered batteries.  
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Fig1 – Accurate and generalizable prediction of global cognitive functioning across patient samples. 
A) The network organization of the human cortex. Colors reflect regions estimated to be within the same 
functional network according to the 17-network solution from Yeo, et al. 51 across the 400-parcel atlas 
from Schaefer, et al. 48, along with nineteen subcortical regions49. Cortical parcels and subcortical regions 
are used to extract BOLD timeseries and compute pair-wise functional connectivity estimates used for 
prediction. B) Prediction performance (Pearson’s correlation between observed and predicted values) 
using kernel ridge regression (red) and meta-matching (blue) across three transdiagnostic datasets: Human 
Connectome Project – Early Psychosis (HCP-EP), Transdiagnostic Connectomes Project (TCP) & UCLA 
Consortium for Neuropsychiatric Phenomics (CNP). Colored asterisks denote above-chance prediction 
�	 
  � � 0.05; 		 
  � � 0.001; 			 
  � � 0.0001;  
� 
  � � 0.05 ) and black asterisks denotes 
statistically significant difference between models. C) Generalizability matrix for the meta-matching 
models, showing the prediction accuracy between the independent samples where the meta-matching 
model is trained in one dataset and then used to make predictions in an independent dataset. The diagonal 
represents the mean prediction performance within each dataset, which is also represented by the black 
dots in panel B.  
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Predictive network features are stable across independent transdiagnostic datasets  
 
We next determined the extent to which the neurobiological features that drive the predictions are shared 
between datasets. Predictive feature weights were derived using the Haufe transformation52. This 
transformation considers the covariance between functional connectivity and global cognition scores and, 
unlike regression coefficients, ensures that feature weights are not statistically independent of global 
cognition. It also increases both the interpretability and reliability of predictive features52-54. For each of 
the three datasets, we examined associations between average weights across the 100 cross-validation 
folds, at spatial scales of edges, regions, and networks. The edge-level spatial scale refers to the original 
87,571 inter-regional pair-wise connections entered in the prediction models. By taking the mean of all 
edges attached to each of the 419 brain regions, edge-level connections can be aggregated into region-
level predictive features. By taking the mean of all edges within and between 18 canonical functional 
networks including the subcortex (Fig1A; 48), edges-level connections can also be aggregated into 171 
network-level predictive features. For both aggregated scales (region- and network-level), positive and 
negative feature weights were considered separately by zeroing negative or positive values before 
averaging, respectively. 
 
When assessing associations between brain maps, spatial autocorrelation must be considered to ensure 
that any observed associations are not driven by low-level spatial properties of the brain55. This same 
consideration extends to associations between edge-level network maps, where connectively profiles of 
spatially adjacent regions demonstrate autocorrelation. To account for this property in the data we 
implemented a spin-test, which is a standardized procedure where the cortical regions of the atlas are 
rotated on an inflated sphere to generate configurations which preserve the spatial autocorrelation pattern 
of the cortex. We used these null atlas configurations to shuffle the rows and columns of the feature 
weight matrices to assess statistical significance of correlations between datasets. 
 
Even after accounting for spatial autocorrelation, we find significant correlations across all three spatial 
scales (Fig2A-C). At the edge-level (Fig2A), we find low to moderate consistency between datasets, with 
the strongest correlation observed between the TCP and HCP-EP datasets (� 
 0.31,  ����� � 0.001) and 
the TCP and CNP datasets �� 
 0.29, ����� � 0.001�, with the CNP and HCP-EP datasets showing the 
weakest association �� 
 0.14, ����� � 0.001� . At the region-level (Fig2B), we again find low to 
moderate consistency between datasets, with the strongest associations between datasets when examining 
negative feature weights ��� 
 0.23 � 0.56; ������ � 0.001� , indicating that regions where lower 
functional connectivity predicts better cognition are more highly related between datasets, relative to 
regions where higher functional connectivity predicted better cognition ��� 
 0.01 � 0.24;  ������ �

0.001 �  .998� . The comparison between negative regional predictive features showing greater 
consistency between datasets than positive features was statistically significant for all three pairs of 
datasets ��� 
 –2.60 � 5.97, ������  �  0.009� . At the network-level (Fig2C), we find the strongest 
overall consistency between datasets with moderate to high effect sizes observed when examining 
positive feature weights (r 
  0.54 to 0.70; ������ � 0.001�, indicating that network-level connections 
where lower functional connectivity predicts better cognition are strongly related between datasets, 
relative to network-level connections where higher functional connectivity predicted better cognition 
(r 
  0.19 � 0.58; ������ 
 � 0.001 � 0.250�. The comparison between negative regional predictive 
features showing greater consistency between datasets than positive features was statistically significant 
for all three pairs of datasets ��� 
 2.88 � 5.75, �� �  0.004� . Aggregating functional connectivity 
values at the canonical network-level capitalizes on the intrinsic functional architecture of the brain, with 
network-level brain function consistently being shown to have higher reliability56,57 compared to edge- 
and region-level measures. Therefore, aggregating features at the network-level may provide a more 
coherent signal than individual edge-level features, which may obscure associations between both 
individuals and datasets. 
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Fig2 - Predictive features are correlated between independent transdiagnostic datasets across scales. A) 
Association between Human Connectome Project – Early Psychosis (HCP-EP), Transdiagnostic 
Connectomes Project (TCP) & UCLA Consortium for Neuropsychiatric Phenomics (CNP) prediction 
model feature weights at the edge-level, which consist of 87,571 features per model. B) Association 
between feature weights of the three datasets at the region-level, where feature weights were averaged for 
all edges corresponding to a region, resulting in 419 regional features. Positive (red) and negative (blue) 
feature weights were considered separately by zeroing negative or positive values before averaging, 
respectively. All p-values displayed account for spatial autocorrelation between edges, regions, and 
networks. C) Association between feature weights of the three datasets at the network-level, where 
feature weights were averaged within and between each network, resulting in 171 network features per 
dataset. Positive and negative feature weights were considered separately by zeroing negative or positive 
values before averaging, respectively. 
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Increased connectivity within transmodal systems and decreased connectivity between transmodal and 
unimodal systems predicts better cognitive functioning 
 
Given that predictive features were most stable between datasets at the network-level, we examined the 
functional architecture of inter/intra-network connections driving prediction performance (Fig3A-C). In 
all three datasets, we observed a consistent, widespread, and complex pattern of network-level feature 
weights (Fig3B; ���� � 0.05� . In line with prior work which reliably links functional coupling in 
transmodal association networks with cognition24,58,59, we find that brain-cognition relations converge on 
connections where higher functional connectivity within transmodal (default, frontoparietal and ventral 
attention) networks and lower functional connectivity between transmodal and unimodal (visual and 
somato/motor) networks predict better cognition (Fig3C). We also find that connectivity within the 
frontoparietal subnetwork A, encompassing aspects of dorsolateral prefrontal, lateral parietal, medial 
cingulate and posterior temporal cortices, was the strongest predictor of cognitive performance across 
datasets. More broadly, we find that in each of the three datasets, increased connectivity within unimodal, 
transmodal, as well as all aggregated cortical networks was predictive of better cognition (Fig 4).  
 
To provide an increasing level of granularity, we also examined the network-level architecture of regional 
predictive features (Fig 5A). The strongest positive predictive regions for the HCP-EP dataset were the 
left cerebellar, right dorsal prefrontal and temporoparietal cortices and the negative predictive regions 
were right post-central and visual extrastriate cortices. For the TCP dataset, the strongest positive 
predictive regions included the right parahippocampal and left intra-parietal cortices and negative 
predictive regions included the right intra-parietal, anterior temporal and precuneus regions. For the CNP 
dataset, positive predictive regions included the bilateral hippocampus, right temporoparietal and 
dorsolateral prefrontal cortices and negative predictive regions were right post-central gyrus, 
somatomotor and left visual extrastriate cortex. While there was some heterogeneity in region-level 
predictive features, when these were aggregated into canonical networks (Fig 5B), across all datasets the 
strongest positive drivers of prediction performance were regions in transmodal temporoparietal, default, 
and frontoparietal networks. The strongest negative drivers also included the frontoparietal, dorsal 
attention, limbic and primary sensory regions, with the prominence of the frontoparietal network 
characterized by lower connectivity to sensory networks (Fig3C). We provide non-aggregated region-
level distributions for each dataset individually, as well as distributions using a 7-network solution51 in the 
supplement (SFig5).  
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Fig 3 - Increased within transmodal and reduced between network coupling is predictive of better 
cognitive functioning. A) Predictive feature matrices for each of the three datasets: Human Connectome 
Project – Early Psychosis (HCP-EP), Transdiagnostic Connectomes Project (TCP) & UCLA Consortium 
for Neuropsychiatric Phenomics (CNP), averaged within and between network blocks. Non-averaged data 
is provided in the supplement (FigS5). Red=positive predictive feature weight (stronger coupling predicts 
better cognition); blue = Negative predictive feature weight (weaker coupling predicts better cognition). B) 
Top 10% of FDR corrected predictive network connections for each dataset are displayed in Circos plots. 
C) Left: Circos plot showing the connections which survive multiple-comparison correction in a 
conjunction analysis across the three datasets. Top right: Heat map of conjunction analysis results 
aggregated into a 7-network and subcortex atlas solution. Bottom right: mean feature weights from the 
conjunction analysis categorized into within and between transmodal and unimodal networks. Sub = 
Subcortex; TempPar = Temporoparietal; DorsAttn = Dorsal Attention; VentAttn = Ventral Attention; 
SomMot = Somatomotor.  
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Fig 4 – Increased within and decreased between system coupling predicts better cognition across 
datasets. Average predictive feature weights within (grey) and between (black) unimodal and transmodal 
cortical, subcortical, regions across the three datasets. Human Connectome Project – Early Psychosis 
(HCP-EP), Transdiagnostic Connectomes Project (TCP) & UCLA Consortium for Neuropsychiatric 
Phenomics (CNP). Error bars represent standard error around the mean. Unimodal networks include all 
visual and somatomotor networks, and transmodal networks include default, control, ventral attention, 
dorsal attention, limbic and temporoparietal networks.  
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Fig5 – Predictive features at the regional-level. A) Regional feature weights projected onto cortical and 
sub-cortical regions. Average positive (red) and negative (blue) feature weights are shown separately for 
each of the three datasets. Human Connectome Project – Early Psychosis (HCP-EP), Transdiagnostic 
Connectomes Project (TCP) & UCLA Consortium for Neuropsychiatric Phenomics (CNP). B) Positive 
(left) and negative (right) distributions of regional feature weights from all three datasets aggregated into 
17-networks and subcortex and ordered by strongest to weakest mean predictive feature weight.   
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Discussion 
 
Constructing robust models that reliably predict clinical symptoms from objective brain markers has 
previously required sample sizes exceeding most current collection efforts. Here we provide a proof of 
concept and define an associated roadmap for the generation of brain-based predictions in clinical 
populations. Critically, the models reported here are generalizable, maintaining prediction accuracy when 
trained in one dataset and tested on another, even when the datasets are independent and differ in their 
collection sites, demographic and diagnostic makeup, measures of global cognition, imaging acquisition 
sequences, and data-processing methods. The neurobiological features which drive prediction accuracy 
were most consistent between datasets at the scale of canonical functional networks rather than individual 
brain regions or edges. In line with previous hypotheses concerning the neurobiological substrates of 
cognition14,15,19, our findings converge on a global cognition predictive network where increased coupling 
within transmodal and the decreased coupling between transmodal and unimodal networks are linked with 
better cognition across transdiagnostic samples.  
 
Widespread cognitive impairments are a core feature of common psychiatric illness, often presenting 
prior to illness onset60,61, and contribute to impaired social and occupational functioning9-11. Leveraging 
the meta-matching framework, we demonstrate that it is possible to achieve predictions of global 
cognitive functioning comparable to accuracies observed in the current state-of-the-art for the field, using 
sample sizes that are much smaller than those that have recently been recommended for deriving stable 
and generalizable brain-based predictions38,40. A particular advantage of our approach is that it yields 
discoveries that generalize across both healthy controls and common psychiatric disorders. By combining 
multivariate predictive models with transfer learning approaches like meta-matching, we provide a 
framework to leverage high-throughput population-based cohorts to boost predictive power in smaller 
datasets.   
 
For a brain-based prediction model to have true clinical utility, it should be robust to sample 
characteristics, measurement methods, and data processing choices. This would allow a given approach to 
be deployed without overwhelming practical demands on the users, such as strict measurement and 
processing guidelines. Here we demonstrate that the meta-matching model generalizes not only across 
diagnostic categories, but also between independent datasets relying on different measures of cognition, 
neuroimaging protocols, and data processing strategies. Usually, models trained in one dataset lose much 
of their predictive capacity when applied to an independent dataset, even when the two datasets are 
diagnostically or demographically similar2,38,41-43. The meta-matching approach likely achieves this high 
level of generalizability by exploiting correlations amongst phenotypes, relying on a common set of 
neurobiological features which predict a broad range of behaviors that underlie an individual’s global 
cognitive performance, independent of diagnosis or measurement methods.  
 
While we find commonality in neurobiological features driving prediction performance between the 
independent datasets at all spatial scales, the strongest correspondence was detected at the network level. 
Analogous to genetics, where broadening the spatial scale from single nucleotide polymorphisms to gene 
pathways results in more stable associations with complex behavior, we find that broadening the spatial 
scale from inter-regional edge-level connections to canonical networks results in stable associations. The 
similarity of neurobiological features at the network-level aligns with a large literature of explanatory 
studies implicating macro-scale networks as the primary unit-of analysis for complex behavioral traits62,63, 
as opposed to isolated regions or individual circuits, and evidence that the individual heterogeneity of 
patients assigned the same diagnosis is greatly attenuated when aggregating results across functional 
circuits and networks rather than brain regions23. Moreover, the consistency we observed between 
datasets suggests that the meta-matching model is likely making predictions by indexing a common 
neurobiology closely associated with cognitive function. In line with this hypothesis, we find that the 
connectivity of transmodal association networks, including the default mode and frontoparietal networks, 
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is the most prominent driver of prediction accuracy. Specifically, increased connectivity within 
association networks, and decreased connectivity between these networks and visual and somatomotor 
sensory networks are associated with better cognition. This finding converges with decades of empirical 
work suggesting the activation and integrity of association networks is a critical driver of complex 
cognition15,19,24.  
 
There are some limitations in the current work. While being able to make accurate and generalizable 
predictions of an observed phenotype such as cognition suggests the potential for clinical applications, 
future work should seek to develop models that can provide guidance on longitudinal outcomes. Such 
outcomes would include change in cognition, such as illness related decline, response to medications, and 
transitions to severe illness. As large-scale population based longitudinal data becomes available, the 
meta-matching framework can be adapted to predict symptom change and illness course, which could 
hold enormous clinical utility for psychiatry. Moreover, in our analyses we focused on global cognition, 
which can be reliably measured and is constantly impaired across common psychiatric diagnoses, and the 
assessment and treatment of cognitive changes closely align with patient goals.  However, there are 
subcomponents of cognition which may be more impaired or less impaired across populations and future 
work should attempt to predict the results of more specialized neurocognitive assessments targeting 
constructs like working memory, processing speed or attention. Finally, in determining the features which 
are most relevant for predicting of cognition, we implemented the Haufe-transformation, which enhances 
both reliability and interpretability of feature weights. The transformation was initially designed for linear 
models and has not been extensively tested in non-linear and deep learning models. Nonetheless, we have 
previously demonstrated that the results of the transformation when using deep learning models in the 
prediction process are highly comparable to results using only linear models47.  
 
By translating predictive models derived in large community-based datasets, we can make accurate and 
generalizable prediction of global cognition in transdiagnostic patient populations. The accuracy of these 
models is driven by increased coupling within transmodal networks and decreased coupling between 
transmodal and sensory networks.  
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Methods 
 
Overview 
Our overall analysis strategy aimed to develop a robust and generalizable model which can accurately 
predict global cognitive function in transdiagnostic patient samples. Briefly, we first used ‘meta-
matching’47, which capitalizes on the correlation structure between phenotypes of clinical-interest and 
those available in larger population-level datasets by 1) training a Deep Neural Network (DNN) to predict 
a set of 67 health, behavioral and cognitive phenotypes using in vivo estimates of brain function from the 
UK biobank dataset64; 2) using this trained model to generate predictions of these phenotypes in smaller 
independent patient datasets; 3) and training and validating a prediction model which predicts global 
cognitive function using the predicted phenotypes generated from the DNN model in step 2. Global 
cognitive function was derived using principal components analysis on a range of neuropsychological 
tests that varied between the patient datasets. Significance of prediction performance and the 
generalizability of models was assessed using permutation testing, and the feature weights from each 
model were correlated between datasets and mapped at differing spatial scales (edge, region, network) to 
examine the consistency of neurobiological correlates.  
 
Datasets 
This study used data from four datasets: the UK Biobank64, the Human Connectome Project Early 
Psychosis65, the Transdiagnostic Connectomes Project, and the Consortium for Neuropsychiatric 
Phenomics66. Our analyses were approved by the Yale University Institutional Review Board and the UK 
Biobank data was accessed under resource application 25163. Final number of included subjects, 
demographic and diagnostic characteristics are described below with additional details provided in 
Supplementary Table 1. 
 
UK Biobank (UKBB) 
The UK Biobank64 is a population epidemiology study of 500,000 adults aged 40–69 years and recruited 
between 2006 and 2010. A subset of 100,000 participants are being recruited for multimodal imaging, 
including brain structural MRI and rs-fMRI. A wide range of health, behavioral and cognitive phenotypes 
were collected for each participant. Here, we used the January 2020 release of 37,848 participants with 
complete and useable structural MRI and rs-fMRI.  
 
Human Connectome Project Early-Psychosis (HCP-EP) 
The HCP-EP65 study is acquiring high quality brain MRI, behavioral and cognitive measures in a cohort 
of people aged 16-35 years, with either affective or non-affective early phase psychosis within the first 5 
years of the onset of psychotic symptoms. The dataset also includes healthy control participants and the 
data release used here (Release 1.1) comprises 140 patients and 63 controls. Inclusion and exclusion 
criteria for each respective dataset are described elsewhere65. In the current study, we used a subset of 145 
participants who passed quality control and had complete and useable cognitive and rs-fMRI data. The 
included sample had a mean age of 23.41 (SD ± 3.68), was 38% female, and had a mean framewise 
displacement (head motion during rs-fMRI acquisition) of 0.06mm (SD ± 0.04).  
 
Transdiagnostic Connectomes Project (TCP) 
The TCP is an ongoing data-collection effort of to acquire brain MRI, behavioral and cognitive measures 
in a transdiagnostic cohort, including healthy controls and patients meeting diagnostic criteria for an 
affective or psychotic illness. Recruitment details, inclusion and exclusion criteria can be found in the 
Supplement. The data included in the current study was comprised of 101 participants who passed quality 
control and had complete and useable cognitive and rs-fMRI data, including 60 patients and 41 healthy 
controls. The included sample had a mean age of 32.21 (SD ± 12.54), was 57% female, and had a mean 
framewise displacement of 0.09mm (SD ± 0.05).  
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Consortium for Neuropsychiatric Phenomics (CNP) 
The CNP dataset is a publicly available and comprised of brain MRI, behavioral and cognitive measures 
from 272 participants, including 130 healthy individuals and 142 patients diagnosed with affective, 
neurodevelopmental, or psychotic illnesses. Details about participant recruitment can be found 
elsewhere66. In the current study, we used a subset of 224 participants who passed quality control and had 
complete and useable cognitive and rs-fMRI data. The included sample had a mean age of 32.59 (SD ± 
9.21), was 42% female, and had a mean framewise displacement of 0.08mm (SD ± 0.03).  
 
Quantifying Brain Function  
 
MRI acquisition parameters 
 
For the UK Biobank, a total of 490 functional volumes were acquired over 6 minutes at four imaging sites 
with harmonized Siemens 3T Skyra MRI scanners using the following parameters: repetition time = 
735ms; echo time = 42ms; flip angle = 51°; resolution of 2.4mm3 and a multi-band acceleration factor of 
8. For T1-weighted image, a MPRAGE sequence with a total of 256 slices were acquired using the 
following parameters: TR = 2000ms; TI = 880; resolution of 1mm3 and parallel imaging acceleration 
factor of 2.  
 
For HCP-EP, a total of four runs of 420 functional volumes were acquired over 5.6 minutes at three 
imaging sites with harmonized Siemen 3T Prisma MRI scanners using the following parameters: 
repetition time = 800ms; echo time = 37ms; flip angle=52°; resolution of 2mm3 and a multi-band 
acceleration factor of 8. Spin-echo field maps in opposing acquisition direction were acquired to correct 
for susceptibility distortions. For T1-weighted image, a MPRAGE sequence with a total of 208 slices 
were acquired using the following parameters: TR = 2400ms; TI = 1000ms; and resolution of 0.8mm3.   
 
For the TCP data, four runs of a total of 488 functional volumes were acquired over 5 minutes at two 
imaging sites with harmonized Siemen Magnetom 3T Prisma MRI scanners using the following 
parameters: repetition time = 800ms; echo time = 37ms; flip angle = 52°; resolution of 2mm3 and a multi-
band acceleration factor of 8. Spin-echo field maps in opposing acquisition direction were acquired to 
correct for susceptibility distortions. For T1-weighted image, a MPRAGE sequence with a total of 208 
slices were acquired using the following parameters: TR = 2400ms; and resolution of 0.8mm3.   
 
For the CNP data, a total of 152 functional volumes were acquired over 5 minutes at 2 imaging sites with 
harmonized Siemen Trio 3T MRI scanners using the following parameters: repetition time = 2000ms; 
echo time = 30ms; flip angle = 90°; and a resolution of 4mm3. For T1-weighted image, a MPRAGE 
sequence with a total of 176 slices were acquired using the following parameters: TR = 1900ms; and 
resolution of 1mm3. 
 
MRI Quality control 
 
For all the clinical datasets, extensive quality control procedures were implemented, and the details can be 
found in the Supplement. Briefly, all raw images were first put through an automated quality control 
procedure (MRI-QC), which resulted in the exclusion of scans with large artifacts. Recent studies have 
shown that multiband datasets (i.e., HCP-EP, TCP) with high temporal resolution contain additional 
respiratory artifacts that manifest in the six realignment parameters typically used to calculate summary 
statistics of head motion67,68. To mitigate this effect, framewise displacement traces were downsampled 
and bandpass filtering was applied on realignment parameter between 0.2 and 0.5 Hz69. Following this 
step, uniform motion exclusion criteria were applied to all clinical datasets, using a previously established 
cut-off of mean framewise displacement greater than 0.55 which has previously been shown to result in 
good control of motion artifacts (Parkers et al., 2019). Finally, for all participants, functional connectivity 
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matrices, carpet plots and QC-functional connectivity metrics were visualized and examined to ensure the 
processing and denoising steps achieved the desired effects of reducing noise and associations between 
head motion and functional connectivity. 
 
MRI Processing 
 
A detailed outline of the processing and denoising steps for each dataset is provided in the Supplement. 
Briefly, for each dataset we used differing but widely accepted processing strategies, which all included 
nonlinear spatial normalization to MNI space, brain tissue segmentation, and ICA-based denoising. These 
strategies were tailored to address differences in fMRI acquisition parameters (i.e., single- vs. multi-band) 
and to ensure that our models were robust to differences in preprocessing and denoising procedures. 
Global signal regression (GSR) was also applied to all scans, as we have previously demonstrated that it 
boosts prediction accuracy70 and improves data denoising69,71. The final derivatives used for prediction 
were 419�×�419 matrices for each subject, which were computed using 400 cortical and 19 non-cortical 
regions (for simplicity, non-cortical regions are indicated as ‘subcortex’; Fig1A) by averaging the time 
series within each parcel and computing a pair-wise Pearson correlation. For each subject, the correlation 
values were z-scored and the upper-triangle of this matrix which consisted of 87,571 unique functional 
connectivity estimates were entered into the prediction models.  
 
Quantifying Global Cognitive Functioning 
For each of the three clinical datasets, principal component analysis was applied to all available cognitive 
and neuropsychological measures to derive a robust measure of global cognition. Each dataset had a 
distinct set of neuropsychological tests used to quantify cognitive functioning. A full list of measures for 
each dataset can be found in Supplementary Table 2. Briefly, for HCP-EP, measures included the 
National Institute of Health Toolbox72 and Wechsler Abbreviated Scale Intelligence73. For TCP, measures 
were administered online through the TestMyBrain platform74 which included assessment of matrix 
reasoning, sustained attention, basic psychomotor speed and processing speed, as well as Stroop and 
Hammer reaction time measures acquired during MRI acquisition. For the CNP, measures included 
subtests from California Verbal Learning Test, Wechsler Memory Scale75 and Wechsler Adult 
Intelligence Scale76. To reduce model complexity, the PCA for each dataset was computed on the full 
sample, before any cross-validation. To ensure that data-leakage between the train and test splits did not 
influence our results, we tested whether prediction models generalized between the different and 
completely independent datasets (see Evaluating Model Generalizability). For each dataset, the first 
principal component (PC) was retained. For the HCP-EP dataset the first PC explained 57.2% of the 
variance, with the second and third PC examining 13.6% and 6% of the variance respectively. For the 
TCP dataset the first PC explained 25.9% of the variance, with the second and third PC examining 16.2% 
and 13.8% of the variance respectively. For the CNP dataset the first PC explained 32.5% of the variance, 
with the second and third PC examining 9.4% and 7% of the variance respectively. For each dataset, a 
higher PC score indexed better global cognition. The full list of loadings for each item can be found 
Supplementary Table 2.  
 
Brain-based Predictive Modelling  
Consistent with the approach outlined by He, et al. 47, we trained a single fully-connected feedforward 
Deep Neural Network (DNN) using the UK Biobank dataset to predict 67 different cognitive, health and 
behavioral phenotypes from resting-state functional connectivity matrices. This type of DNN possesses a 
generic architecture, where the connectivity values enter the model through an input layer, and each other 
layer is fully connected to the layer before it, meaning that values at each node are the weighted sum of 
node values from the previous layer. During the training process, these weights are optimized so that the 
output layer results in predictions that are close estimations of observed phenotypes. The 67 cognitive, 
health and behavioral variables were selected based on an initial list of 3,937 phenotypes by a systematic 
procedure that excluded brain variables, categorical variables (except sex), repeated measures and 
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phenotypes that were not predictable using a held-out set of 1,000 participants47. A full list of selected 
phenotypes can be found in supplementary Table 3 and further details of the DNN architecture and 
variable selection procedure within the UK Biobank can be found elsewhere47. This trained DNN model 
is openly available and can be implemented in any sample with available resting-state functional 
connectivity data (see https://github.com/ThomasYeoLab/Meta_matching_models). 
 
Following training of the DNN, it was applied to the clinical datasets using a nested cross-validation and 
stacking procedure. The procedure described below was implemented separately for each clinical dataset. 
First, the DNN was applied to the dataset, using resting-state functional connectivity matrices as inputs, 
resulting in 67 generated cognitive, health and behavioral variables as outputs. These outputs and 
corresponding global cognitive scores were split into 100 distinct train (70%) and test (30%) sets without 
replacement. We then implemented a stacking procedure, where a Kernel Ridge Regression (KRR) model 
using a linear kernel with l2-regularization was trained to predict global cognitive functioning scores 
using the generated 67 cognitive, health and behavioral variables as inputs. KRR is a classical machine 
learning technique that makes a prediction of a given phenotype in an individual as a weighted version of 
similar individuals. Similarity was defined as the inter-individual correlation of predicted phenotypes. 
KRR has one free parameter which controls the strength of regularization and was selected based on 5-
fold cross-validation within the training set. Once optimized, the model was evaluated on the held-out test 
set. This was repeated for the 100 distinct train-test splits to obtain a distribution of performance metrics. 
 
As a comparison to the meta-matching model described above, we also implemented a standard machine 
learning model to provide a baseline. Here we used the standard implementation of KRR, where the 
model was trained to predict global cognitive function scores, using resting-state functional connectivity 
matrices as inputs. This is in contrast to the KRR model implemented during the meta-matching stacking 
process, which was trained using the DNN-generated cognitive, health and behavioral as inputs.  The 
nested cross-validation procedure used for the baseline comparison model was the same as the one used 
for the meta-matching model, where each dataset was split into 100 distinct train (70%) and test (30%) 
sets without replacement, followed by 5-fold cross-validation within the training set to tune the model 
hyperparameters and the model performance was evaluation on the held-out test set. All code used for 
analysis and figure generation can be found on-line at https://github.com/sidchop/PredictingCognition. 
 
Evaluating Model Accuracy 
The accuracy of each model is defined as the Pearson correlation between the true and predicted 
behavioral scores for each split. Average accuracy was computed by taking the mean across the 100 
distinct train-test splits. We also evaluated absolute, as opposed to relative, prediction accuracy using the 
coefficient of determination (SFig2; 1). All models were evaluated on whether they performed better than 
chance using null distributions of performance metrics. For the meta-matching model, in each of the three 
clinical datasets, cognitive function scores were randomly permuted 10,000 times. Each permutation was 
used to train (70% of sample) and test (30% of sample) a null prediction model. The p-value for the 
model’s significance was defined as the proportion of null prediction accuracies greater than the mean 
performance of the observed model.  The same procedure was used to evaluate statistical significance of 
the baseline comparison model.  
 
Evaluating Model Generalizability 
The generalizability of the model was evaluated by training the meta-matching model on all individuals 
from one dataset and testing on all individuals from another dataset. This results in six train-test pairs 
between the three clinical datasets (i.e., HCP-EP, TCP and CNP). For each train-test pair, accuracy was 
again measured as the Pearson correlation between the predicted and actual scores on the test dataset. We 
also report absolute accuracy using the coefficient of determination (SFig2; 1). Statistical significance was 
evaluated by permuting the training dataset cognitive function scores and computing a null meta-
matching model 10,000 times. The p-value corresponding to model significance was defined as the 
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proportion null prediction accuracies greater than the performance of the observed model. To compare the 
within dataset prediction performance between standard baseline comparison and meta-matching models, 
we computed a paired-sampled t-test for each of the three clinical datasets.  
 
Comparing Neurobiological Features Between Datasets and Spatial Scales 
To increase the interpretability and reliability of feature weights from the prediction models, we used the 
Haufe transformation52-54 which considers the covariation between the training set functional connectivity 
and global cognition scores. This procedure ensures that the feature weights index quantities that are 
statistically related to global cognition and results in a positive or negative predictive feature value for 
each edge of the functional connectivity matrix. A positive predictive feature value indicates that higher 
functional connectivity for the edge was associated with the greater predicted cognitive functioning and a 
negative predictive feature value indicates that lower functional connectivity was associated with the 
greater predicted cognitive functioning. For each of the three models, the transformed feature weights 
were then averaged across the 100 splits to obtain mean feature weights, resulting in a single symmetric 
419 x 419 predictive feature matrix for each dataset.  
 
We assessed the association of neurobiological predictive features between each of the three predictive 
feature matrices at the edge-, region-, network-level. At the edge-level, which comprises each of the 
87,571 feature weights, similarity was assessed using Pearson correlation. To account for spatial 
autocorrelation between each pair of feature weight matrices55, we applied the spin-test, where the cortical 
regions of the atlas are rotated on the inflated surfaces to generate 10,000 null atlas configurations which 
preserve the spatial autocorrelation pattern of the cortex. These null atlas configurations are used to 
shuffle the rows and columns of the feature weight matrices, allowing the generation of a null distribution 
of Pearson correlation values between a pair of feature weight matrices at the edge-, region- and network-
level. Statistical significance was assessed as the proportion of null values greater than the observed value 
(pspin). As the spin-test procedure can only be applied to cortical regions, the 19 non-cortical regions were 
excluded when computing the p-value. By taking the mean of all edges attached to each of the 419 brain 
regions, edges-level connections can be aggregated into region-level predictive features. By taking the 
mean of all edges within and between 18 canonical functional networks including the subcortex Fig1A; 48, 
edges-level connections can also be aggregated into 171 network-level predictive features. For both 
aggregated scales (region- and network-level), positive and negative feature weights were considered 
separately by zeroing negative or positive values before averaging, respectively. To compare the negative 
and positive feature weight correlations within each spatial scale, we used Fishers Z-statistic modified for 
non-overlapping correlations based on dependent groups77,78. 
 
Evaluating Neurobiological Features 
To evaluate the statistical significance of feature weights for each of the three datasets, we implemented a 
permutation testing procedure. To reduce the multiple comparison burden, we evaluated the significance 
of each model at the network-level, where the observed feature weights for each model were averaged 
within and between 18 network blocks, resulting in 171 network-level features per model. This network 
averaging procedure was repeated for feature weights from 2000 null models, where the cognitive 
function score had been randomly permuted. This results in null-distribution of network-level feature 
weights for each of the 171 network connections and the p-value was computed as the proportion of the 
null network-level feature weights greater than the observed value. The p-values were then FDR corrected 
and evaluated at a � � 0.05 level. To uncover the network-level predictive features which drive accuracy 
across the three datasets, we implemented a conjunction analysis, where at each network connection, the 
minimum FDR corrected p-value was retained, and evaluated for significance at a � � 0.016, accounting 
for the three contrasts. 
 
Control Analyses 
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Demographic characteristics such as age and sex, as well as head motion during neuroimaging can bias 
the performance of prediction models79. To ensure that the model performance was not driven by these 
covariates, we repeated the primary models after adjusting for age, sex and mean framewise displacement. 
For each of the 100 train-test splits, the variables were first regressed out of the global cognition training 
data, and the resulting regression coefficients were used to residualize the global cognition test data80. The 
reported results were robust to covariate inclusion and all three meta-matching models remained 
statistically significant (FigS6; FigS7). Moreover, the edge-level feature weights from the original and 
covariate adjusted models were highly correlated at �	 �  0.96  for all three datasets (FigS7). 
Performance remained stable in the HCPEP sample 
� � 0.51� and decreased in the TCP 
� � 0.25� and 
CNP datasets (� � 0.28; Fig S6). The pattern of results showing superior performance of the meta-
matching compared to conventional KRR model was maintained in all three datasets (FigS6).  
 
Meta-matching capitalizes on correlations between neurobiology associated with diverse demographic, 
health, and behavioral phenotypes. By examining the feature weights associated with the DNN-generated 
demographic, health, and behavioral phenotypes that are computed during the stacking part of the meta-
matching model, it is possible to evaluate which generated demographic, health, and behavioral 
phenotypes are driving prediction of cognitive outcomes. The generated variables driving performance 
were highly consistent across the three datasets (��� �	 � 0.95; FigS8). The primary drivers of prediction 
were directly related to cognition (fluid intelligence, matrix pattern completion, symbol digit substitution). 
However, across the three datasets, both age and the first genetic principal component were strong 
predictors, with the latter indexing ancestry, which can also be a proxy for complex forms of societal and 
environmental bias. To investigate whether the observed improvements in behavior prediction 
performance extend beyond the specific demographic factors that can encapsulate societal bias (ancestry, 
sex, and age), in turn affecting cognitive performance, we repeated the meta-matching stacking procedure 
for our primary analyses after removing the first genetic principal component, age and sex from the meta-
matching model and found near identical results to our original model (FigS9). 
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Supplementary Table 1 – Sample demographics  
 
 

HCP-EP 
(n=145) 

TCP 
(n=101) 

CNP 
(n=224) 

Age (mean,sd) 23.41(3.86) 32.21(12.54) 32.59(9.21) 
Sex (f, %) 57, 38% 50, 57% 95, 42% 
Head motion (mm, sd)  .06(.04) .09(.05) .08(.03) 
Diagnosis    
    SZ* 62 4 37 
    SZAD 8 2 0 
    MDD 5 19 0 
    BD 20 6 40 
    ANX* 0 5 0 
    ADHD 0 0 37 
    OCD 0 0 0 
    PTSD 0 6 0 
    SUD 1 2 0 
    ED 0 2 0 
    None (HC) 52 41 110 
Acronyms: HCP-EP = Human Connectome Project – Early Psychosis, TCP = Transdiagnostic 
Connectomes Project, CNP = UCLA Consortium for Neuropsychiatric Phenomics, SZ = Schizophrenia, 
SZAD = Schizoaffective Disorder, MDD = Major Depressive Disorder, BD = Bipolar Disorder, 
ANX=Anxiety Disorder, ADHD = Attention Deficit Hyperactivity Disorder, OCD = obsessive 
Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, SUD = Substance Use Disorder, HC = 
Healthy Control. 
*Includes all Schizophrenia Spectrum Diagnosis, except Schizoaffective Disorder  
*Includes Generalized Anxiety Disorder and Specific Phobia  
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Supplementary Table 2 - Cognitive tests for each clinical dataset and loadings on the first principal 
component. 

HCP-EP loading TCP loading CNP loading

nih_picseq_unadjusted 0.230 choice_rt_score* 0.282 cvlt_sd_free_recall 0.285 

nih_dccs_unadjusted 0.222 cont_concent_score* -0.028 cvlt_sd_cued_recall 0.290 

nih_flanker_unadjusted 0.235 digit_symbol_score* 0.474 cvlt_ld_free_recall 0.293 

nih_tpvt_uss 0.275 fast_react_score* 0.439 cvlt_ld_cued_recall 0.294 

nih_patterncomp_unadjusted 0.161 matrix_reasonscore* 0.348 cvlt_ld_recognition 0.196 

nih_lswmt_uss 0.261 read_mind_score* 0.227 wms_vr_immediate_recall 0.259 

nih_orrt_tbx_reading_score 0.267 recog_emo_score* -0.011 wms_vr_delayed_recall 0.260 

nih_fluidcogcomp_unadjusted 0.304 hammer_tot_meanRT^ -0.453 wms_vr_recognition 0.206 

nih_crycogcomp_unadjusted 0.292 stroop_tot_meanRT^ -0.352 wms_symbol_span 0.265 

nih_eccogcomp_unadjusted 0.328 
  

wms_digit_span_fwd 0.168 

nih_totalcogcomp_unadjusted 0.346 
  

wms_digit_span_bwd 0.225 

wasi_profilesubtest_verbalv 0.248 
  

wms_digit_span_seq 0.218 

wasi_profilesubtest_performancemr 0.230 
  

wais_letter_number_sequ 0.239 

wasi_iqscores_full2iq 0.289 
 

 wais_vocabulary 0.223 

    
wais_matrix_reasoning 0.249 

    
dkefs_verbal_fluency_english 0.174 

    
taskswitch_interference -0.124 

    
taskswitch_switch_cost -0.089 

    
taskswitch_residual_switch_cost -0.059 

    
ant_rt_conflict -0.064 

    
color_trail_interference -0.051 

    
cpt_hit_rate 0.066 

    
cpt_false_alarm_rate -0.046 

  
  

cpt_hits_rt -0.102 
*Administered online  
^Administered within MRI scanner  
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.08.22283232doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.08.22283232


 
 
 
 
Supplement Table 3 – 67 Phenotypes from Biobank used to train meta-matching model 
Variable Description Variable Description Variable Description 
Alcohol C3 average 

weekly beer 
plus cider 
intake 

Trail-o C4 trail making 
online 
principal 
component 4 

Matrix C2 matrix pattern 
completion 
principal 
component 2 

Blood C2 blood 
assays 
principal 
component 
2 

Blood C4 blood assays 
principal 
component 4 

Fluid Int. fluid 
intelligence 

Breath C1 spirometry 
principal 
component 
1 

Alcohol C2 average 
weekly 
champagne 
plus white 
wine intake 

Hearing hearing 
signal-to-
noise-ratio 
(snr) of triplet 
(left) 

Age age Carotid C5 carotid 
ultrasound 
principal 
component 5 

Illness C1 non-cancer 
illness 
principal 
component 1 

Cancer C1 cancer 
principal 
component 
1 

Time drive time spent 
driving per 
day 

#household number of 
people in 
household 

Carotid C1 carotid 
ultrasound 
principal 
component 
1 

Travel frequency of 
travelling 
from home to 
job workplace 
per week 

Time TV time spent 
watching 
television (tv) 
per day 

Match-o pairs 
matching 
online 

Work weekly length 
of working 
hour for main 
job 

BP eye C2 blood pressure 
& eye 
measures 
component 2 

Trail C1 trail making 
principal 
component 
1 

Age edu age completed 
full time 
education 

Body C3 anthropometry 
principal 
component 3 

Digit-o C1 symbol 
digit 
substitution 
online 
principal 
component 
1 

Deprive C1 multiple 
deprivation 
principal 
component 1 

ECG C6 ECG 
measures 
principal 
component 6 

Digit C1 symbol 
digit 

Blood C3 blood assays 
principal 

ECG C2 ECG 
measures 
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substitution 
principal 
component 
1 

component 3 principal 
component 2 

Match pairs 
matching 

Alcohol C1 average 
monthly 
spirits intake 

Illness C4 non-cancer 
illness 
principal 
component 4 

ProMem C1 prospective 
memory 
principal 
component 
1 

Neuro neuroticism 
score 

Smoke C1 smoke 
principal 
component 1 

RT C1 reaction 
time 
principal 
component 
1 

ECG C1 ECG 
measures 
principal 
component 1 

BP eye C3 blood pressure 
& eye 
measures 
principal 
component 3 

Trail-o C1 trail making 
online 
principal 
component 
1 

Sex sex BP eye C6 blood pressure 
& eye 
measures 
principal 
component 6 

Tower C1 tower 
rearranging 
principal 
component 
1 

Sex G C2 genotype sex 
inference 
principal 
component 2 

Urine C1 urine assays 
principal 
component 1 

Family C1 family 
history 
(parent's 
age) 
principal 
component 
1 

Body C2 anthropometry 
principal 
component 2 

Sex G C1 genotype sex 
inference 
principal 
component 1 

Blood C5 blood 
assays 
principal 
component 
5 

Grip C1 hand grip 
strength 
principal 
component 1 

Bone C1 bone-
densitometry 
of heel 
principal 
component 1 

Dur C4 process 
durations 
principal 
component 
4 

Body C1 anthropometry 
principal 
component 1 

Matrix C3 matrix pattern 
completion 
principal 
component 3 

Dur C2 process 
durations 
principal 
component 
2 

Bone C3 bone-
densitometry 
of heel 
principal 
component 3 

Time walk number of 
days walked 
10+ minutes 
per week 
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Loc C1 location 
principal 
component 
1 

BP eye C4 blood pressure 
& eye 
measures 
principal 
component 4 

BP eye C5 blood pressure 
& eye 
measures 
principal 
component 5 

Dur C1 process 
durations 
principal 
component 
1 

Matrix C1 matrix pattern 
completion 
principal 
component 1 

ECG C3 ecg measures 
principal 
component 3 

Digit-o C6 symbol 
digit 
substitution 
online 
principal 
component 
6 

#Mem C1 numeric 
memory 
principal 
component 1 

Genetic C1 genetic 
principal 
components 
and 
heterozygosity 
principal 
component 1 

    Sleep sleep duration 
per day 

 
 
 
 
 
 
 
 
 
Supplementary Figure 1 – Model accuracy and generalizability assessed using Coefficient of
Determination (COD)  
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Supplementary Figure 2 – Kernel Ridge Regression (KRR) model generalizability matrix (left) and
differences in generalizability between KRR and meta-matching (MM) models (right).  
 

 
 
 
Supplementary Figure 3 – Scatterplots of observed and predicted cognition scores for generalizability of
the meta-matching model. 
 

nd 

 

of 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.08.22283232doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.08.22283232


Supplementary Figure 4 – Regional predictive features classified into 7 and 17 network solutions.  
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Supplementary Figure 5 – Edge-level predictive feature weights for each dataset 
 

 
 
 
 
 
 
 
 
Supplementary Figure 6 - Model performance after regressing out age, sex and head motion (mean FD) 
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Supplementary Figure 7 - Correlation between edge-level feature weights for original and covariate
adjusted meta-matching models.  
 
 

 
 
 
Supplementary Figure 8 –Feature weights associated with 67 health, demographic and behavioral
variables using the stacking component of the meta-matching model.  
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Supplementary Figure 9 – Model performance (Top) and feature weights (bottom) associated with 64 
health, demographic and behavioral variables using the stacking component of the meta-matching model 
(after removing age, sex, and gene PC1 from the meta-matching model).  
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Additional Information on TCP dataset  
 
The Transdiagnostic Connectome Project is ongoing data-collection effort between Yale University and 
McLean Hospital, USA. The purpose of this study is to collect brain imaging and behavioral data from a 
transdiagnostic cohort of patients with common psychiatric diagnoses, as well as control participants.  
Participants are recruited from the community via flyers, online advertisements and through patient 
referral from clinicals. All participants complete a clinical interview and an MRI scanning session. 
Participants were eligible for the study if they 1) were aged between of 18-35, 2) had no MRI 
contraindications, 3) were not colorblind, and 4) had no neurological abnormalities. All participants 
underwent Structured Clinical Interview for DSM-5 to determine psychiatric diagnosis. As a result, 
recruitment included both healthy individuals and individuals with a diverse set of clinical presentations, 
including affective and psychotic psychopathology.  
 
Additional Information on MRI processing and denoising  
 
For the UK Biobank, we used the processed volumetric rs-fMRI data from the first imaging visit81. Each 
fMRI dataset was spatially normalised to MNI152 2-mm template space and FMRIB's ICA-based X-
noiseifier (FSL-FIX; 82) was trained on holdout set of participants and applied to the remaining 
participants to denoise the data. The mean global signal was extracted using a whole-brain mask and was 
regressed out of each dataset. A detailed outline of the processing, denoising and quality control of these 
data has been previously reported 81.  
 
For the CNP data set, fmriprep v1.1.183 was used. During this standardised and automated pipeline, each 
T1-weighted (T1w) volume was corrected for intensity non-uniformity using N4BiasFieldCorrection84 
and skull-stripped using antsBrainExtraction.sh. Brain surfaces were reconstructed using recon-
all from FreeSurfer v6. Spatial normalization to the MNI152 Nonlinear Asymmetrical template version 
2009c was performed through nonlinear registration with ANTs85, using brain-extracted versions of both 
T1w volume and template. Brain-tissue segmentation of tissue classes was performed on the brain-
extracted T1w using FSL FAST86. Functional MRI data were slice-time corrected using AFNI87 and 
realigned to a mean reference image using mcflirt88. Susceptibility distortion correction was performed by 
co-registering the functional image to the intensity-inverted T1w image with an representative EPI 
distortion atlas89. This was followed by co-registration to the corresponding T1w using boundary-based 
registration, implemented using FreeSurfer’s BBRegister. The motion-correcting transformations, field-
distortion-correcting warp, BOLD-to-T1w transformation, and T1w-to-MNI warp were concatenated and 
applied in a single step using ANTS. ICA-based Automatic Removal Of Motion Artifacts (AROMA) was 
used to generate signal and noise and signal regressors for use in the non-aggressive variant of the 
method90. Regressors were calculated on the spatially smoothed output 6 mm FWHM kernel) and then 
applied to the unsmoothed pre-processed file. Following ICA-AROMA, we extracted mean time courses 
from eroded masks of the WM and CSF and regressed these signals out of the ICA-AROMA denoised 
data. Finally, each dataset was detrended with a 2nd order polynomial and high-pass filtered at 0.005 Hz 
using AFNI’s 3dTproject. The mean global signal was extracted using a whole-brain mask and was 
regressed out of each dataset. Further details on processing, denoising and quality control, please see are 
reported elsewhere91.  
 
Both the HCP-EP and TCP datasets were acquired use the Human Connectome Project (HCP) MRI 
acquisition parameters. We therefore implemented the Minimal Processing Pipeline which was developed 
and optimized for HCP data92. The pipeline adapts steps from FMRIB Software Library (FSL; 93) and 
FreeSurfer to account for greater spatial and temporal resolution and HCP-data related distortions 
resulting from acquisition choices such as multiband acceleration, while aiming to remove the least 
amount of data necessary. During this pipeline, brain surfaces were reconstructed using recon-
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all from FreeSurfer v6. Skull stripped T1w and fMRI data were aligned using FSL Linear Image 
Registration Tool (FLIRT). Spin Echo EPI Field Maps with opposite phase encoding directions were used 
to estimate spatial distortion, using FSL topup and FLIRT was used to correct the scans for such 
distortions. This process was fine-tuned and optimised using FreeSurfer’s BBRegister. Functional MRI 
data realigned to a mean reference image using mcflirt88. Lastly, non-linear registration of Functional 
MRI data, aligned to individual’s structural volume space into standard MNI152 space was done using 
FLIRT and FMRIB’s nonlinear image registration tool (FNIRT). To denoise the fMRI data, ICA-FIX was 
implemented. During ICA-FIX, the fMRI data is decomposed into spatially independent components 
using Multivariate Exploratory Linear Optimized Decomposition into Independent Components 
(MELODIC). The resulting components are then classified as noise or signal. While ICA-AROMA uses a 
set of fixed rules depending on the time-course and frequency of each component, ICA-FIX uses a 
machine-learning based classifier. Here we used the pre-trained HCP_hp2000 classifier provided with 
ICA-FIX82, as the acquisition parameters of the fMRI data this classifier was train on are identical to 
those of the HCP-EP and TCP datasets. A temporal high-pass filter of 2000 was applied and a lenient 
threshold component labelling in FIX (t=10) was used. Finally, the mean global signal was extracted 
using a whole-brain mask and was regressed out of each dataset. 
 
The steps described above resulted in processed and denoised fMRI dataset in MNI152 volume space for 
each individual. For each fMRI dataset, the time series were averaged within each of the 400 cortical48 
and 19 subcortical49 parcels and pairwise Pearson’s correlations were computed to generate a 
419�×�419 functional connectivity matrix, after which correlation values were z-scored and the upper-
triangle of this matrix which consisted of 87,571 unique functional connectivity estimates were entered 
into the prediction models. 
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