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We used two logistic growth models for this analysis: One fit to each province/variant
combination separately and one that “shares strength’ ’ across provinces. Both models
assume that, at time t (measured as an integer number of days since the first appearance
in the data), the proportion of cases that are caused by variant ν in province j is pjν(t).
Both models also assume that pjν(t) can be modelled using a logistic growth curve:

pjν(t) =
Kjν

1 + exp((mjν − t)rjν)
(1)

The parameter interpretations are as follows. Kjν is the asymptote (the value of the
growth curve as t approaches infinity) for the proportion in province j for variant ν.
mjν is the midpoint of the curve, which is the time point at which 50% of the cases in
province j are attributed to variant ν (it is also the time at which the curve reaches it’s
maximum slope). Finally, rjν is the rate parameter, which controls how steep the curve
is.

We fit these data with a binomial likelihood where the number of cases of variant ν is
labelled Yjν(t) and the total number of cases with any known variant is labelled Njν(t).
This formulation of the likelihood incorporates the correct uncertainty in the model -
when Njν is small, the uncertainty is higher (and therefore the credible intervals are
larger). This model is fit in a Bayesian setting, with the following likelihood and prior
distributions:

Yjν(t) ∼ Binomial(pjν(t), Njν(t)) (2)

pjν(t) =
Kjν

1 + exp((mjν − t)rjν)
(3)

K0jν ∼ Bernoulli(0.7) (4)

K1jν ∼ Beta(6, 2) (5)
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Kjν = K0jνK1jν + (1 −K0jν) (6)

mjν ∼ Normal(m∗
jν , 5

2)T (0, ) (7)

rjν ∼ Gamma(2, 2) (8)

In the model specification above, note that a variation on a spike-and-slab prior [1, 2]
is used for the asymptote so that the posterior may have point mass at 1 (i.e. it is
possible that all posterior draws are exactly 1). In the specification of the midpoint
prior, note that T (0, ) indicates truncation with a lower bound at 0 with no specified
upper bound.

Our two models differ in the specification of m∗
jν : when the provinces are modelled sepa-

rately, this is specified as the mean of the observated dates for a given province/variant;
to share strength between provinces, m∗

jν is modelled with a normal prior distribution,
again centered at the mean of the observed dates for a province and with a variance
of 52 and constrained to be positive. By modelling it the second way, the midpoint
for each province is modelled as a random deviation from a country-wide effect. Be-
cause of imbalanced sample sizes across provinces, the posterior distributions for the
midpoint in larger provinces are dominated by the data while smaller provinces borrow
more information from the country effect.

The models were run using the JAGS [3] software within the R software environment [4].
We ran 3 chains, each with 5,000 initial iterations that were not used (burn-in iterations)
and then used every 10th value of the next 10,000 iterations (“thining”). Convergence
was confirmed by the upper bounds of the Gelman-Rubin statistics as well as visual
inspection of the trace plots.
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