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1. Overview 
 
In this supplementary information we present further results from our analysis of influenza-like illness and COVID-19 
data. We also present analysis from a simulation study, which was used to validate our method using a variety of simulated 
epidemic scenarios, where Rt either remained constant or varied over time. As part of the simulation study, we explored 
the impact of weekend effects on estimates of Rt, the ability to supply alternative temporal aggregations of data e.g., 3-day, 
10-day, or two-weekly aggregations, and finally, we discuss the number of iterations generally required to reach 
convergence when reconstructing daily incidence data using our Expectation-Maximisation (EM) algorithm. 

2. Additional results 
 
As described in the main text, reported incidence data for cases of influenza-like illness, COVID-19 cases, and COVID-
19 deaths was used to estimate Rt using the original EpiEstim R package1 as well as our extended method. The reported 
daily data were artificially aggregated to a weekly timescale to replicate a typical scenario where data are reported on a 
weekly basis. Both the reported daily data and the reconstructed daily data, which was obtained from the weekly 
aggregations of incidence using our EM algorithm, were used to estimate Rt over daily and weekly sliding windows ending 
on day t. 
 

a. Influenza 
 
In the influenza case study, both the daily and weekly sliding Rt estimates are smoother when estimated from the 
reconstructed data as opposed to the reported data (Figure S1). The prominent weekly oscillations in the daily Rt estimates 
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from the reported data are likely due to the impact of day-to-day variations in reporting, such as weekend effects, which in 
this dataset may be caused by factors including the military clinic’s opening hours or the military personnel’s working 
hours.2 These intra-weekly fluctuations are lost once the data are aggregated; therefore, the reconstructed incidence and 
the Rt estimates based on it will be smoother and less affected by this variability (Figure S1 & Figure S2A-B).  
 
Weekly sliding Rt estimates account for some of this variation, leading to smoother Rt estimates from both the reported 
and reconstructed data (Figure S1B). It is much clearer here that the estimates follow the same general trend, but once 
again, the Rt estimates are slightly smoother from the reconstructed data. 
 

 
Figure S1. The A) daily and B) weekly sliding Rt estimates for influenza based on the reported (grey) and the reconstructed 
(green) daily data by date of presentation at the military clinic. Rt estimates start on the first day of the second aggregation 
window (day 8 – 18th December 2009) and are plotted at the end of the time window. Shading corresponds to the 95% 
credible interval of the estimates. 
 
Bias in the Rt estimates was assessed by computing the absolute difference in the estimates from the reported and 
reconstructed data (Figure S2C-D). The greater differences between the Rt estimates correspond to the largest disparities 
between the reported and reconstructed incidence data (Figure S2). 
 
 

0

1

2

3

20 Dec 09 30 Dec 09 09 Jan 10

Da
ily

 R
 e

st
im

at
e

Reported data

Reconstructed data

A

0.0

0.5

1.0

1.5

2.0

20 Dec 09 30 Dec 09 09 Jan 10

Date

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

B



 3 

 
Figure S2. A-B) The reported (grey) and reconstructed (green) daily incidence of influenza by the date of presentation at 
the military clinic, either on a natural scale (A) or log scale (B). C-D) The absolute difference in the C) daily and D) weekly 
sliding Rt estimates made using the reported daily data and the reconstructed daily data. Note that the y-axis scale is 
different in panels C and D. 
 

b. COVID-19 cases 
 
In the first case study for COVID-19, the overall trends in Rt over time using the reported and reconstructed daily data 
were similar for both the daily and weekly sliding Rt estimates (Figure S3). The daily Rt estimates using the reconstructed 
data considerably smoothed out the impact of weekend effects, which were prominent in the reported incidence (Figure 
S3A, Figure S4A-B). The weekly sliding Rt estimates are very similar using both datasets, with some minor discrepancies 
e.g., around early September and mid-December 2020 (Figure S3B). 
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Figure S3. The A) daily and B) weekly sliding Rt estimates for COVID-19 cases based on the reported (grey) and the 
reconstructed (green) daily data by date of specimen. Rt estimates start on the first day of the second aggregation window 
(day 8 – 28th February 2020) and are plotted at the end of the time window. Shading corresponds to the 95% credible 
interval of the estimates. The y-axis has been cropped to a maximum of 4 for clarity. 
 
When comparing the absolute difference in the Rt estimates made using the reported and reconstructed data, the larger 
spikes coincide with periods of either low incidence or more prominent weekend effects in the reported data (Figure S4). 
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Figure S4. A-B) The reported (grey) and reconstructed (green) daily incidence of COVID-19 by the date of specimen, 
either on a natural scale (A) or log scale (B). C-D) The absolute difference in the C) daily and D) weekly sliding Rt estimates 
made using the reported data and the reconstructed data. Note that the y-axis scale is different in panels C and D. 
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c. COVID-19 deaths 
 
In the second case study for COVID-19, due to the lower incidence of COVID-19 deaths compared to COVID-19 cases, 
there is greater uncertainty in the Rt estimates (Figure S5). There is still some indication of noise in this dataset, but the 
pattern appears less pronounced and more irregular than the variation caused by weekend effects as seen in the COVID-
19 cases data. Unlike the data for flu and COVID-19 cases, further analysis showed that there was no pattern in reporting 
depending on the day of the week (Figure S7). 
 

 
Figure S5. The A) daily and B) weekly sliding Rt estimates for COVID-19 deaths based on the reported daily data (grey) 
and the reconstructed daily data (green) by date of death within 28 days of a positive test. Rt estimates start on the first day 
of the second aggregation window (day 8 – 9th March 2020) and are plotted at the end of the time window. Shading 
corresponds to the 95% credible interval of the estimates. The y-axis has been cropped to a maximum of 4 for clarity. 
 
 
In contrast with COVID-19 case data, the greatest differences in Rt estimates obtained from death data appear to coincide 
solely with periods of low incidence (Figure S6). 
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Figure S6. A-B) The reported (grey) and reconstructed (green) daily incidence of COVID-19 deaths within 28 days of a 
positive test, either on a natural scale (A) or log scale (B). C-D) The absolute difference in the C) daily and D) weekly 
sliding Rt estimates made using the reported data and the reconstructed data. Note that the y-axis scale is different in panels 
C and D. 
 

d. Reported incidence patterns by weekday 
  
There is a clear pattern in the reporting of influenza and COVID-19 cases, with generally higher incidence reported on 
Mondays, which then declines throughout the week, with the lowest incidence on the weekends (Figure S7A-B). Reported 
incidence appears lower on Fridays for influenza, however this dataset encompasses Christmas Day 2009 and New Year’s 
Day 2010, which both fell on Friday. On the other hand, COVID-19 deaths did not appear to show any pattern in reporting, 
with no clear deviations from the weekly mean incidence regardless of the weekday (Figure S7C). 
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Figure S7. The relative difference between the reported incidence for A) influenza, B) COVID-19 cases and C) COVID-
19 deaths, on each weekday compared to the mean incidence for that week. Only data for full calendar weeks are included. 
Black lines represent the mean relative difference and the dashed grey line indicates zero (corresponding to no difference 
between the reported incidence on that day compared to the weekly mean). 
 

e. Classification tables 
 
We directly compared the classification of the epidemic as increasing (95% credible interval of the Rt estimate is above 1), 
uncertain (95% credible interval encompasses 1), and declining (95% credible interval is below 1), depending on whether 
the Rt estimates were made using the reported or reconstructed daily data (Figure S8). The overall agreement in the 
classification of daily Rt estimates for influenza, COVID-19 cases, and COVID-19 deaths, was 44.4%, 74.4%, and 85.8% 
respectively. The overall agreement in the classification of weekly sliding Rt estimates was higher for each, with 81.8%, 
94.9% and 93.3% agreement respectively. There is a greater correlation between the classification of estimates made using 
COVID-19 death data, reflected by the dark blue diagonal line across the grid squares. This is likely due to the reported 
deaths being less affected by weekend effects (see section 2d), and therefore the reported and reconstructed data (and the 
Rt estimates made from them) are more similar (Figure S8E-F). 
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Figure S8. Comparison of the percentage agreement in the classification of Rt estimates as above 1 (lower bound of the 
95% CrI is above 1), encompassing 1, or below 1 (upper bound of the 95% CrI is below 1), when using reported and 
reconstructed incidence data. Daily and weekly sliding Rt estimates are compared for influenza cases (A-B), COVID-19 
cases (C-D), and COVID-19 deaths (E-F). Due to low incidence, the first 30 days of data is excluded for both COVID-19 
datasets. Darker shades of blue correspond to greater percentage agreement, with a strong correlation represented by a dark 
diagonal line across the grid squares from top left to bottom right. 
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f. Computational time 
 
All real data scenarios took less than 3 seconds to run on MacOS (2 GHz Quad-Core Intel Core i5) 16GB RAM (Table 
S1). The influenza cases scenario, with >57,000 cases, took 2 seconds to run. The COVID-19 cases and deaths scenarios, 
which estimated Rt over 97 and 96 weeks of incidence data, took 3 seconds to run. 
 
Table S1. Time taken to estimate Rt in each of the real data scenarios. 

Real data scenario Length of time period analysed Total incidence Estimation time 

Influenza cases 5 weeks 57,351 2s 

COVID-19 cases 97 weeks 13,139,522 3s 

COVID-19 deaths 96 weeks 149,557 3s 

 
 

3. Simulation study 
 
The simulation study involved assessing the performance of the method in multiple epidemic contexts. These included 
scenarios where Rt remains constant over time, or where Rt varies over time, with either a sudden stepwise change or a 
gradual change. For each scenario, 100 epidemic trajectories were stochastically generated using the R package 
projections.3 Each epidemic was seeded with 10 days of 7 daily cases and then simulated over 70 days (10 weeks). The 
values of Rt estimated from the simulated incidence data were evaluated in terms of their bias, uncertainty and 95% 
coverage (Table S2). 
 
Table S2. Definitions for the criteria used to assess the performance of our method in the simulation study. 

Criterion Definition 

Bias 
Absolute difference between the mean Rt estimate across the 100 simulations and the true value of Rt that the 
simulated incidence is based on. 

Uncertainty The mean width (across the 100 simulations) of the 95% credible interval for Rt estimates. 

95% coverage 
The proportion of Rt estimates across the 100 simulations with the true value of Rt within the 95% credible 
interval. 

 
 

a. Constant Rt 
 
For a scenario where Rt remains constant over time, four values of Rt were considered: 1, 1.25, 1.5 and 1.75. The Rt 
estimates all recovered the true value that the simulations were based on, with very little difference between the estimates 
made using daily and weekly data (Figure S9A-D). There was no evidence of bias in the estimates (Figure S9E-H), and as 
expected, the uncertainty declined over time as the number of cases rose, and remained the same when Rt was 1, reflecting 
stable case numbers (Figure S9I-L). The 95% coverage was consistently high (Figure S9M-P) and on average the true 
value of Rt was encompassed by the 95% credible interval 96-97% of the time in each scenario. However, the wavy pattern 
in these plots is likely to correspond to discontinuities in the reconstructed incidence data (section 3b, Figure S10).  
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Figure S9. Performance of the method when estimating a constant Rt for 100 simulated epidemics. A-D) The mean weekly 
sliding Rt estimates using daily data (grey) and weekly data (green). The black dashed line represents the true value of Rt 
that the 100 simulations are based on, which is either A) 1, B) 1.25, C) 1.5, or D) 1.75. The estimates and their 95% credible 
intervals (shaded areas) are very similar and therefore overlap. E-H) The bias (or absolute difference) in the mean Rt 
estimated from weekly data compared to the true value of Rt. The shaded area corresponds to the 95% quantiles of the bias 
across the 100 simulations. I-L) The uncertainty (mean width of the 95% credible interval) in the Rt values estimated from 
weekly data. M-P) The proportion of the 100 Rt estimates obtained from weekly data where the 95% credible interval 
encompasses either the true value of Rt (black) or the value of Rt that would have been estimated from daily data (blue). 
Here, the 95% coverage is similar for both the true value of Rt and the daily data estimate, and therefore they overlap. 
 

b. Discontinuities in the reconstructed incidence data 
 
As part of the process of reconstructing daily incidence data from aggregated data, the reconstructed incidence is slightly 
adjusted using a constant (kw) to ensure that if you were to re-aggregate it, it would still match the original aggregated data 
used as the input. This can result in discontinuities in the borders between time periods that the data has been aggregated 
over, which means that the reconstructed incidence is not completely smooth, even when there is no noise in the data 
(Figure S10). When Rt is estimated using sliding windows, these may align perfectly with the time windows that data were 
aggregated over or they may encompass the border between aggregations, and therefore the discontinuity in the data. As 
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shown in Figure S9M-P, this can lead to a wavy pattern in the 95% coverage, where the sliding window moves across the 
incidence data and can be more/less affected by the discontinuities depending on where they fall. This is important to be 
aware of, but as seen in the real data scenarios (section 1), reported daily data is often dramatically affected by intra-weekly 
variations in reporting, such as weekend effects. The reconstructed data, even with these discontinuities, is much smoother 
than the daily data that is typically reported. Nevertheless, we suggest that the sliding time window used to estimate Rt 
should be equal to or longer than the length of the aggregation window, to limit the effect of the discontinuities on the 
estimates. 
 

 
Figure S10. An example of reconstructed daily incidence data (on the log scale) with clear discontinuities on the borders 
between time periods where the data had been aggregated (grey dashed lines).  
 

c. Time varying Rt: sudden change 
 
In the first scenario for time varying transmissibility, we considered a stepwise decrease or increase in the value of Rt. Rt 
may suddenly decrease or increase following the rapid implementation or relaxation of stringent control measures, for 
instance, a strict mass ‘lockdown’ event.  
 
We considered four decreasing scenarios, where on day 35 of the simulated outbreak, Rt falls from: 1.25 to 0.75, 1.25 to 
1, 1.5 to 1.25, or 1.75 to 1.5. The true value of Rt was successfully recovered in all scenarios, except for a week-long delay 
following the step change (Figure S11A-D), which corresponds to dips in the bias plots (Figure S11E-H). This delay is due 
to the weekly sliding window used for Rt estimation, which would encompass incidence data before and after the step 
change.  
As expected, uncertainty declines as case numbers rise when Rt > 1 (Figure S11I-L). The decrease in Rt from 1.25 to 0.75 
replicates a situation where control measures successfully bring Rt below 1, resulting in falling case numbers and increased 
uncertainty after day 35 (Figure S11I). Similarly, when Rt falls from 1.25 to 1, case numbers become stable, leading to a 
plateau in the uncertainty (Figure S11J). 
Importantly, despite not recovering the true value of Rt in the week following the step change, a high proportion of the 
estimates recovered the value of Rt that would have been estimated from the reported daily data (Figure S11M-P). There 
is a slightly larger drop in the 95% coverage when Rt falls from 1.75 to 1.5 (Figure S11P), however, this is due to higher 
case numbers in this scenario resulting in very narrow 95% credible intervals. Overall, the 95% credible interval 
encompassed the true value of Rt 85-90% of the time, which rose to 95-97% if the week following the step change was 
excluded. 
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Figure S11. Performance of the method when estimating a time varying Rt for 100 simulated epidemics. In this scenario, 
Rt suddenly decreases on day 35 (grey dashed line) and remains constant before and after the step change. A-D) The mean 
weekly sliding Rt estimates using daily data (grey) and weekly data (green). The black dashed line represents the true value 
of Rt that the 100 simulations are based on, which is either a decrease from A) 1.25 to 0.75, B) 1.25 to 1, C) 1.5 to 1.25, or 
D) 1.75 to 1.5. The grey dotted line represents the threshold of Rt = 1. The estimates (plotted at the end of each time 
window) and their 95% credible intervals (shaded area) are very similar and therefore overlap. E-H) The bias (or absolute 
difference) in the mean Rt estimated from weekly data compared to the true value of Rt. The shaded area corresponds to 
the 95% quantiles of the bias across the 100 simulations. I-L) The uncertainty (mean width of the 95% credible interval) 
in the Rt values estimated from weekly data. M-P) The proportion of the 100 Rt estimates made using weekly data where 
the 95% credible interval encompasses either the true value of Rt (black) or the value of Rt that would have been estimated 

from daily data (blue). 
 
A sudden stepwise increase in Rt is perhaps more difficult to explain in a real-world context, but it is also shown here for 
the sake of completion. Three scenarios for a stepwise increase in Rt were considered: 1 to 1.25, 1.25 to 1.5, and 1.5 to 
1.75. Similarly, the true value of Rt was well recovered in each scenario, but there was a week-long delay following the 
step change (Figure S12A-F). The uncertainty was stable when Rt is 1 and falls as case numbers rise (Figure S12G-I). 
Finally, despite the drop in 95% coverage for the true value of Rt, the weekly estimates recovered what would have been 
estimated from daily data (Figure S12J-L). Across these scenarios, the 95% credible interval encompassed the true value 
of Rt 87-95% of the time, rising to 95-96% if the week following the step change is excluded. 
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Figure S12. Performance of the method when estimating a time varying Rt for 100 simulated epidemics. In this scenario, 
Rt suddenly increases on day 35 (grey dashed line) and remains constant before and after the step change. A-C) The mean 
weekly sliding Rt estimates using daily data (grey) and weekly data (green). The black dashed line represents the true value 
of Rt that the 100 simulations are based on, which is either an increase from A) 1 to 1.25, B) 1.25 to 1.5, or C) 1.5 to 1.75. 
The grey dotted line represents the threshold of Rt = 1. The estimates (plotted at the end of each time window) and their 
95% credible intervals (shaded area) are very similar and therefore overlap. D-F) The bias (or absolute difference) in the 
mean Rt estimated from weekly data compared to the true value of Rt. The shaded area corresponds to the 95% quantiles 
of the bias across the 100 simulations. G-I) The uncertainty (mean width of the 95% credible interval) in the Rt values 
estimated from weekly data. J-L) The proportion of the 100 Rt estimates made using weekly data where the 95% credible 
interval encompasses either the true value of Rt (black) or the value of Rt that would have been estimated from daily data 
(blue). 
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d. Time-varying Rt: gradual change 

 
Changes in transmissibility are often more gradual over time. For example, Rt could slowly decrease as a population 
becomes more aware of a circulating pathogen and modifies their behaviour accordingly, or Rt could increase in response 
to the gradual easing of restrictions, such as social distancing measures, or a gradual decline in compliance to such 
restrictions. In the following scenarios, we considered a gradual change in Rt that occurred over the course of 30 days, 
starting on day 20 and ending on day 50. Four scenarios were considered for a gradually decreasing Rt, where Rt falls from: 
1.25 to 0.75, 1.25 to 1, 1.5 to 1.25, and 1.75 to 1.5 (Figure S13). Three scenarios were considered for a gradually increasing 
Rt, where Rt increases from: 1 to 1.25, 1.25 to 1.5, and 1.5 to 1.75. 
 
As above, during the period of gradual change, the estimates were affected by the lag due to the weekly sliding window 
for Rt estimation (Figure S13A-D & Figure S14A-C). This means that Rt was slightly overestimated during the 30 days 
that Rt was gradually decreasing and slightly underestimated when Rt was gradually increasing (Figure S13E-H & Figure 
S14D-F). The uncertainty declined as case numbers rose (Figures S13I-L & S14G-I), increased when Rt fell below 1 
(Figure S13I) and plateaued when Rt = 1 (Figures S13J & S14G). The lag in the estimates caused some notable drops in 
the 95% coverage (Figures S13M-P & S14J-L). This is particularly prominent when incidence is high and credible intervals 
are small, such as in the gradual decrease in Rt from 1.75 to 1.5 scenario, where the true value of Rt was encompassed by 
the 95% credible interval 62% of the time (Figure S13P). For all other gradually decreasing scenarios and the gradually 
increasing scenarios, true Rt was recovered between 81-94% and 78-96% of the time respectively. It is important to note, 
however, that even when substantial dips in coverage occurred, the bias remained small, meaning there was very little 
difference between the estimate and the true value of Rt despite not being exactly the same (Figure S13E-H). 
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Figure S13. Performance of the method when estimating a time varying Rt for 100 simulated epidemics. In this scenario, 
Rt gradually decreases over the course of 30 days (day 20 to day 50, shown with grey dashed lines), and remains constant 
before and after the change. A-D) The mean weekly sliding Rt estimates using daily data (grey) and weekly data (green). 
The black dashed line represents the true value of Rt that the 100 simulations are based on, which is either a decline from 
A) 1.25 to 0.75, B) 1.25 to 1, C) 1.5 to 1.25, or D) 1.75 to 1.5. The grey dotted line represents the threshold of Rt = 1. The 
estimates (plotted at the end of each time window) and their 95% credible intervals (shaded area) are very similar and 
therefore overlap. E-H) The bias (or absolute difference) in the mean Rt estimated from weekly data compared to the true 
value of Rt. The shaded area corresponds to the 95% quantiles of the bias across the 100 simulations. I-L) The uncertainty 
(mean width of the 95% credible interval) in the Rt values estimated from weekly data. M-P) The proportion of the 100 Rt 
estimates made using weekly data where the 95% credible interval encompasses either the true value of Rt (black) or the 
value of Rt that would have been estimated from daily data (blue).   
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Figure S14. Performance of the method when estimating a time varying Rt for 100 simulated epidemics. In this scenario, 
Rt gradually increases over the course of 30 days (day 20 to day 50, shown with grey dashed lines), and remains constant 
before and after the change. A-C) The mean weekly sliding Rt estimates using daily data (grey) and weekly data (green). 
The black dashed line represents the true value of Rt that the 100 simulations are based on, which is either an increase from 
A) 1 to 1.25, B) 1.25 to 1.5, or C) 1.5 to 1.75. The grey dotted line represents the threshold of Rt = 1. The estimates (plotted 
in the middle of each time window) and their 95% credible intervals (shaded area) are very similar and therefore overlap. 
D-F) The bias (or absolute difference) in the mean Rt estimated from weekly data compared to the true value of Rt. The 
shaded area corresponds to the 95% quantiles of the bias across the 100 simulations. G-I) The uncertainty (mean width of 
the 95% credible interval) in the Rt values estimated from weekly data. J-L) The proportion of the 100 Rt estimates made 
using weekly data where the 95% credible interval encompasses either the true value of Rt (black) or the value of Rt that 
would have been estimated from daily data (blue).   
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e. Influence of Rt plotting time relative to the time window used for estimation 
 
By default, the EpiEstim R package estimates Rt over weekly sliding time windows ending at time t, at which point Rt is 
plotted. An alternative to this, is to plot Rt in the middle of the time window, centred around t. This would mean that Rt 
estimates cannot be made in real-time, i.e., if a weekly window was used you can only estimate Rt at t + 3.5. However, the 
advantage is that retrospective Rt estimates would be less influenced by the lag corresponding to the length of the time 
window. 
 
To demonstrate this, we reconsider the scenarios with a gradual and sudden change in Rt. When gradual changes in Rt are 
plotted in the middle of the time window (t-3.5), the true value of Rt is well recovered and the 95% coverage is considerably 
improved in comparison to estimates plotted at the end of the time window (Figure S15). Overall, the 95% credible intervals 
of the gradual Rt estimates plotted at the mid-point of the time window encompassed the true value of Rt 93-97% and 88-
96% of the time for the increasing and decreasing scenarios respectively (compared to 78-96% and 62-94% when Rt is 
plotted at the end of the time window). In the gradual change from 1.5 to 1.75 and 1.75 to 1.5 scenarios, there is still a dip 
in coverage which occurs when case numbers are so high that the 95% credible intervals become extremely narrow (Figure 
S15C & J). Therefore, when the sliding window encompasses incidence data before Rt plateaus, it means Rt is slightly 
under- or overestimated for increasing and decreasing Rt respectively. However, it is evident that the mean estimates are 
negligibly different to the true value, despite not being exactly the same. 
 
In the stepwise change in Rt scenarios, there is also some improvement in 95% coverage (Figure S16). There is still a lag 
corresponding to the length of the time window, but now the change in Rt is detected earlier and the dip in coverage is 
centred around the time change on day 35. As above, the dips in coverage are larger when case numbers are very high, and 
the 95% credible intervals are small. The 95% credible interval of estimates plotted at the mid-point of the time window 
encompassed the true value of Rt 88-95% and 85-93% of the time for stepwise increasing and decreasing scenarios 
respectively, which is a modest improvement compared to 87-95% and 85-90% when Rt is plotted at the end of the time 
window.  
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Figure S15. Plotting the gradual change in Rt scenarios for 100 simulated epidemics in the middle of the time window. 
Here, the gradually increasing (A-C) and decreasing (G-J) Rt estimate plots are exactly as in figures S13 and S14, except 
they are plotted at t-3.5. Each 95% coverage plot (D-F & K-N) corresponds to the plot directly above and shows the 
proportion of the 100 Rt estimates made using weekly data where the 95% credible interval encompasses either the true 
value of Rt (black) or the value of Rt that would have been estimated from daily data (blue). As a reference, the 95% 
coverage of the true value of Rt for the Rt estimates plotted at the end of the time window (see figures S13 & S14) are 
shown in grey. 
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Figure S16. Plotting the stepwise change in Rt scenarios for 100 simulated epidemics in the middle of the time window. 
Here, the stepwise increasing (A-C) and decreasing (G-J) Rt estimate plots are exactly as in figures S11 and S12, except 
they are plotted at t-3.5. Each 95% coverage plot (D-F & K-N) corresponds to the plot directly above and shows the 
proportion of the 100 Rt estimates made using weekly data where the 95% credible interval encompasses either the true 
value of Rt (black) or the value of Rt that would have been estimated from daily data (blue). As a reference, the 95% 
coverage of the true value of Rt for the Rt estimates plotted at the end of the time window (see figures S11 & S12) are 
shown in grey. 
 
 

f. Weekend effects 
 
To mimic incidence data with weekend effects, the simulated incidence for scenarios where Rt remained constant at 1.5, 
suddenly decreased from 1.5 to 1.25, and gradually increased from 1.25 to 1.5, were further modified so that 80% of cases 
were taken off the final two days of each aggregation window and redistributed uniformly over the first two days of the 
aggregation window (Figure S17A-C). This appears roughly similar to the pattern observed in the influenza case study 
(Figure S7). Rt was then estimated using daily (Figure S17D-F), weekly (Figure S17G-I), and two-weekly (Figure S17J-
L) sliding windows, using the simulated data (with weekend effects) and the reconstructed daily data.  
 

0.8

1.2

1.6

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

A

0.8

1.2

1.6

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

B

0.8

1.2

1.6

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

C

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e

D

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e
E

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e

F

True R

Daily data

Weekly data

True R (mid-window)

Daily data est.

True R (end of window)

0.5

1.0

1.5

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

G

0.5

1.0

1.5

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

H

0.5

1.0

1.5

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

I

0.5

1.0

1.5

2.0

10 20 30 40 50 60

Time

W
ee

kly
 s

lid
in

g 
R 

es
tim

at
e

J

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e

K

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e

L

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e

M

0.00

0.25

0.50

0.75

1.00

20 40 60

Time

95
%

 C
ov

er
ag

e

N



 21 

 

Figure S17. Assessing the performance of our method in the presence of weekend effects in the reported data. A-C) 
Example of reported (grey) and reconstructed (green) daily incidence data taken from one of the 100 simulated epidemics 
(selected at random) for a (A) constant Rt of 1.5, (B) stepwise decrease in Rt from 1.5 to 1.25, and (C) gradual increase in 
Rt from 1.25 to 1.5. Rt was estimated over D-F) daily, G-I) weekly, and J-L) two-weekly sliding time windows. The black 
dashed line is the true value of Rt that the simulated data was based on. Note: y-axis limits for each incidence plot varies 
and the y-axis scale is different for the daily Rt estimate plots (second row). 
 
For every scenario, the Rt estimates were considerably smoother and more accurate when the incidence had been 
reconstructed from weekly data. This is simply because the reconstruction smoothed out the intra-weekly variability and 
removed the effect of the noise from Rt estimates. 
 

g. Number of iterations 
 
For each scenario, the EM algorithm used to reconstruct the incidence (and in turn estimate Rt) converged over a small 
number of iterations, with negligible differences beyond 5 iterations (Figure S18). Given that the computational time is so 
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short (see section 2f), the default number of iterations was set to 10 in the R package, although the user can change that 
setting. 
 

 
Figure S18. The mean weekly sliding Rt estimates generated after each of the 10 iterations from 100 stochastically 
simulated epidemics for the following scenarios: A) constant Rt of 1.5, B) stepwise decrease in Rt from 1.5 to 1.25, and C) 
gradual increase in Rt from 1.25 to 1.5. 
 

h. Different temporal aggregations 
 
In addition to weekly incidence, the method can be successfully applied to other temporal aggregations of data. Here, we 
showcase the method applied to data that has been aggregated to 3-day, 10-day and 14-day timescales. First, we consider 
the ideal scenario where the end of the aggregation window aligns perfectly with the Rt step-change on day 35 (Figure 
S19). Then we consider how the accuracy of the estimations would be affected if the step-change fell in the middle of the 
aggregation window (Figure S20).  
 
When the aggregation window is aligned with the step-change, there is only the usual lag in detecting temporal changes in 
Rt, corresponding to the width of the sliding time window used for the estimation (Figure S19 B, E, H & K). However, 
when aggregation windows misalign with the step-change, there is a further lag (Figure S20 H & K). This is because, in 
the process of daily incidence reconstruction, the growth rate is assumed constant within each aggregation window. When 
aggregation windows misalign with the step-change, the growth rate is essentially smoothed out when the daily incidence 
is reconstructed. This is important to be aware of when using larger aggregations of data, as the loss of some temporal 
resolution in Rt estimates will be unavoidable. 
 
As mentioned in section 2b, we recommend that the user ensures that the sliding window used to estimate Rt is equal to or 
longer than the length of the aggregation window. Although a longer sliding window leads to a further lag in Rt estimates 
for the stepwise change in Rt scenarios (Panels H & K in Figures S19 & S20), the Rt estimates generated are smoother. 
This is because they are less affected by discontinuities in the reconstructed incidence data, the result of which can be 
clearly seen in the gradual change in Rt scenarios (Panels I & L in Figures S19 & S20), where estimates made using 7-day 
sliding windows appear wavy. 
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Figure S19. Performance of the method using alternative aggregations of incidence data when the end of aggregation 
windows align with the step change on day 35. We consider the following scenarios: a constant Rt of 1.5 (left), stepwise 
decrease in Rt from 1.5 to 1.25 (middle), and a gradual increase in Rt from 1.25 to 1.5 (right), with data aggregated over 
A-C) 3 days, D-F) 7 days, G-I) 10 days, and J-L) 14 days. For the 10-day and 14-day aggregations of data, we compare 
estimates made using weekly sliding windows (green) with sliding windows of length matching that of the aggregation of 
data (blue). For all scenarios, Rt estimates are plotted at the end of the sliding time window. Grey dotted lines show the 
end of each aggregation window and the grey shaded areas are the time periods excluded in order to align the aggregation 
windows (if necessary). 
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Figure S20. Performance of the method using alternative aggregations of incidence data when the end of aggregation 
windows do not align with the step change on day 35. We consider the following scenarios: a constant Rt of 1.5 (left), 
stepwise decrease in Rt from 1.5 to 1.25 (middle), and a gradual increase in Rt from 1.25 to 1.5 (right), with data aggregated 
over A-C) 3-days, D-F) 7-days, G-I) 10-days, and J-L) 14-days. For the 10-day and 14-day aggregations of data, we 
compare estimates made using weekly sliding windows (green) with sliding windows of length matching that of the 
aggregation of data (blue). For all scenarios, Rt estimates are plotted at the end of the sliding time window. Grey dotted 
lines show the end of each aggregation window and the grey shaded areas are the time periods excluded in order to misalign 
the aggregation windows (if necessary). 
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