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Abstract  

Type 1 diabetes (T1D) results from an autoimmune destruction of pancreatic β cells. A 
significant gap in understanding the disease cause is the lack of predictive biomarkers for 
each of its developmental stages. Here, we conducted a blinded, two-phase case-control 
plasma proteomics analysis of children enrolled in the TEDDY study to identify 
biomarkers predictive of autoimmunity and T1D development. First, we performed 
untargeted proteomics analyses of 2,252 samples from 184 individuals and identified 376 
regulated proteins. Complement/coagulation, inflammatory signaling and metabolic 
proteins were regulated even prior to autoimmunity onset. Extracellular matrix proteins 
and antigen presentation were differentially regulated in individuals with autoimmunity 
who progressed to T1D versus those who maintained normoglycemia. We then 
performed targeted proteomics measurements of 167 proteins in 6,426 samples from 990 
individuals and validated 83 biomarkers. A machine learning analysis predicted both the 
development of persistent autoantibodies and T1D onset 6 months before autoimmunity 
initiation, with an area under the receiver operating characteristic curve of 0.871 and 
0.918, respectively. Our study identified and validated biomarkers highlighting pathways 
affected in different stages of T1D development. 
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Introduction  

Type 1 diabetes (T1D) is a chronic metabolic condition that affects approximately 

20 million people worldwide. Its associated morbidities (e.g., cardiovascular disease, 

blindness, and kidney failure) reduce life expectancy of individuals by 11 years1, and there 

is no cure yet for this disease. T1D results from a gradual destruction of insulin-producing 

β cells by an autoimmune response, which is associated with the appearance of 

autoantibodies against pancreatic islet proteins (hereafter referred to as 

‘seroconversion’)2,3. However, the cause(s) that trigger and mechanisms that govern this 

autoimmune response are still poorly understood. The Environmental Determinants of 

Diabetes in the Young (TEDDY) study has an ambitious goal of identifying factors that 

contribute to β-cell autoimmunity or T1D, towards enabling the development of 

therapeutic interventions4. A key bottleneck in this process is the lack biomarkers that can 

accurately predict each step of T1D development. 

Plasma proteomics analysis is a promising approach for discovering protein 

biomarkers5-7, and it has been applied to identify biomarkers of T1D onset8-11. Proteomics 

analysis can also provide important insights on the mechanism(s) of disease. Despite 

previous efforts10,11, there is still an urgent need for biomarkers that can predict the 

different stages of T1D development. Islet autoantibodies are excellent biomarkers and 

multi-positivity to islet autoantibodies predicts an almost inevitable development of T1D. 

However, there is a desperate need for biomarkers that predict and can be used to 

monitor the onset of islet autoimmunity. Moreover, it is also important to be able to 

distinguish between individuals that develop T1D vs. individuals that develop islet 
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autoimmunity but not hyperglycemia, in order to appropriately focus potential treatments 

to the relevant stage of disease development.  

Biomarker development is a long process, and many studies fall short due to the 

lack of systematic validation of candidates12. Here we conducted a robust T1D plasma 

protein biomarker discovery and validation study13 in the TEDDY cohort. We performed 

machine learning analysis to identify biomarker panels that can predict the development 

of both persistent autoantibodies and T1D with high accuracy and as early as 6 months 

before the appearance of the autoimmune response. By comparing with previously 

published proteomics models of insulitis using human islets and cultured β cells treated 

with cytokines, our results also provide insights on the mechanism of T1D development. 

 

Results 

Experimental design and discovery phase analysis 

The study was based on a nested case-control design4 and aimed to identify 

biomarkers predictive of autoimmunity and T1D development, with samples divided into 

8 groups: pre- and post-seroconversion for individuals that developed T1D or had 

persistent autoantibodies but with normoglycemia, each paired with respective control 

groups. The following comparisons were considered: I1: cases versus controls at pre-

seroconversion with normoglycemia endpoint; T1: cases versus controls at pre-

seroconversion with hyperglycemia endpoint; I2: cases versus controls at post-

seroconversion with normoglycemia endpoint; T2: cases versus controls at post-

seroconversion with hyperglycemia endpoint;  I3: pre- vs post-seroconversion of cases 
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with normoglycemia endpoint; and T3: pre- vs post-seroconversion of cases with 

hyperglycemia endpoint (Figure 1).  

The study was comprised of two phases: a discovery phase focused on a deep 

proteomics analysis of pooled samples from a limited number of individuals5 (N = 184); 

and a subsequent validation phase with selected biomarker candidates analyzed by 

targeted proteomics in many samples from a much larger cohort14 (N = 990) across 

multiple time points (Figure 1). The characteristics and demographic information for both 

discovery and validation phase cohorts are presented in Table 1. A total of 1488 mass 

spectrometry analyses from 62 multiplexed proteomics sets were performed in the 

discovery phase. To ensure quality across 18 months of data collection, we developed 

and implemented an automated quality control system named QC-ART (Quality Control 

Analysis in Real Time)15. This tight quality control analysis assured that consistent data 

were collected across the study. The data profile had very similar distributions of peptide 

abundances across different multiplexed sets (Figure S1A) and number of identified 

peptides in each group (Figure S1B). A total of 36,252 peptides derived from 1,720 

proteins were identified and after normalizing to a reference sample that was included in 

each multiplexed proteomics set, peptides were sequentially removed from the data set 

based on the following criteria: (I) detected in 2 or fewer samples across any group, (II) 

coefficient of variance greater than 150%, (III) detected in fewer than 2 matched case-

control pairs, and (IV) p-value > 0.05 across different comparisons. These criteria resulted 

in a final discovery phase proteomics dataset that included 376 significant proteins (373 

with ≥ 2 peptides and 3 with 1 peptide) at a p-value threshold of ≤0.05 (Figure 2A, Table 

S1). 
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Biological pathways regulated in islet autoimmunity and T1D development 

A functional-enrichment analysis of the discovery phase data showed that 22 

pathways were overrepresented among the 376 differentially abundant proteins and their 

proteoforms (Figure 2B). To facilitate the interpretation, we further grouped these 

pathways into fewer biological processes based on the components of each pathway that 

were regulated in the different comparisons. We plot the pathways as circles with their 

size being proportional to the fold enrichment and colored based on the enrichment 

significance (Figure 2B). Complement and blood clotting, antigen presentation, 

extracellular matrix, nutrient digestion and absorption, cellular metabolism and 

inflammatory signaling processes were significantly enriched with differentially abundant 

proteins (Figure 2B). We compared the functional-enrichment analysis of the TEDDY 

proteomics data to published proteomics analyses of human islets16 and the β-cell line 

EndoC-βH117 from the Human Islet Research Network (HIRN). Each sample type was 

treated with pro-inflammatory cytokines IL-1β+IFNγ as a model of insulitis. Proteins 

related to complement and blood clotting, antigen presentation, extracellular matrix, and 

inflammatory signaling were also enriched among the IL-1β+IFNγ regulated proteins in 

the human islet study (Figure 2B). In EndoC-βH1 cells, pathways related to antigen 

presentation, inflammatory signaling and cell metabolism were regulated similarly to the 

plasma signatures (Figure 2B). This shows that similar inflammatory signatures that 

occur in islets treated with pro-inflammatory cytokines can also be detected in plasma of 

individuals during T1D development. 

Extracellular matrix. Pathways related to the extracellular matrix were commonly enriched 

among the different comparisons. However, there was only a small overlap of significant 
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proteins between the different comparisons as shown in the heatmap. At pre-

seroconversion, individuals who only developed autoimmunity but remained 

normoglycemic had 14 regulated proteins (12 upregulated) (Comparison I1, Figure 3), 

while individuals that developed hyperglycemia had 10 regulated proteins (all 

upregulated) (Comparison T1, Figure 3). Post-seroconversion, the scenario became 

more distinct, with the islet autoimmunity with normoglycemia group having 24 out of 25 

regulated proteins downregulated, while the group that developed hyperglycemia had 17 

out of the 17 regulated proteins upregulated (Comparisons I2 and T2, respectively, 

Figure 3). 

Antigen presentation. Antigen processing and presentation was the most distinctive 

pathway at the pre-seroconversion time point when comparing the group that developed 

T1D vs those who only displayed autoimmunity with normoglycemia. In the group that 

developed T1D, a higher level of antigen-processing proteins was observed, including 

cathepsin L1 (CTSL) (protein names are abbreviated using their Uniprot gene names) 

and proteasome subunits PSMA8, PSMB1, PSBM5 and PSBM6 (Comparison T1, Figure 

3). Cathepsin L1 and proteasome subunits PSMA2, PSBM4 and PSBM10 were also 

higher after seroconversion, but were accompanied also by the antigen presenting 

complex HLA class I (HLA-B) and β-2-macroblobulin (B2M) (Comparison T2, Figure 3).  

Inflammatory signaling. Four cytokines and chemokines were regulated across different 

comparisons. C-C motif chemokine 14 (CCL14) was downregulated pre-seroconversion 

in the T1D group compared to the control (Comparison T1, Figure 3). C-C motif 

chemokine 5 (CCL5) and proplatelet basic protein (PPBP or CXCL7) were up- and down-

regulated, respectively, in the T1D group compared to the control at the post-
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seroconversion time point (Comparison T2, Figure 3). Receptors, such as platelet-

derived growth factor receptor beta (PDGFRB) and macrophage receptor MARCO, and 

signaling transduction proteins, such as serine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A alpha isoform (PPP2R1A), were also regulated (Figure 3). 

Complement and coagulation. Complement factors C1QC, C3 C4A, C5, C8A, C8B, C9, 

CR1L, CFB, CFH and CFI - and coagulation factors F5, F12, fibrinogen α and γ, von 

Willebrand and adenylate kinase - were higher at the pre-seroconversion time point in 

plasma of individuals with islet autoimmunity with normoglycemia endpoint vs. respective 

controls (Comparison I1, Figure 3). Proteoforms of F5 and von Willebrand factors were 

upregulated in the individuals that developed T1D at the same early time point 

(Comparison T1, Figure 3). Post-seroconversion, both groups had lower levels of most 

coagulation and complement factors compared to their respective controls. However, 

specific proteoforms were regulated in the opposite way (Comparisons I2 and T2, Figure 

3), probably reflecting processing or post-translational modifications of these proteins.   

Metabolic proteins. Among the central carbon metabolism enzymes, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), fructose-bisphosphate aldolase A, and ribose-5-

phosphate isomerase were reduced post-seroconversion in the group that developed 

T1D but not in the islet autoimmunity with normoglycemia group (Comparisons I2 and T2, 

Figure 3), suggesting an abnormal sugar metabolism. Lipoproteins represent another 

class of metabolic proteins regulated in plasma. Apolipoprotein (Apo) A1 was increased 

in both cohorts of individuals that developed T1D and islet autoimmunity with 

normoglycemia pre-seroconversion but had similar levels to the control after 

seroconversion (Figure 3). Conversely, Apo A2, A4, B, C1, C2, C3, D, E, H and J had 
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similar levels compared to the controls in both groups pre-seroconversion but declined 

after seroconversion (Figure 3). Overall, these data indicate changes in metabolic 

proteins that precede hyperglycemia. 

Validation of protein biomarker candidates 

We performed a systematic prioritization of the candidate biomarkers from the 

discovery phase based on the following criteria: (I) statistical significance at Benjamini-

Hochberg adjusted p-value ≤0.05, (II) ≥ 2 peptides identified per protein, a spectral count 

(SpC) ≥ 20 and unadjusted p-value < 0.005, (III) ≥ 2 peptides identified per protein, SpC 

≥ 20, detected in more than 23 samples, and machine learning (ML) to determine the 

group of proteins that are the most predictive of each of the 6 comparisons, or (IV) 

unadjusted p-value ≤0.05 but were previously described as potential T1D onset 

biomarkers in the literature8-11 (Figure 4A). This analysis led to the selection of 167 

proteins for the validation phase, of which 811 peptides were selected for targeted 

proteomics assay development (as described in methods). Similar to the discovery phase, 

we developed an informatics tool named Q4SRM (Quality control analysis for Selected 

Reaction Monitoring)18 to systematically track data quality across 29 months of analyses.  

A total of 694 peptides from all 167 proteins were successfully monitored until the end of 

the study (Figure 4B and Table S2). An additional post-hoc quality control analysis 

showed a strikingly high correlation (>95%) for almost all the 6,426 targeted proteomics 

analyses performed (Figure S2). From the measured peptides, 127 peptides from 83 

(50%) proteins were significant and showed similar abundance patterns to the discovery 

phase across comparisons I1, T1, I2, and T2 validating them as biomarkers (Figure 4 

and Table S3-S4). The 83 validated proteins belong to all major biological processes 
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observed as regulated in T1D development in the discovery phase: antigen presentation, 

complement and blood clotting, extracellular matrix, inflammatory signaling and metabolic 

proteins.  

Machine learning models for predicting T1D onset 

Machine learning is a powerful approach to identify individual or combinations of 

biomarkers that can predict a phenotype. Therefore, we performed machine learning 

analysis to identify biomarkers that can predict the development of islet autoimmunity with 

normoglycemia or T1D prior to patient seroconversion. We used logistic regression with 

a LASSO penalization to build machine learning models that can predict the different 

outcomes. This analysis can identify models based on panels of peptides that best predict 

the different outcomes, and they were tested by cross-validation repeated for 100 

bootstrap iterations. The receiver operating characteristic curves from this analysis show 

that both islet autoimmunity with normoglycemia and T1D onset can be predicted with 

high accuracy at 6 months prior to the seroconversion time with an average area under 

the curve of 0.871 and 0.918, respectively (Figure 5A). Figure 5B shows the proteins 

that correlate to the panel of peptides that were selected by the machine learning analysis 

to build the models. Among the most important proteins, i.e. the ones that appeared with 

more frequency across the training models, there were proteins from the complement and 

coagulation cascades (e.g. C4B, C5, C6, C8B, C9, F2 and F5), extracellular matrix (e.g. 

MMP2, COL1A1, COL1A2, WVF and ADAMTS13), and antigen processing and 

presentation (HLA-A, HLA-B and B2M) (Figure 5B), suggesting that they are important 

processes in the disease development. A total of 28 out of the 116 selected peptides were 

commonly selected across both I1 and T1 comparisons, while 81 were selected only in 
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the I1 comparison and 7 only in T1 (Figure 5B), showing that both islet autoimmunity with 

normoglycemia or T1D development have some overlapping but also distinct signatures. 

Overall, the machine learning analysis showed that islet autoimmunity with 

normoglycemia or T1D development can be predicted even 6 months prior to the onset 

of islet autoimmunity. 

 

Discussion 

  We initially identified 376 differentially abundant proteins among the varying points 

of islet autoimmunity with normoglycemia and T1D development in a cohort of the TEDDY 

study. These proteins were overrepresented in processes related to T1D development 

such as complement and blood clotting, antigen presentation, extracellular matrix, 

nutrient digestion and absorption, cellular metabolism and inflammatory signaling (Figure 

6). Importantly, these processes were also regulated in human islets and cultured β cells 

stimulated with pro-inflammatory cytokines to mimic the insulitis process. This suggests 

that some of these processes also occur in the pancreas during T1D development. 

Overall, our data showed a regulation in the complement and coagulation cascades. 

Polymorphism in complement has been associated with a higher risk of T1D 

development19,20. Increased complement activation and deposition have been shown in 

pancreata from individuals with T1D21. Patients with T1D also have increased clotting 

condition, including upregulation in platelet aggregation and coagulation activity and 

reduction in fibrinolysis22. Complement can also participate in opsonization of pathogens 

or dead cells towards phagocytosis (Figure 6). 
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The phagocytosis and lysosome components were also shown to be regulated in 

our data (Figure 6). This process is involved in pathogen and dead cell destruction and 

antigen presentation. The subsequent processes of proteasome antigen processing and 

presentation with HLA (human leukocyte antigen) were only upregulated at the pre-

seroconversion stage of individuals that developed T1D (comparison T1) (Figure 6), 

reinforcing the importance of this process in the disease development. It is possible that 

higher proteasome levels result in abnormal antigen presentation and autoimmunity 

development. Polymorphism on antigen presentation gene HLA is indeed the major risk 

factor for developing T1D23. The HLA variants can differentially present islet self-antigens 

and are believed to be involved in autoimmunity development24. During islet 

autoimmunity, pro-inflammatory cytokines and chemokines are produced, triggering β-

cell apoptosis and helping to recruit leukocytes and leading to insulitis25. This signaling 

also leads to regulation in gene expression and cell metabolism, which is observed in our 

data (Figure 6). 

Our data show shifts in metabolic proteins even pre-seroconversion (Figure 6). 

Changes in metabolite profiles have been shown to predict development of 

autoantibodies 6 months prior to seroconversion26. In addition, metabolite profiles 

detected in 3–9-month-old children from the TEDDY study are predictive of their 

developing T1D by the age of 6 years27. In addition, abnormal proinsulin-to-C-peptide 

ratio can be detected 12 months prior to the onset of T1D28, suggesting a dysfunction in 

insulin processing that may affect the body metabolism even before causing 

hyperglycemia. Furthermore, several components of plasma lipoproteins were 

downregulated after seroconversion. Triacylglycerols, which are major components of 
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plasma lipoproteins, have been shown to be lower in children that developed T1D 

compared to children that had islet autoimmunity but who remained normoglycemic29. 

Lipoprotein subunits, such as apolipoprotein CIII, have been linked to T1D development. 

Apolipoprotein CIII has been shown to trigger β-cell apoptosis30. Overall, changes in 

metabolism precede the disease onset and may also be involved in T1D development. 

Another process highly regulated in our data was the extracellular matrix (Figure 

6). Circulating extracellular matrix proteins are good indicators of tissue damage31, and 

may indicate damage on the pancreatic islets. In addition, during recruitment of 

leukocytes, the islet extracellular matrix undergoes major remodeling to allow cell 

infiltration32. Our data show a different profile on plasma extracellular proteins between 

the individuals with IA that developed T1D or had normoglycemia, possibly enabling or 

impeding β-cell destruction33.  

 In clinical diagnosis, T1D is diagnosed by blood glucose levels or by glycated 

hemoglobin3. For predictive biomarkers, HLA genotype and autoantibodies against islet 

proteins have been used but they lack enough discriminative power due to the 

heterogeneity of the disease34. Biomarkers based on T cells are currently being 

developed but require further validation35. Proteomics has been applied to identify T1D 

biomarkers, but some of these were focused on disease diagnosis after onset8,9. In 

biomarker studies prior to T1D onset, von Toerne et al. performed a proteomics discovery 

and validation study on samples from individuals after seroconversion to identify 

biomarkers that can diagnose the onset of islet autoimmunity and T1D development. They 

identified several circulating biomarkers of islet autoimmunity, and found that a protein 

panel composed by hepatocyte growth factor activator, complement factor H, 
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ceruloplasmin and age can predict progression time to T1D10. Moulder et al. performed 

untargeted proteomics analysis in a longitudinal study from 3 months to 12 years of age 

for 13 individuals that developed T1D vs. age matched controls and found that the profile 

of proteins such as complement proteins and apolipoproteins can predict the onset of 

T1D11. Here, we performed a study to identify and validate biomarkers of different stages 

of the disease and the likelihood of developing T1D. Unlike the study by Moulder et al 

that matched case-control pairs based on age, we make our comparisons in relation to 

seroconversion. We identified and validated 83 biomarkers of islet autoimmunity and T1D 

development prior to the onset of the disease. Furthermore, we performed machine 

learning analysis and identified panels of proteins that can predict both the development 

of persistent autoantibodies with normoglycemia and T1D even 6 months prior to the 

appearance of the autoimmune response. We believe evaluation of these promising 

predictive protein panels in other ongoing prospective studies of development of 

autoimmunity and T1D in human cohorts could aide in the development of new 

prognostics and therapeutics.   

One limitation of our study is that the validation was not performed in an 

independent cohort of samples. Validation in independent cohorts of samples can 

eliminate some confounding factors based on geographical and populational biases. 

However, our cohort includes individuals from 6 different centers in the US and Europe, 

which can reduce some of the regional confounding factors. Another limitation of our 

study is that the machine learning models were also not validated in an independent 

cohort of samples. However, they have gone through 100 bootstrap iterations of repeated 

cross-validation for the robustness of the analysis. Therefore, these two limitations are 
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among the points that need to be further evaluated in additional studies of independent 

cohorts before implementing our findings in clinical practice. Despite these limitations, our 

results provided biological insights on the molecular pathways regulated in T1D 

development and identified biomarker candidates for the disease.  
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Methods 

Study design, sample cohort, batching and randomization 

The study was conducted after approval from the Institutional Review Boards of 

the University of South Florida (USF) and the Pacific Northwest National Laboratory 

(PNNL) in accordance with federal regulations. The study was designed to primarily 

identify biomarkers of pre-autoimmune response in children who progressed or not to 

T1D, and the following comparisons were considered: I1) cases versus controls at pre-

seroconversion with normoglycemia endpoint, T1) cases versus controls at pre-

seroconversion with hyperglycemia endpoint, I2) cases versus controls at post-

seroconversion with normoglycemia endpoint,  T2) cases versus controls at post-

seroconversion with hyperglycemia endpoint, I3) pre- vs post-seroconversion of cases 

with normoglycemia endpoint, and T3) pre- vs post-seroconversion of cases with 

hyperglycemia endpoint (Figure 1).  

TEDDY study participants have higher genetic risk of developing T1D, and to 

reduce the study to a manageable size, samples were previously matched based on 

clinical center, gender, and family history of T1D4. This nested case-control design 

resulted in 401 one-to-one pairs for the islet autoimmunity with normoglycemia endpoint 

and 94 pairs for the T1D endpoint4. The characteristics of the subset of case-control 

samples are listed in Table 1. The study was designed with a discovery and a validation 

phase to ensure an in-depth and robust analysis and was also conducted in a blinded 

fashion until the conclusion of the validation phase. Sample selection, batching, and 

randomization were performed at USF, whereas proteomics measurements were 
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conducted at PNNL. Randomization was performed to assure that the study endpoints 

and patient time points were appropriately dispersed across the study and that the nested 

case-control pairs were analyzed within the same batch during processing to match the 

statistical design. 

Discovery Phase - Untargeted proteomics analysis 

A statistical power analysis was performed to determine the number of case-

control pairs needed in each study group, using a previous proteomics dataset consisting 

of 16,928 peptides measured in 12 individuals across multiple time points. Using the 

power.t.test function in R package (v3.2.3), it was determined that 23 case-control pairs 

were required to reach 80% power to detect a 2-fold difference utilizing a variance 

estimate associated with the 75-th percentile of measurements from the proteomics data. 

This number was doubled to 46 case-control pairs to account for untargeted proteomics 

missing data and resulted in 2252 plasma samples considering the multiple time points 

which were combined per donor within pre- or post-seroconversion into 368 samples due 

to costs and logistics. In the analysis, fourteen of the most abundant proteins in each 

sample were depleted using a Hu-14 4.6 x 100 mm MARS column (Agilent Technologies, 

Palo Alto, CA) coupled to a 1200 series HPLC (Agilent) and concentrated in Amicon 

centrifugal filters (3-kDa MWCO, Millipore, Burlington, MA). Proteins were digested in 96-

well plates36, and peptides were labeled with 8-plex iTRAQ reagent (Applied Biosystems, 

Foster City, CA) following manufacturer recommendations. A pooled reference sample 

was created by mixing aliquots of each sample and was used for normalization across 

different datasets. The multiplexed iTRAQ-labeled samples were fractionated by high pH 

reversed phase chromatography and analyzed on a nanoAquity UPLC® system (Waters) 
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connected to a LTQ Orbitrap Velos mass spectrometer (Thermo Scientific)15,37. Mass 

spectra were processed using Decon2LS_V2 and DTA Refinery38,39, with peptides 

identified using MSGF+40 by searching against the human SwissProt sequences of the 

Uniprot Knowledgebase. The parameters included: (1) 6 ppm parent ion mass tolerance, 

(2) partial tryptic digestion, (3) cysteine carbamidomethylation (+57.0215) and N-

terminal/lysine 8-plex iTRAQ (+304.2053) addition as static modifications, and (4) 

oxidation (+15.9949 Da) on methionine, cysteine, tyrosine, and tryptophan, dioxidation 

(+31.9898 Da) on cysteine, and deamidation/deamination (+ 0.9840 Da) on asparagine, 

glutamine, and arginine residues as variable modifications. Identifications were filtered 

with MSGF probability scores of ≤1.0x10−9, ≤7x10-11 and ≤2x10-12 at spectral, peptide and 

protein levels, respectively, resulting in <1% false-discovery rate. iTRAQ reporter ion 

intensities were extracted with MASIC41, and the intensities of multiple MS/MS spectra 

from the same peptide were summed together to remove redundancy. 

Validation Phase - Targeted proteomics analysis 

Up to 5 peptides were selected as surrogates for candidate biomarker proteins 

identified in the discovery phase based on their physical-chemical properties (between 8 

and 20 amino acid residues, derived from trypsin digestion at both termini, and lack of 

post-translationally modified amino acid residues or residues that are problematic for 

chemical synthesis), and a Bayesian network-generated probabilistic score was used to 

select the peptides more likely to be successfully developed into targeted proteomics 

assays. To account for possible proteoforms, peptides from the same proteins that were 

not statistically significant were also included. Whole plasma of 6,426 individual samples 

were digested in batches of approximately 80 samples in 96-well plates36 and spiked with 
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custom synthesized peptides (New England Peptides, now Vivitide) containing heavy 

isotopes in the C-terminal residues. Targeted proteomics analyses were performed using 

a Nano M-class UPLC (Waters) interfaced to a TSQ Altis triple quadrupole mass 

spectrometer (Thermo Fisher Scientific). Data were analyzed with the Skyline software 

and were manually inspected for proper alignment and background threshold.  

Statistical analysis  

Statistical quality control of untargeted proteomics data involved removing 

peptides that were observed in only one sample per group and outlier identification using 

a Mahalanobis distance method42,43. Protein quantification from the peptide-level data 

was based on standard and scaled median quantification43,44 and statistics were 

performed on proteins and proteoforms (different forms of the same proteins resulting 

from gene isoforms, processing or post-translational modifications) based on their 

abundance profiles using an analysis of variance model, while accounting for sample 

pairing and batch in the model. The p-values were subsequently corrected with a 

Benjamini-Hochberg multiple comparison adjustment45 within each comparison to 

account for the multiple tests being performed. Machine learning was also performed to 

identify possible validation candidate proteins that did not meet the p-value threshold but 

were predictive of outcome in a multi-variate model. This was done using R and consisted 

of data imputation with Random Forest46, risk association via Probabilistic Conditional 

Logistic Regression integrated with least absolute shrinkage and selection operator 

(LASSO) for feature selection (clogitLasso)47. 

Machine learning analysis to identify early biomarker panels predictive of disease 

onset 
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Validation phase data was filtered to remove 3 peptides observed in less than 50% 

of samples for at least one of the three time points prior to seroconversion. Remaining 

missing values were imputed with Random Forest46 imputation. A pairing correction48 was 

applied to the data to account for the case-control study design. Logistic regression with 

a LASSO penalization function was fit to the data with case/control status as the 

explanatory variable. The machine learning model was fit separately to each time point’s 

data using four-fold cross-validation repeated for 100 bootstrap iterations. 

Function-enrichment analysis 

Differentially abundant proteins were filtered for function-enrichment analysis 

using DAVID49, and only pathways containing KEGG annotation were used. The 

biological interpretations were only performed after the targeted proteomics data analysis 

were completed to avoid unconscious bias in sample and data analysis.  
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Table 1 – Characteristics of the study cohort. Abbreviations: FDR, first-degree relative; 
GADA, glutamic acid decarboxylase autoantibody, GP, general population; HLA, human 
leukocyte antigen; IA, islet autoimmunity with normoglycemia; IA-2A, islet antigen-2 
autoantibody; IAA, insulin autoantibody; T1D, type 1 diabetes.  
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Number  46 46 46 46 94 94 401 401 

Case 
Seroconversion 
Age (Months) 

Median 12 . 23 . 12 . 22 . 

Q1 9 . 14 . 10 . 12 . 

Q3 18 . 33 . 19 . 33 . 

Sex Female 25 25 17 17 43 43 179 179 

Male 21 21 29 29 51 51 222 222 

Clinical Center Colorado 8 8 4 4 13 13 57 57 

Georgia/Florida . . 1 1 6 6 28 28 

Washington 4 4 5 5 6 6 37 37 

Finland 23 23 23 23 31 31 113 113 

Germany 6 6 1 1 13 13 33 33 

Sweden 5 5 12 12 25 25 133 133 

HLA-DR-DQ 
Genotypes 

HLA Ineligible 1 1 . . 1 3 1 2 

DR3/4 26 20 25 17 55 39 211 152 

DR4/4 7 6 10 9 13 18 65 71 

DR4/8 7 5 8 6 14 10 61 67 

DR3/3 1 6 3 11 5 9 46 81 

FDR-specific 4 8 . 3 6 13 17 28 
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FDR: both parents . . . . 1 . 1 . 

FDR: sibling 4 2 1 . 8 4 21 15 

Type of First 
Autoantibody 

Not IA+ . 44 . 45 . 89 . 392 

IAA only 27 2 27 . 53 4 194 0 

GADA only 8 . 11 1 14 1 132 3 

IA-2A only . . 1 . . . 6 . 

Two or more 
autoantibodies 11 . 7 . 

27 . 69 . 
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Figures 

 
Figure 1 – Study design: a two-phase study design to discover and validate biomarkers in human 
blood plasma. Individual plasma samples from a smaller number (N) of individuals were pooled from pre- 
and post-seroconversion visits and analyzed by in-depth untargeted proteomics in the discovery phase (left 
panel).  Individual plasma samples from several collection time points (represented by the dots in the 
timeline) were analyzed in a larger cohort by targeted proteomics in the validation phase (right panel). 
Comparison I1: time point(s) before seroconversion in individuals that had normoglycemia (IA: islet 
autoimmunity with normoglycemia) at the end of the study paired against controls. Comparison T1: time 
point(s) before seroconversion in individuals that developed hyperglycemia (T1D: type 1 diabetes) paired 
against matched controls. Comparisons I2 and T2 have the same group of individuals as I1 and T1, 
respectively, but after seroconversion. Comparisons I3 and T3 compare individuals that remained 
normoglycemic or developed hyperglycemia before vs after seroconversion, respectively. 
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Figure 2 – Discovery phase data analysis. (A) Discovery phase data quality and statistical analysis 
workflow. Sequential pre-filtering steps focused on identification and removal of high variability (steps 1-2) 
and low coverage (step 3) peptides and proteins. Resulting proteins and peptides were submitted to multiple 
statistical comparisons in the context of autoimmunity and T1D development (steps 4-5). (B) Functional-
enrichment analysis. The 376 differentially abundant proteins identified from the discovery phase were 
submitted to function-enrichment analysis with DAVID, using the KEGG annotation. Pathways were plotted 
as circles with sizes based on their fold enrichment and colors based on p-values. Individual pathways were 
grouped into larger biological processes based on the overlapping proteins between each pathway. 
Pathways that were also enriched among the 167 targets of the validation phase are marked with asterisks. 
Comparison I1: time point(s) before seroconversion in individuals that had normoglycemia at the end of the 
study paired against controls. Comparison T1: time point(s) before seroconversion in individuals that 
developed hyperglycemia paired against matched controls. Comparisons I2 and T2 have the same group 
of individuals as I1 and T1, respectively, but after seroconversion. Comparisons I3 and T3 compare 
individuals that remained normoglycemic or developed hyperglycemia before vs after seroconversion, 
respectively. 
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Figure 3 – Regulated pathways. The 376 differentially abundant proteins identified from the discovery 
phase were submitted to function-enrichment analysis with DAVID, using the KEGG annotation. The 
heatmap shows the proteins enriched for each pathway. Asterisks mark those proteins in specific 
comparisons that were statistically significant. Comparison I1: time point(s) before seroconversion in 
individuals that had normoglycemia at the end of the study paired against controls. Comparison T1: time 
point(s) before seroconversion in individuals that developed hyperglycemia paired against matched 
controls. Comparisons I2 and T2 have the same group of individuals as I1 and T1, respectively, but after 
seroconversion. Comparisons I3 and T3 compare individuals that remained normoglycemic or developed 
hyperglycemia before vs after seroconversion, respectively. Proteins are named based on Uniprot gene 
names. 
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Figure 4 – Validation phase data analysis. (A) Biomarker candidates were selected first based on 
statistical test with p-value correction. Additional candidates were selected for validation based on the p-
value, number of samples in which the peptide was detected, spectral count, machine learning and previous 
reports in the literature. (B) Up to 5 peptides for each candidate protein were selected based on their 
physicochemical properties and probability ranking for a likely successful measurement by targeted 
proteomics. (C) Cross-validated proteins across discovery (D) and validation (V) phases. Only significant, 
validated proteins are represented in the heatmap and colored based on their regulation. Time points are 
represented by months prior (-) or post (+) seroconversion. Comparison I1: time point(s) before 
seroconversion in individuals that had normoglycemia at the end of the study paired against controls. 
Comparison T1: time point(s) before seroconversion in individuals that developed hyperglycemia paired 
against matched controls. Comparisons I2 and T2 have the same group of individuals as I1 and T1, 
respectively, but after seroconversion. Proteins are named based on Uniprot gene names followed by the 
peptide sequence. 
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Figure 5 – Prediction of autoimmunity with normoglycemia or type 1 diabetes (T1D) onset prior to 
seroconversion by machine learning analysis. (A) The panels show receiver operating characteristic 
(ROC) curves of peptide panels that predict normoglycemia (comparison I1) and T1D onset (comparison 
T1) at 6 months prior to the seroconversion. The numbers (n) of case-control pairs used at each time point 
are shown at the top of each ROC curve. Individual bootstrap curves are shown in gray with the mean curve 
given in blue. (B) Heatmaps showing the selected proteins and their frequencies of being kept in the model 
over the 100 bootstrap iterations for the most important peptide features used to predict the model. The left 
two panels contain proteins that were selected in only one comparison, whereas the right panel shows 
proteins that were commonly selected. Proteins are named based on Uniprot gene names.  
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Figure 6 – Summary of pathways regulated in autoimmunity and type 1 diabetes development. Many 
components of the complement cascade were found to be increased pre-seroconversion (comparisons 
T1/I1) and decreased post-seroconversion (T2/I2). An increase in phago/lysosome components was 
observed in comparisons T1/I1/T2. However, an increase in proteasome and antigen presentation 
components was only observed in T1. This process can trigger cellular signaling along with the stimulation 
of cytokine/chemokine receptors, regulating gene expression and cell metabolism (I1/T2/I2). We also 
observed a regulation of the extracellular matrix proteins (up in T1/I1/T2 and down in I2), which can regulate 
the interaction with immune cells. Comparison T1: time point before seroconversion in individuals that 
developed hyperglycemia paired against matched controls. Comparison I1: time point before 
seroconversion in individuals that had normoglycemia at the end of the study paired against controls. 
Comparisons T2 and I2 have the same group of individuals as T1 and I1, respectively, but after 
seroconversion. 
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Figure S1 - Data quality across the entire discovery phase analysis. (A) Overall peptide abundances 
of the reference sample channel in each of the sixty-two 8-plex iTRAQ sets. (B) Number of identified 
peptides in different sample groups. 
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Figure S2 - Data quality across the whole plasma proteomics analysis of the validation phase. The 
heatmap shows the correlations of the overall peptide abundances across the 6,426 targeted mass 
spectrometry analyses. 
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Data and Resource Availability 

For data and resource availability, please reference the TEDDY data summary and 

access page: https://teddy.epi.usf.edu/research/. 
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• Supplementary Material. Author information.  

• Supplementary information Table S1 – Statistical analysis of proteins quantified 

in the discovery phase. 

• Supplementary information Table S2 - Biomarker candidates selected for the 

validation phase. 

• Supplementary information Table S3 - Statistical analysis of peptides measured 

in the validation phase for individuals that developed type 1 diabetes. 

• Supplementary information Table S4 - Statistical analysis of peptides measured 

in the validation phase for individuals that had islet autoimmunity with 

normoglycemia. 

• Supplementary information Table S5 – Panels of peptides used for the 

multivariate panel prediction of islet autoimmunity with normoglycemia and type 1 

diabetes development at the 6 months prior to seroconversion time point. 

• Supplementary information Figure S1 - Data quality across the entire discovery 
phase analysis. (A) Overall peptide abundances of the reference sample channel 
in each of the sixty-two 8-plex iTRAQ sets. (B) Number of identified peptides in 
different sample groups. 

• Supplementary information Figure S2 - Data quality across the whole plasma 
proteomics analysis of the validation phase. The heatmap shows the correlations 
of the overall peptide abundances across the 6,426 targeted mass spectrometry 
analyses. 
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