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Abstract  

 

The rise of antimicrobial resistance (AMR) is one of the greatest public health challenges, already 

causing up to 1.2 million deaths annually and rising. Current gold-standard antimicrobial 

susceptibility tests (ASTs) are low-throughput and can take up to 48 hours, with implications for 

patient care. We present advances towards a novel, rapid AST, based on the deep-learning of single-

cell specific phenotypes directly associated with antimicrobial susceptibility in Escherichia coli. 

Our models can reliably (80% single-cell accuracy) classify untreated and treated susceptible cells, 

across a range of antibiotics and phenotypes - including phenotypes not visually distinct to a trained, 

human observer. Applying models trained on lab-reference susceptible strains to clinical isolates 

of E. coli treated with ciprofloxacin, we demonstrate our models reveal significant (p<0.001) 

differences between resistant and susceptible populations, around a fixed treatment level. 

Conversely, deploying on cells treated with a range of ciprofloxacin concentrations, we show 

single-cell phenotyping has the potential to provide equivalent information to a 24-hour growth 

AST assay, but in as little as 30 minutes.  

 

* Corresponding authors: kapanidis@physics.ox.ac.uk, nicole.stoesser@ndm.ox.ac.uk, 

christoffer.nellaker@wrh.ox.ac.uk 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.08.22283219doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.12.08.22283219
http://creativecommons.org/licenses/by-nc/4.0/


 
2 

INTRODUCTION 

 

Antimicrobial resistance (AMR) is a major public health challenge, causing an estimated 1.2 million 

deaths annually 1, with this number predicted to rise much further if left unchecked. AMR represents 

the evolutionary effect of antimicrobial selection pressures in the context of the short bacterial cell 

cycle, leading to adaptation by natural selection through a variety of molecular mechanisms 2. 

Several clinical strategies to address the AMR crisis have been considered. One strategy relies on the 

continuous development of novel antimicrobial agents to outpace bacterial evolution; however, this 

strategy alone is neither scientifically nor economically viable 3,4. Another strategy relies on the 

conservation of the existing antimicrobial arsenal through strict stewardship and regulation, which 

remains challenging to implement universally 5. A third option, as part of stewardship, is through 

diagnostic improvements, including more rapid Antimicrobial Susceptibility Testing (AST) methods, 

which allow better tailoring of antibiotic treatment regimens given to patients 6. A combination of 

these and other approaches, such as vaccination, is likely needed, as no single strategy currently 

represents a complete solution across all settings. 

 

Existing ASTs provide phenotypic quantification of the Minimum Inhibitory Concentration (MIC) 

of an antibiotic of choice for isolates cultured from infected patients, and can be complemented by 

targeted nucleic-acid assays for known resistance determinants. AST may also be preceded by 

species identification (e.g., using MALDI-ToF). The major drawback of current ASTs is their 

relatively slow speed and throughput, requiring culture-based isolation of clinical pathogens, expert 

operators and laboratory space, and ~24 hours turnaround time from sampling 7. Initial antimicrobial 

regimens given to sick patients are therefore usually broad-spectrum, which may maximise collateral 

patient-level effects such as perturbation of gut flora, and contribute to the selection and 

dissemination of AMR at both the patient- and population-levels.  

 

Multiple novel approaches to improve the speed of AST exist, including biosensors, genomic assays, 

and hybridization approaches 8; however, most of these remain in the development stage 9, and have 

not yet been translated into practice.  Many of these methods assess an entire bacterial culture, and 

the lack of single-cell specificity leaves them insensitive to heterogeneity in cell populations, such as 

the presence of persister cells. A potential solution to this problem is the use of single-cell specific 

ASTs, which address the heterogeneity problem while also offering higher throughput by evaluating 

the effect of antimicrobials directly on cells, rather than relying on secondary markers, such as growth 

of an entire culture. Multiple such candidate ASTs have been proposed, enabled by platforms such 

as flow cytometry 10, Raman spectroscopy 11,12, fluorescent probes in droplet microfluidic devices 13, 

impedence cytometry 14 and others. Further opportunity in single-cell ASTs comes from their 

integration with widefield microscopy 15–18, which further increases throughput by enabling real-time 

simultaneous monitoring of large numbers of individual cells. Such cellular imaging produces rich, 

high-volume, unstructured data that are well suited to machine-learning based analysis, and in 

particular, by modern deep-learning techniques. These techniques have been used to great effect to 
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produce AST inference models from genomic 19,20 and metabolomic 21–24 data, where their ability to 

execute their own feature engineering maximises the usage of complex, unstructured data. With 

similar insights, deep-learning has been applied to widefield microscopy to produce candidate ASTs 

that provide phenotypic quantification by monitoring single-cell growth 25,26 or motion patterns 27,28 

in the presence of antibiotics.  

 

Another microscopy approach relies on directly evaluating the effect of antimicrobials on cellular 

structures, such as the bacterial nucleoid or the cell membrane. These structures have been 

characterized experimentally and computationally 29,30, and were used as single-cell phenotypes to 

profile cytological pathways to understand the mode of action of antibiotics 31, and to test for 

methicillin resistance in Staphylococcus aureus 32. A wide range of nucleoid and cell membrane 

cytological phenotypes under different treatment conditions have since been established for a range 

of Gram-positive and Gram-negative species 33–35. Such a phenotyping approach has notable 

advantages over single-cell microscopy assays monitoring growth or motion patterns: results are 

available on the timescale of a single bacterial life cycle rather than several lifecycles, the method is 

applicable to difficult-to-culture pathogens, and there is no requirement for continuous tracking of 

individual live cells over time. However, cellular phenotyping may be affected by phenotypic 

plasticity, whereby small genotypic and environmental differences can strongly influence the 

displayed phenotype.  

 

In this work, we introduce a novel, single-cell, microscopy-based AST that addresses many important 

shortcomings of existing assays. We combine single-cell phenotypes of the nucleoid and cell 

membrane with modern Convolutional Neural Networks (CNNs) to design an AST based on deep 

phenotyping of individual cells that display different physiological responses to antibiotics. CNNs 

feature a hierarchical pattern of learnable convolution filters, which allows efficient learning in 

heterogenous imaging data without manual feature engineering – removing the main bottleneck of 

previous work 32. Our Deep Antimicrobial Susceptibility Phenotyping (DASP) platform uses 

widefield micrographs to rapidly classify antibiotic-treated cells as either susceptible or resistant. We 

have developed specific models for four antibiotics, each representative of an antibiotic family with 

a different mode of action: the fluoroquinolone ciprofloxacin (which targets DNA synthesis), the 

aminoglycoside gentamicin (targets protein synthesis), the beta-lactam co-amoxiclav (targets cell-

well synthesis) and rifampicin (targets RNA synthesis). We show our models are robust to phenotypic 

plasticity by training them on a lab strain of Escherichia coli and then deploying them successfully 

on several E. coli clinical isolates with different MICs, where we were able to distinguish reliably 

susceptible and resistant isolates around a fixed treatment concentration. Furthermore, we 

demonstrated that varying the treatment concentration generates a dose-response relationship that 

might allow precise quantification of the MIC of isolates an order of magnitude faster than 

established gold-standard clinical techniques.  
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RESULTS 

 

Detecting antibiotic susceptibility based on deep learning of single-cell subcellular phenotypes. 

We designed an AST that takes as an input bacterial cultures grown in rich medium until a consistent 

optical density and then treated with an antibiotic of choice for a time sufficient to produce a 

phenotypic change (e.g., in the nucleoid morphology) to the given antibiotic in the case the strain is 

susceptible. Upon cell fixation and staining (Fig. 1A), antibiotic-resistant cells that remain unaffected 

by the treatment should display a resistant phenotype, which highly resembles the original untreated 

phenotype (see Fig. S1 for examples comparing the resistant and untreated phenotypes in resistant 

clinical isolates). In contrast, antibiotic-susceptible cells will show visually distinct phenotypic 

changes – a distinct, antibiotic-specific, susceptible phenotype (Fig. 1A, left).  

 

After collecting a large number of micrographs (each representing an image containing 50-200 cells), 

individual cells representing either the untreated or susceptible phenotype were used to train 

segmentation and classification models. At test time, the trained models segment micrographs of 

treated cells and classify individual cells into one of the two categories with regards to antibiotic 

susceptibility; examining the distribution of classifications reports on the resistance of the entire 

unknown sample (Fig. 1B). 

 

Generating antibiotic-resistant and antibiotic-susceptible phenotypes. To implement the concept 

above, we characterized the untreated phenotype of lab reference E. coli strain MG1655, as well as 

the susceptible phenotypes of the same strain to four clinically relevant antibiotics: ciprofloxacin 

(CIP), gentamycin (GENT), rifampicin (RIF) or co-amoxiclav (COAMOX) (see Methods and Fig. 

S2). To capture the untreated phenotype (and use it as a proxy for the resistant phenotypes, where we 

expect no treatment-induced changes in the nucleoid and membrane) and the susceptible phenotype 

for each antibiotic, we stained the bacterial nucleoid with the DNA-binding fluorophore DAPI (green 

signals in Fig. 2A-E), and the membrane with the lipid stain Nile Red (NR; red signals in Fig. 2A-

E), revealing the organization of the nucleoid and overall cell morphology as a function of treatment.  

 

In the untreated phenotype (Fig. 2A), distinct copies of the chromosome were seen in each cell, 

organized into heterogenous macrodomains by nucleoid-associated proteins 36. In contrast, 

incubating susceptible MG1655 with ciprofloxacin produced a compaction of the chromosome 

towards the cell center due to topoisomerase IV inhibition 37 (Fig. 2B). Similarly, incubation with 

gentamicin, which binds to the 30S ribosomal subunit and interferes with translation elongation, also 

leads to nucleoid compaction, although the chromosomes in this case do not merge fully into one 

spot (Fig. 2C). Incubation with rifampicin, which inhibits transcription initiation by RNA 

polymerase, led to decompaction of the nucleoid (Fig. 2D); individual chromosomes could still be 

distinguished, but the macrodomains were lost. Finally, exposure to co-amoxiclav produces a subtle 

susceptible phenotype – whilst some differences in the organization of the macrodomains can be 

seen, the effect is more challenging to discriminate visually from the untreated phenotype. 
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Representative full fields of view for all phenotypes are provided in Figs. S3 and S4. 

 

To classify the phenotypes, we designed a 2-stage deep-learning pipeline (Fig. 2F). In the first stage, 

a Mask-Region based Convolutional Neural Network (RCNN) model 38 segments individual cells 

from whole micrographs using the image generated using NR stain. In the second stage, a separate 

DenseNet121 classifier classifies cells into phenotypes using the images generated using both NR 

and DAPI stains. Together, both stages allow precise quantification of the sample response to 

antibiotic treatment with single-cell resolution. 

 

 

Single-instance cell segmentation by Mask-RCNN. To segment cells from micrographs, a Mask-

RCNN model was built on a ResNet50 backbone, and trained for a 2-class segmentation task 

(cell/background) on an ensemble dataset of annotated micrographs of treated and untreated cells 

from 6 repeat imaging experiments of MG1655 (Fig. S5C), consisting in total of 29,297 ground truth, 

manually curated cells in 459 fields of view. During training, the model was continually validated on 

a validation set, consisting of 9,044 cells in 115 fields of view.  

 

We evaluated the performance of our segmentation on a dataset consisting of all the micrographs 

across all treatments in a “holdout” experiment – from which no cells or micrographs were used 

either in training or hyperparameter optimization. Evaluating a total of 155 micrographs containing 

13,247 ground-truth, manually curated cells, we detected a total of 12,147 cells (92% maximum total 

recall). To quantify the quality of the segmentation, we calculated the average precision-recall curves 

at a range of Intersection over Union (IoU) thresholds, as well as the associated segmentation 

confidence (Fig. S6). The precision-recall curve quantifies the tradeoff between precision (i.e., the 

fraction of returned results that are relevant), and recall (i.e., the fraction of total relevant results that 

were successfully returned), whereas the IoU quantifies the area overlap between the detection 

instances and ground truth instances needed to count as a successful detection – as the IoU threshold 

increases, the task becomes harder. We achieved an Average Precision (AP) of 85.5% at the standard 

IoU threshold of 0.5; the AP decreased slightly to 79.3% at the stricter IoU threshold of 0.75. 

 

 

Distinguishing resistant and susceptible single-cell phenotypes. To classify segmented cells into 

distinct phenotypes, we trained DenseNet121 39 classifiers in a range of computational experiments 

(Fig. S5B-C), for the binary classification of resistant and susceptible single-cell phenotypes 

generated using MG1655 and one classifier per antibiotic. As discussed above, treated MG1655 cells 

were used to generate the susceptible class, whilst untreated cells were used to generate the resistant 

class. 

 

First, we trained each classifier on an ensemble dataset, where all untreated and treated cells from 6 

experiments were combined into one dataset from which cells for the training, validation and test sets 
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were drawn randomly without replacement (see Methods); this “ensemble” approach provides the 

expected upper bound for model performance. Second, to examine the performance loss from the 

upper bound due to experimental variation within the training data, we performed an experimental 

cross-validation: one of the 6 experiments was withheld for testing, and the model trained on a class-

balanced dataset consisting of an equal number of cells drawn randomly from each of the remaining 

experiments. This “cross-validation” experiment was rotated around with the final reported result 

being the sum over 6 different models trained and tested on different permutations of experiments. 

Lastly, to evaluate the robustness of the classifiers against experimental variation, we trained a model 

on a class-balanced dataset of equal numbers of cells drawn randomly from the 6 experiments, and 

then evaluated it on a class-balanced dataset of the same equal number of randomly selected cells 

from a 7th, “holdout” experiment. Notably, no data from the holdout experiment was used for training, 

or hyperparameter optimization of any of the classifiers.  

 

With this procedure, we achieved an excellent (>84%) single-cell classification accuracy in the 

holdout experiments across all antibiotic conditions (Fig. 3), with comparable statistics in the other 

computational experiments; full numerical results across all experiments and antibiotics are provided 

in Fig. S7. Untreated cells, which were used to generate the resistant class, were predominantly 

classified as resistant (i.e., not displaying a physiological response to an antibiotic), whilst treated 

cells were classified as susceptible (i.e., displaying the expected physiological response).  

  

To understand the decision-making process of the CNN classifier, and the potential failure modes, 

we used saliency mapping 40 to produce attention heatmaps over example single-cell phenotype 

inputs; such mapping highlights the pixels that contribute most to the classification decision. We 

observed that, for all antibiotics, in correctly classified cells, the classifier focuses primarily on 

nucleoid structure and organization, with some attention given to the membrane, as expected (Fig. 

S8). The same pattern was observed in cells that were misclassified (Fig. S9) – such cells did not 

show the full expected phenotype due to cell-to-cell heterogeneity. For example, some ciprofloxacin 

susceptible cells did not show a full nucleoid compaction during the treatment window, and were 

thus classified as resistant.   

  

 

Single-cell classification informs of resistance relative to treatment concentration in clinical 

isolates. Having validated both our segmentation and classification models on the MG1655 E. coli 

strain used to generate the training data, we deployed the models on six clinical isolates of E. coli 

(EC1-6), each with a different degree of resistance to ciprofloxacin (as exemplified by the MIC of 

each isolate, which we measured; see Methods) and linked to a resistance genotype derived from 

sequencing (Fig. S10). To evaluate the response of the isolates to ciprofloxacin, we used our 

segmentation model (trained on the ensemble dataset), and the binary antibiotic susceptibility 

classifier (resistant vs susceptible to ciprofloxacin) used to analyse holdout samples as described in 

the previous section. 
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Samples of clinical isolates were prepared using two conditions: applying no antibiotic treatment 

(untreated), or treating cells with ciprofloxacin at the same concentration and duration as the 

susceptible MG1655 used for training (20x EUCAST 41 breakpoint concentration [i.e., 10 mg/L], 30 

min incubation). These samples underwent the same processing as the training samples, producing 

collections of micrographs for each sample. Those collections of micrographs were segmented to 

identify individual cells, and then the classification model was used to classify these cells as either 

resistant, or susceptible.  

 

Prior to any antibiotic treatment, cells of all clinical isolates were predominantly classified correctly 

(i.e., in the resistant class – untreated cells showing no response to the antibiotic) and with high 

confidence; for example, we obtained 77% and 96% resistant classifications for untreated EC2 and 

EC5 (Fig. 4A, left, and Fig 4B, left, respectively). On the other hand, treated cells in clinical isolates 

susceptible to ciprofloxacin at the level used (that is, with an MIC below the 10 mg/L treatment 

concentration), displayed the susceptible phenotype, and were strongly classified as such, with 91% 

of all cells being classified as susceptible in the ciprofloxacin-susceptible EC2 (Fig. 4A, right).  

 

In contrast, for isolates with MICs above the treatment concentration, the large majority of treated 

cells were classified as resistant. For example, 91% of all cells were classified as resistant in treated 

but ciprofloxacin-resistant EC5, as expected (Fig. 4B, right). 

 

This pattern was maintained across the library of all six clinical isolates (Fig. 5; see also Fig. S11-13 

for representative fields of view and overlays showing phenotype detections, and Fig. S14 for the 

total number of cell detections in each repeat of each isolate and treatment condition). In isolates with 

MICs below the training and treatment concentration (EC1-4), there was a statistically significant (p-

value < 0.001) increase in the ratio of susceptible detections in treated samples, as compared to the 

untreated samples. In sharp contrast, for resistant isolates with MICs above the training and treatment 

concentration (EC5-6), there was no statistically significant difference in the ratio of susceptible 

detections between treated and untreated samples. The size of the ratio of susceptible cells appeared 

correlated with the difference between the MIC and treatment concentration. Highly susceptible EC1-

3 were characterized by showing 85% of susceptible cells in treated samples, whilst EC4 (MIC = 

8mg/L, treatment concentration = 10mg/L) showed that only 38% of treated cells were classified as 

susceptible.  

 

  

Single-cell phenotyping provides AST information equivalent to a 24-hour growth assay, in 30 

minutes. After demonstrating that our models can differentiate between clinical isolates resistant and 

susceptible to a fixed concentration of ciprofloxacin, we investigated the ciprofloxacin concentration 

dependence of our classifications, since we reasoned that it may report on the MIC value for different 

isolates. This time, we generated samples of three of the clinical isolates with different MICs (EC1, 
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EC3 and EC5), treated them at different ciprofloxacin concentrations for 30 min, imaged them, and 

phenotyped them (see Fig. S15 for numbers of cell detections in each biological replicate of each 

isolate and treatment concentration). 

 

Across all clinical isolates, cells treated at sub-MIC concentrations did not show a significant shift 

away from the resistant phenotype, and the ratio of cells classified as susceptible was low. 

Conversely, at concentrations in excess of the MIC, a strong response was observed, with >90% of 

the cells converting to the susceptible phenotype. At intermediate concentrations, the magnitude of 

the response varied logistically between the asymptotes; to quantify this relationship, we fitted 

asymmetric dose-response models to data (Fig. 6; see also Methods). 

 

Our phenotyping method provided results after as little as 30 min of treatment, whilst the gold-

standard clinical AST relies on growth (or lack thereof) in the presence of antibiotics over much 

longer periods of time. To compare our result against the gold-standard, we measured growth curves 

of the isolates in the presence of ciprofloxacin over 24 hrs. From these curves, we calculated the total 

cell growth by numerical integration of the time-resolved optical density (OD600) signal, and 

normalized it to the growth of untreated cells, thereby creating a ratio of total cell growth as a function 

of ciprofloxacin concentration, relative to untreated cells (Fig. 6B). Across all isolates and 

ciprofloxacin concentrations, the total cell growth followed a relationship reciprocal to that of the 

ratio of susceptible detections. At sub-MIC concentrations, cell growth was not inhibited, leading to 

a high cell growth ratio, whilst at concentrations in excess of the MIC, no growth occurred. Again, 

at intermediate concentrations, a logistic, dose-response relationship was observed which mirrored 

the observed ratio of susceptible phenotypes. 

 

In both dose-response models, the inflection points of the curves (corresponding to free parameter c 

in the model fit) were close to the MIC values of the isolates when measured using a routine 

diagnostic AST assay (see Methods). Specifically, in EC1, the measured MIC was 0.008 mg/L, with 

a corresponding inflection point at 0.011±0.001 mg/L; further, in EC2, the measured MIC was 0.5 

mg/L, with curve inflection at 0.49±0.18 mg/L. Our results clearly establish that our approach can 

provide valuable MIC-related information for different clinical isolates, faster than established 

methods, whilst eliminating the time-consuming cell-culture step in the phenotypic susceptibility 

assay.  

 

 

 

DISCUSSION 

 

By combining fluorescence imaging and deep-learning, we demonstrate our DASP platform provides 

robust, rapid single-cell antimicrobial susceptibility phenotyping for E. coli across a range of 

antibiotics with different mechanisms of action. DASP is fully compatible with analysing clinical 
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isolates with different susceptibility to clinically relevant antibiotics (as we have shown for 

ciprofloxacin), and can provide equivalent information to a traditional growth assay in a small 

fraction of the time, while offering richer clinical information than current, colony-level, assays. 

 

 

A robust deep-learning phenotypic platform for advanced antibiotic susceptibility analysis. The 

high accuracy statistics across our experiments establish that our method is robust against both 

experimental variability and phenotype plasticity exhibited by different clinical isolates, showing 

substantial promise for the development of a robust clinical diagnostic assay. Considering that 

distinct nucleoid and membrane phenotypes have been identified a wide range of treatments and 

organisms 33–35; our method of susceptibility phenotyping should be applicable to a wide variety of 

antimicrobials and bacterial species. 

 

Deploying our models on clinical isolates shows that the models can distinguish between resistant 

and susceptible isolates around a fixed treatment point, which can facilitate their use for decision-

making around standard clinical breakpoints used for resistance classification, such as EUCAST 

breakpoints. Our comparison with the gold-standard growth assays also established that our approach 

can provide equivalent information regarding the MIC of a certain isolate in as little as 30 minutes 

(instead of several hours), limited only by the physiological response rate of the bacteria themselves, 

and is therefore well suited to the goal of a rapid assay.  

 

Our assay may also offer a route towards a more detailed clinical definition of the MIC value, which 

is currently only defined by growth. Notably, the MIC value is emerging as an important independent 

factor in clinical management; e.g., co-amoxiclav MICs greater than 32 mg/L have recently been 

specifically associated with poor outcomes in E. coli bloodstream infections 42. Better and faster 

definition of bacterial MICs may therefore be relevant to optimizing treatment strategies and 

outcomes for individual patients. 

 

 

Comparison with other assays. Compared to current assays, our technique can also serve as a richer 

source of clinical information. Currently established ASTs operating on the colony level only offer 

aggregate, sample-wide information measured through secondary markers correlated with resistance, 

such as culture growth or genomic information. Compared to other candidate single-cell ASTs, 

DASP offers the potential for even fast timescales by allowing simultaneous interrogation of large 

numbers of single-cells (in contrast to previous cytometry or Raman approaches, which only 

interrogate one cell at a time), and does not require cell tracking (in contrast to previous widefield 

microscopy approaches focusing on single-cell growth or motion).  

 

Previous single-cell phenotypic studies have implemented linear transformations and manual 

analysis of engineered features to classify methicillin susceptible and resistant S. aureus cells 32. Our 
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approach represents a step-change over the approach above, since it transforms the assessment of 

antibiotic susceptibility into a non-linear classification of resistant phenotypes against susceptible 

phenotypes, addressed by CNNs. Using learnt features as opposed to engineered ones is 

advantageous, since it generalizes the technique by allowing subtle phenotypic changes to be detected 

(as seen in our co-amoxiclav results), and reducing human bias. In contrast to a more manual analysis, 

CNNs offer automatic processing of large volumes of data, scaling better with the aim of a rapid, 

robust assay.  

 

Future extensions. Our approach can be further extended to become more scalable and offer a faster 

time-to-result in the clinic. Currently, the assay operates on cultured clinical isolates, and thus does 

not yet remove the time-consuming laboratory steps needed to isolate and grow microorganisms from 

patient specimens. The isolates are cultured to a constant OD600 of ~0.2 prior to processing, 

translating to ~108 Colony Forming Unit (CFU) counts - a count much higher than the CFU counts 

encountered in infected physiological body fluids 43.  We envision that use of microfluidics will be 

instrumental in bypassing the pathogen isolation and culture steps by isolating and concentrating 

bacteria from patient specimens.  

  

Our deep-learning approach relies on explicit classification of phenotypes; whilst that removes the 

need for engineered features, enables high-throughput and reduces human bias, it still requires that 

phenotype classes are homogenous across cells and isolates. Whilst true in our work, further work is 

required to validate this approach with more species and antibiotics. Our current approach also 

requires specific models to be trained for each combination of antibiotic and species, which may not 

scale well with the size of the problem space; however, a reformulation of the computational task 

should produce solutions that scales better. Finally, our assay can be coupled with species 

identification which can be performed using various methods, such as targeted FISH staining 26.  

 

 

METHODS 

Bacterial strains and sample preparation. The reference laboratory strain was E. coli MG1655. 

Clinical isolates were blood culture isolates of E. coli processed for diagnostic purposes and stored 

by the Microbiology Laboratory of the Oxford University Hospitals NHS Foundation Trust, Oxford, 

UK. Individual colonies of E. coli were cultured overnight in 5 ml of Lysogeny Broth (LB) at 37oC, 

then diluted 1:100 by volume in 5 ml of EZ Rich Defined Medium (RDM; Teknova) and cultured at 

37oC until reaching an OD600 of ~0.2 in a shaking incubator. Subsequently, 1 ml aliquots of the 

culture were treated with one of the antibiotics (Fig. S2) at the concentration and duration listed to 

produce cells showing the antibiotic-specific susceptible phenotype; aliquots of the culture were 

treated similarly but in the absence of an antibiotic in order to produce the resistant phenotype. Cells 

were then fixed by incubation in 2.5% formaldehyde solution for 30 min. Cells were washed 3 times 
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with PBS via centrifugation at 4,500 RCF for 3 min, and then incubated with 100% ethanol for 10 

min. Cells were resuspended in PBS and stained by adding 10 μg/L DAPI as the nucleic acid stain 

(GeneTex, catalogue number GTX16206) and 1 μg/L Nile Red as the membrane stain (Fisher 

Scientific, catalogue number 10464311) and incubated at room temperature for 10 min. Cells were 

washed twice with PBS and suspended in a small volume of 10-20 μl. 

For ciprofloxacin titration assays, the antibiotic was serially diluted across a concentration range from 

16 mg/L to 0.001 mg/L and co-incubated with 1 ml aliquots of bacteria as described above. 

Stained and prepared samples were imaged by mounting on agarose pads. Agarose pads were 

prepared consisting of 1% high-purity agarose (Bio-Rad, catalogue number #1613101) in half-

concentration PBS solution, and imaged inverted through a glass slide that had been burned in a 

plasma cleaner at 500℃ for 60 min. 

All clinical isolates in the study had been whole-genome-sequenced on the Illumina platform as 

described previously 44, and AMR genotypes were assigned using the ResFinder 45 database with 

Abricate v0.9.8 46  (--min-id 95 --min-cov 95). The MICs of the clinical isolates were calculated 

empirically by E-test strip, or where the MIC exceeded the range of the strip, by a broth dilution. 

Bacterial growth curves. Individual colonies of each strain were grown overnight at 37oC in LB 

broth and subsequently diluted to OD600 of ~0.04 (1:100 dilution) in RDM. These cells were added 

in equal volume to a microtiter plate containing a prepared 2x dilution range of ciprofloxacin in RDM 

to a final volume of 200 μl. Inoculated plates were incubated at 37oC in a Tecan Sunrise plate reader, 

with an OD600 reading recorded at 15-min intervals, following a 5-sec orbital shaking. The same 

measurement was taken for a blank sample, consisting solely of the growth medium. To calculate 

total cell growth (Fig. 6B), the time-resolved OD600 signals were integrated numerically in time. From 

this, the integrated blank signals were subtracted, and finally all measurements were normalized to 

the growth of untreated cells by dividing each measurement by the measurement coming from 

untreated cells.  

Imaging. Agarose-mounted samples were imaged on a Nanoimager-S fluorescence microscope 

(Oxford Nanoimaging). Briefly, a blue (405 nm) and a green (532 nm) laser were combined using a 

dichroic mirror and coupled into a fibre optic cable. The fibre output was focused into the back focal 

plane of the objective (100x oil immersion, NA 1.4) Fluorescence emission was collected by the 

objective, separated into two emission channels and imaged onto a sCMOS camera (Orca flash V4, 

Hamamatsu). To make best use of the camera dynamic range DAPI signal was imaged using 405 nm 

excitation and Nile Red signal was imaged using 532 nm excitation; both signals were acquired 

consecutively. To ensure reproducibility, laser powers were kept constant at 1.5 kW/m2.  For each of 

the two channels, for each field of view (FoV), a stack of 30 frames was acquired at 30 ms exposure 

and 33 Hz frequency. To automate the task and reduce human bias, the multiple acquisition capability 

of the microscope was used, and the microscope autofocused on each FoV prior to acquisition. 
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Deep Learning: segmentation. To generate training data for the Mask-RCNN 38 segmenter, only 

the Nile Red channel of every FoV acquired was used. The 30 frames of each FoV were averaged to 

generate a grayscale image, which was further expanded to RGB space by replicating the grayscale 

image in each colour channel. The raw images were augmented on-the-fly by random cropping to a 

size of 256 by 256 pixels, followed by a random sequence of transformations including horizontal 

and vertical flips and translations, rotations, cutout 47 as well as Gaussian blurring. Such augmented 

images were passed forward to the segmenter during training, along with equivalently transformed 

ground-truth instance segmentation masks; these segmentation masks were generated by manual data 

annotation followed by boot-strapping and manual curation. The internal parameters of Mask-RCNN 

were optimised to match the task at hand, consisting of modifications to its Region Proposal Network 

(RPN) and Non-Maximum Suppression parameters. The segmenter training was then optimised via 

a grid-search, keeping the model that performed best on validation data.  

In the end, the best performing model was trained using an initial learning rate of 0.003 and batch 

size of 2 with the Adam 48 optimizer, using a momentum of 0.9 and weight decay of 0.001. The final 

model was trained in 4 consecutive steps, starting from initial weights trained on the MS COCO 

dataset 49. In the first step, the model ‘top’, consisting of the RPN and a second stage classifier and 

mask regressor were trained for 50 epochs at the initial learning rate, with other weights frozen. In 

the second step, the entire network was trained together, including the feature-encoding backbone, at 

the initial learning rate for another 50 epochs. In the 3rd step, the ‘top’ was fine-tuned for another 50 

epochs, this time using 10 % of the initial learning rate (0.0003). Finally, the entire network was fine-

tuned at 10 % of the initial learning rate for the final 50 epochs.   

The Mask-RCNN model was adapted from a standard implementation 50. 

Deep Learning: classification. To generate training data for the DenseNet121 39 classifier, both 

channels of every FoV acquired were used. The 30 frames of each FoV were averaged separately for 

both channels and used to construct RGB images, with Nile Red signal in the red channel and DAPI 

signal in the green. The DAPI channel was registered automatically to the Nile Red channel using 

cross-correlation 51 to correct for any drift between the channels. Individual cells were extracted from 

assembled images using the ground-truth instance segmentation masks that were used to train the 

segmenter. All cells were then resized to a common size of 64 by 64 pixels by zero-padding in either 

dimension if below the target size, or resized down to target size if above. To compensate for 

differences in staining and illumination, histogram equalization was applied to every cell, 

independently for each channel, within the segmentation mask only. Cells were then augmented on-

the-fly using a random sequence of affine transformations, followed by a random sequence of 

intensity augmentations to increase robustness against experimental variation – these include a 

unsharp masking, random brightness modifier in HSB colour space, addition of Gaussian-distributed 

noise, channel misalignment and random Gaussian blurring. The classifier training was then 

optimized via grid-search, keeping the model that achieved the best accuracy on validation data.  
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To train the binary ciprofloxacin resistant/sensitive, individual untreated and ciprofloxacin treated 

MG1655 sensitive cells only were used; analogously for the other antibiotics. 

The classifier was implemented in Keras52 version 2.2.4.  

Deep Learning: saliency mapping. To produce attention heatmaps over example classification 

inputs, we calculated the gradient of the output category with respect to the input single-cell image. 

We propagated positive gradients for positive activations only 40, and visualized the absolute value 

of the gradient. 

Segmentation metrics. The quality of Mask-RCNN segmentation was analysed using Precision-

Recall curves using the bounding boxes of detections and ground truth segmentations to compare 

performance at various IoU thresholds. 

Classification metrics. Classification metrics of binary resistant-susceptible classifiers are presented 

as a confusion matrix, which displays the True Positive (TP), True Negative (TN), False Positive 

(FP) and False Negative (FN) counts in each class. From these, per class sensitivity, specificity and 

accuracy can be calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Dose-Response Model fitting. To model the ratio of cells classified as susceptible as a function of 

treatment concentration, we use non-linear least squares to fit a generalized logistic function of the 

following form: 

𝑓(𝑥) = 𝑑 +  
𝑎 − 𝑑

(1 + (
𝑥
𝑐)

𝑏

)
𝑔  

where a and d are the lower and upper asymptotes, b is the scale parameter, c is the x-coordinate of 

the inflexion point, and g is the asymmetry parameter. The confidence bands (CB) of the fit can be 

calculated directly from the covariance matrix of the fit: 
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𝐶𝐵(𝑥) = 𝑦(𝑥)
^

± 𝑡𝛼/2,𝜈√𝜒𝜈
2 ∑

∂𝑓(𝑥)

∂𝑝𝑗

∂𝑓(𝑥)

∂𝑝𝑘
𝐶𝑗𝑘

𝑛

𝑗,𝑘=0

 

where 𝑦(𝑥)
^

 is the best-fit estimate at x , 𝑡𝛼/2,𝜈 is the upper α/2 critical value for the t-distribution with 

N-n degrees of freedom, ν is the degrees of freedom, 𝜒𝜈
2 is the reduced chi-square of the fit, C is the 

covariance matrix, p are the best-fit parameters and f(x) is the generalized logistic function. 

Statistics. The ratios of susceptible cells found and classified in untreated and ciprofloxacin treated 

clinical isolates were analysed using Tukey’s range test, computed pairwise for untreated and treated 

samples of each clinical isolate, and separately for each isolate. Three biological repeats were 

analysed for each isolate, producing a set of three susceptible cell ratios (n=3) per isolate, per 

biological repeat. The total number of cells that contributed to each ratio is displayed in Fig. S14. 

The significance level of the test was set at 0.05.  

Ethics. Ethical approval for the use of clinical samples and isolates processed by the John Radcliffe 

Hospital microbiology laboratory in the development of diagnostic assays was granted by the UK’s 

Health Research Authority (London - Queen Square Research Ethics Committee [REC reference: 
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FIGURES 

 

 
 

Figure 1. AST assay based on single-cell phenotyping and deep-learning.  

A. Live E. coli cells are treated with an antibiotic, inducing changes in subcellular morphology. Susceptible 

cells show strong phenotypic changes associated with the effect of antibiotic action, creating a distinct 

susceptible phenotype. Resistant cells are not affected by the antibiotic – the resistant phenotype is similar to 

the untreated phenotype. Cells are fixed, and nucleoids and cell membranes are fluorescently stained. The 

sample is imaged under a widefield fluorescence microscope. A deep learning pipeline is trained to 

distinguish the susceptible phenotype from the resistant (untreated) phenotype, with single cell resolution. 

 

B. An unknown sample can be processed and fed into the trained model, which classifies the phenotypes on 

a single cell level to produce sample-wide classification statistics. These statistics can then be used to obtain 

information on the resistance of the entire sample.  
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Figure 2. Segmentation and classification pipeline.  

A. Untreated phenotype in the MG1655 E. coli strain, which resembles the resistant phenotype. Green, 

nucleoid stained with DAPI; red, membrane stained with Nile Red. Scale bar, 5 μm. 

B. As in A, but for the ciprofloxacin susceptible phenotype.  

C. As in A, but for the Rifampicin susceptible phenotype.  

D. As in A, but for the Gentamicin susceptible phenotype.  

E.  As in A, but for the Co-amoxiclav susceptible phenotype. Note that this phenotype has more subtle 

differences from the untreated phenotype.  

F. A multichannel image consisting of DAPI (green) and Nile Red (red) is split into individual channels. A 

Mask-RCNN segmenter segments single-instance binary masks from the Nile Red channel. Binary masks 

are used to isolate single cells. A phenotype classifier classifies individual cells into either the resistant or 

susceptible phenotype, using both channels.  
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Figure 3. Binary classification of resistant and susceptible phenotypes in E. coli MG1655 strain.  

A. Representative field of view (FoV) of untreated cells shown in grayscale, with an overlay showing 

phenotype detections. Resistant classifications shown in red, susceptible ones shown in blue. Evaluation 

carried out with the ciprofloxacin resistant/susceptible classifier.  

B-D. As in A, but with the gentamycin classifier (panel B), the rifampicin classifier (panel C), or  

the co-amoxiclav classifier (panel D). 

E. As in A, but with ciprofloxacin-treated cells.  

F. As in B, but with gentamicin-treated cells.  

G. As in C, but with rifampicin-treated cells.  

H. As in D, but with co-amoxiclav-treated cells.  

I. Holdout test performance of the ciprofloxacin classifier, evaluated on class-balanced, randomly sampled 

1000 cells from an independent holdout experiment, from which no data was drawn for model training or 

hyperparameter optimization. Percentage and absolute class counts shown in both the resistant (R) and 

susceptible (S) classes.  

J. As in I, but for the gentamicin classifier.  

K. As in I, but for the rifampicin classifier.  

L. As in I, but for the co-amoxiclav classifier, and with a dataset of 800 cells.   
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Figure 4. Distribution of single-cell classifications is sensitive to the resistance of clinical isolates.   

A. Left: histogram of detections from a representative imaging experiment of untreated, susceptible E. coli 

isolate EC2 cells, normalised to the total sum of detections, as a function of classification confidence. 

Percentages and absolute cell counts in each class indicated, together with the number of fields of view in 

the experiment (FoV). Right: as before, but for ciprofloxacin treated EC2 cells.  

 

B. As in A, but for ciprofloxacin-resistant EC5. 
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Figure 5. Changes in the overall fraction of susceptible cells upon treatment correlate with the degree 

of resistance in clinical isolates.  

A. Ratio of susceptible phenotype detections across different clinical isolates, in untreated (-) and 

ciprofloxacin treated (+CIP) samples. Average of 3 biological replicates; error bars show the standard error 

of the mean. Overlay shows Tukey range test p-values, carried out pairwise between corresponding 

untreated and treated sets of repeats (n=3), test carried out at significance level of 0.05, “n.s.” indicates not 

significant.  

 

B. Ciprofloxacin MICs of the clinical isolates, derived experimentally as described in Methods. Horizontal 

line indicates the treatment concentration used in the treated samples, which was used for both clinical 

isolates and MG1655 training data. 
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Figure 6. Single-cell phenotyping provides equivalent information to a 24-hour growth assay, but 

within 30 minutes.  

A. Ratio of susceptible detections as a function of ciprofloxacin treatment concentration. Average of three 

biological replicates, error bars show the standard error of the mean. Vertical coloured lines show the 

ciprofloxacin MICs of the isolates used. Black lines show the dose-response fit, grey regions show the 95% 

confidence band of the fit.  

 

B. Total bacterial growth in liquid culture over 24 hours in the presence of ciprofloxacin, normalised to the 

growth of untreated cells. Measured MICs of the isolates are: EC1 – 0.008 mg/L, EC3 – 0.5 mg/L, and EC5 

– 72 mg/L. 
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