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Abstract 

Activated Phosphoinositide 3-kinase Delta Syndrome (APDS)  is a rare genetic disorder 

that presents clinically as a primary immunodeficiency. Clinical presentation of APDS 

includes severe, recurrent infections, lymphoproliferation, lymphoma and other cancers, 

autoimmunity and enteropathy. Autosomal dominant variants in two independent genes 

have been demonstrated to cause APDS. Pathogenic variants  in PIK3CD and PIK3R1, 

both of which encode components of the PI3-kinase, have been identified in subjects 

with APDS. APDS1 is caused by gain of function (GOF) variants in the PIK3CD gene while 

loss of function (LOF) variants in PIK3R1 have been reported  to cause APDS2. We 

conducted a review of the medical literature and identified 256 individuals who had a 

molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 

and 63 with APDS2. A Kaplan-Meier survival analysis for APDS showed the conditional 

survival rate at the age of 20 was 87%, age 30 was 74%, age 40 and 50 were 68%. Review 

of causes of death showed that the most common cause of death was lymphoma, 

followed by complications from HSCT. The mortality data suggests that the standard of 

care treatment for APDS, immunoglobulin replacement therapy, appears to prevent 

most deaths due to severe infection, however, new treatments are needed to mitigate 

the risk of death from lymphoma and other cancers. This analysis based on real world 

evidence gathered from the medical literature is the largest study of survival for APDS to 

date. 

Introduction 

Activated Phosphoinositide 3-kinase Delta Syndrome (APDS)  is a rare genetic disorder 

that presents clinically as a primary immunodeficiency. Autosomal dominant variants in 

two independent genes have been demonstrated to cause APDS. Pathogenic variants  
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in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been 

identified in subjects with APDS. APDS1 is caused by gain of function (GOF) variants in 

the PIK3CD gene, while loss of function (LOF) variants in PIK3R1 have been reported  to 

cause APDS2 1-4. The pathogenic variants PIK3CD and PIK3R1 result in the over activation 

of PI3-kinase. PI3-kinase plays a role in regulation of T and B cells, therefore, both APDS1 

and APDS2 manifest as combined immunodeficiency. Clinical presentation of APDS 

typically begins in the first year of life as severe, recurrent infections. This progresses to 

include lymphoproliferation and sometimes malignant lymphoma; many patients also 

experience autoimmunity and enteropathy 5. 

Treatment for APDS often includes immunoglobulin replacement therapy to combat 

recurrent infection, as well as immunosuppressive agents such as rituximab, sirolimus 

and tacrolimus to mitigate autoimmunity and lymphoproliferation 5. Hematopoietic stem 

cell transplantation (HSCT) has also been undertaken in a minority of patients and has 

been shown to ameliorate symptoms, however, HSCT itself can also cause adverse 

complications and death 5-8.  

Despite available treatments, survival for individuals with APDS appears to be shortened 

from the average lifespan 6; 7. Okano et al reported on APDS1 survival based on 23 

Japanese and Taiwanese patients from 21 families, 9 of which had HSCT 6. Thirty-year 

survival was 83% with just 2 deaths, both due to HSCT. Elkaim et al reported that the 

thirty-year survival rate of APDS2 was 83%, based on an international cohort of 36 

patients 7.  

We conducted a review of the medical literature for every published case of APDS with 

documented age at last report and a molecular diagnosis in PIK3CD or PIK3R1. We 

identified 256 individuals who had a molecular diagnosis for APDS as well as age at last 
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report; 193 individuals with APDS1 and 63 with APDS2. A comprehensive survival 

analysis and study of causes of death for APDS was conducted. The results of this study 

show decreased survival compared to previous reports, which may be attributed to the 

sample size of this study being more than 7x higher than prior studies.  

Methods 

Literature review and data extraction 

Literature was reviewed for all reports of age of individuals with APDS. All individuals 

included in this analysis were published in English language peer-reviewed journals 

indexed in PubMed. Search terms utilized were PIK3CD, PIK3R1, PASLI, APDS. In order 

to be included in this study an individual had to have been reported to have a molecular 

diagnosis of pathogenic variant in either PIK3CD or PIK3R1. Age at last report was an 

additional requirement to be included in this study. In addition, cause of death and 

wether the individual received HSCT were also noted when available. In total, 116 papers 

were reviewed. Last access date was 08-01-2022. Through this review of the medical 

literature, 193 individuals diagnosed with APDS1 through molecular genetic testing and 

pathogenic variant present in PIK3CD were extracted from the literature for whom age 

was reported. In addition, 63 individuals diagnosed with APDS2 through molecular 

genetic testing and pathogenic variant present in PIK3R1 were extracted from the 

literature for whom age was reported.  

Kaplan-Meier survival analysis  
 
Kaplan-Meier survival analysis was conducted using the R survival package to estimate 

the probability of survival over time plus the 95% confidence interval 9-11. All-cause 

mortality was considered the endpoint. Any individual who was alive at last report was 

censored. A censored observation is one where the subject drops out of the study but 
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survives at a given time point. Kaplan-Meier survival analysis was conducted using 1-year 

age bins from birth to the oldest patient age. The Mantel-Haenszel test was utilized to 

test if the conditional probability estimates from APDS1 and 2 were different from each 

other 12. 

Results 

We reviewed the literature for all reports of age of individuals with APDS. Through this 

review of the medical literature, 193 individuals diagnosed with APDS1 through 

molecular genetic testing and pathogenic variant present in PIK3CD were extracted from 

the literature for whom age was reported 1; 2; 6; 8; 13-54. In addition, 63 individuals diagnosed 

with APDS2 through molecular genetic testing and pathogenic variant present in PIK3R1 

were extracted from the literature for whom age was reported 3; 4; 7; 8; 26; 44; 55-66.  

The median age of individuals reported with APDS1 was 13 years with an average of 17 

years (range, 1 - 64 years). The median age of individuals reported with APDS2 was 14 

years with an average of 16 years (range, 1 - 56 years).  The age distribution was 

significantly different between the two groups due to there being disproportionately 

more individuals with APDS1 in the 5 – 15 year age range (p = 3.6E-10) (Figure 1). Gender 

was not available for all individuals in the study. For APDS1, 103/182 (57%) individuals 

were reported as being male and 79/182 (43%) individuals were noted to be female. For 

APDS2, 20/39 (51%) individuals were reported as being male with 19/39 (49%) 

individuals were noted to be female. 

Twenty-four individuals with APDS1 in this study were reported as being deceased. Age 

of death ranged from 1 - 64 years. The most common cause of death was tied between 

lymphoma (N = 5) and HSCT (N = 5) (Figure 2). The range of ages for death by lymphoma 
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was 1 – 27 years, while the range of ages for death by HSCT was 5 – 18 years. The next 

most common cause of death was sepsis with no further information specified (N = 3, 

age range 11 – 31 years). Additional causes of death included: Varicella zoster 

pneumonitis (N = 1, age 12); Acute myeloid leukemia (N = 1, age 22); 

lymphoproliferative disease (N = 1, age 11); gastric cancer (N = 1, age 64); IgA 

nephropathy (N = 1, age 57); respiratory failure (N = 1, age 39) (Figure 2). 

Five out of the 63 individuals with APDS2 in this study were reported as having died. 

Age of death ranged from 12 - 36 years. The cause of death was reported for 4/5 

individuals who died with APDS2 and all four of their deaths were attributed to 

lymphoma.  

Kaplan-Meier survival analysis was conducted that allowed for inclusion of individuals 

who were alive at last report as well as those who died during the timespan of the study. 

Kaplan-Meier survival analysis was conducted for all-cause mortality in 1-year age bins 

on subjects diagnosed with APDS1 and separately for subjects diagnosed with APDS2 

(Figure 3). The survival probability estimate for APDS1 at the age of 20 was 87%, age 30 

was 75%, age 40 and 50 was 69%. The survival probability estimate for APDS2 at the 

age of 20 was 98%, age 30 was 72%, age 40 and 50 was 60%. The Mantel-Haenszel test 

showed that the survival probability estimates for APDS1 and APDS2 were not different 

from each other (p-value: 0.49). Consequently, Kaplan-Meier survival analysis was also 

conducted on the combined APDS1-2 cohort using age at last report for 256 individuals, 

since the combined cohort was largest and had the most power (Figure 3). Because most 

of the individuals in the combined cohort had APDS1 the survival curve for APDS1-2 

most closely reflected the survival curve for APDS1. For APDS1-2 the conditional survival 

rate at the age of 20 was 87%, age 30 was 74%, age 40 and 50 was 68%. 
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Discussion 

Kaplan-Meier survival analysis and studies of mortality was conducted for 256 individuals 

who had genetically defined APDS1 or 2. Kaplan-Meier survival analysis on the combined 

APDS1-2 cohort using age at last report showed that the APDS1-2 the conditional 

survival rate at the age of 20 was 87%, age 30 was 74%, age 40 and 50 was 68%. 

In this cohort of 256 individuals with APDS1 or APDS2, 29 deaths were noted. Of these, 

the cause of death was reported for 23 individuals. The most common cause of death 

was lymphoma with age of death from lymphoma ranging from 1 – 27 years. The second 

most common cause of death was complications resulting from HSCT. Of the individuals 

who reached older ages, the causes of death were gastric cancer (age 64), IgA 

nephropathy (age 57), and respiratory failure (age 39). Most deaths occurred before the 

age of 30, however, it is important to note that the age distribution of this cohort is highly 

skewed toward younger ages with 85% of the combined APDS cohort in this study being 

less than 30 years old.  

Given that only 15% of the cohort was older than 30, this study has less power beyond 

the age of 30. This is reflected in the larger confidence intervals in the Kaplan Meier 

curves post-30, as well as the dearth of deaths after age 30 in the chart in Figure 2B. The 

chart could be misconstrued to indicate that there are fewer deaths after the age of 30, 

however, the data from this cohort simply does not provide the opportunity to make 

observations post-age 30 with as much sensitivity as below age 30. Having noted this 

limitation, this cohort contained 38 individuals 30 years or older which is larger than the 

total study size of the two previous survival analyses published for APDS. 
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There are two previously published survival analyses for APDS, one for APDS1 and one 

for APDS2 6; 7. With much smaller sample sizes than this study, just N = 23 for APDS1 6 

and N = 36 for APDS2 7, both reported thirty-year survival was 83%. In this study with a 

much larger cohort, N = 256, the thirty-year survival was 74%. The lower survival rates in 

this study is likely due to the larger sample size of this cohort resulting in greater 

sensitivity to observe events and consequently in a more robust measure of survival rates.  

Common variable immune deficiency (CVID) is a heterogenous group of primary immune 

deficiencies clinically-defined as having reduced IgG, IgA, and/or IgM. There are 

multiple genetic causes of CVID with PIK3CD and PIK3R1 being among them 67.  Kaplan-

Meier survival analysis of a large cohort of 411 subjects with genetically undefined CVID 

who were followed for four decades was reported 68. The 30-year survival rate for this 

CVID cohort was 68% for females and 70% for males.  This more closely resembles the 

74% thirty-year survival rate that was found in this study of APDS. 

The most common causes of death in the CVID cohort were respiratory failure from 

chronic lung disease (37%), cancer (primarily lymphoma) (29%), and severe infection 

(10%) 68. In contrast, lymphoma was the most common cause of death in this APDS cohort 

and only one person with APDS was reported as having died due to respiratory failure 

from chronic lung disease. This could indicate that respiratory failure is a less frequent 

feature of APDS than heterogenous CVID; however, it could also be that respiratory 

failure from chronic lung disease occurs at older ages, and as we noted this APDS cohort 

has 38/256 individuals who were older than 30. Longer term follow-up on APDS is 

warranted to better define survival and mortality at older ages. 

The results of this study on survival and mortality in APDS suggest that the standard of 

care treatment for APDS, replacement immunoglobulin therapy, appears to prevent 
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most deaths due to severe infection, however, new treatments are needed to mitigate 

the risk of death from lymphoma and other cancers. 
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Figure Legends 

Figure 1. Age at last report in a cohort of 256 individuals with APDS. The age at last 

report was plotted in 5-year age bins for individuals with a molecular diagnosis of 

pathogenic PIK3CD variant resulting in APDS1 (orange), and for those with a molecular 

diagnosis of pathogenic PIK3R1 variant (blue). The moving average of the age at last 

report was plotted for individuals with APDS1/PIK3CD in blue and for individuals with 

APDS2/PIK3R1 in orange.  

Figure 2. Age and cause of death for APDS. A. Causes of death in individuals with APDS1 

are shown and the size of the pie slice reflects the number of individuals with that cause 

of death. All individuals with APDS2 had the same cause of death, lymphoma, so it was 

not plotted. B. Cause of death in individuals with APDS1 and APDS2 was plotted with 

age of death on the x-axis and number of individuals plotted on the y-axis. The color 

scheme in A. and B. are the same, with each color indicating a different cause of death. 

The key for color to cause of death is shown in the figure. 

Figure 3. Kaplan-Meier survival analysis of all-cause mortality in 256 individuals with 

APDS. A. The probability of survival over time plus the 95% confidence interval was 

plotted for individuals with APDS1, N = 193, and separately for B. APDS2, N = 63. The 

survival rate conditional on having either APDS1 or APDS2, N = 256, was estimated by 

Kaplan-Meier analysis and plotted in panel C. 
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Figure 2 
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