
 

 

 

 

Science 

ABSTRACT   Goal: Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting 

disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, 

and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical 

practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous 

datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. 

Methods: In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features 

of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be 

used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) 

from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: 

where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results: More robust cluster 

configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced 

biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant 

ARDS enrichment. Conclusions: Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce 

biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively 

by medical conditions. 
 

INDEX TERMS   ARDS, Computational Simulation, Dataset Bias, Machine Learning, Virtual Patients 

 
IMPACT STATEMENT   Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual 

patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts 

driven exclusively by medical conditions. 

 

 

 

I. INTRODUCTION1 

rtificial intelligence (AI) and machine learning (ML) 

models have already shown their potential applicability 

in diverse areas of healthcare [1-3]. Several models have 

been developed for the early diagnosis and prediction of 

critical states and conditions in the ICU, e.g. ARDS [4], 

 

 

sepsis [5] and COVID-19 [6-9]. 

However, the more data-driven models are applied in 

healthcare settings, the more the issue of impaired 

performance on different datasets, i.e. poor generalizability 

of such models, is becoming apparent [5, 10-13]. If ML 

models are developed on one dataset, they learn data 

distributions which are specific or characteristic for this 
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particular dataset, and perform worse on data obtained from 

other sources with potentially different distributions [14-16]. 

Moreover, attempts to apply models developed in a single 

hospital to patients from another hospital have also already 

revealed significant limitations [17, 18]. In medicine 

generally, but particularly in the ICU setting, there are 

multiple reasons why data from different hospitals can differ 

significantly, e.g. different admission strategies, guidelines 

for treatment, patients’ baseline values, protocols on settings 

of medical support devices or definitions of cut-off values 

[19-21].  

On the one hand, the issue of poor generalizability of 

developed models cannot be solved by blindly increasing the 

size of the training dataset, as this does not necessarily 

guarantee a good performance of a model on another dataset 

[10]. On the other hand, pooling of data from diverse origins 

for development of AI/ML tools introduces further biases 

driven by data origin. This can represent a challenge for the 

application of both supervised and unsupervised AI/ML 

methods, as relevant medical information can be hidden 

behind biases introduced by different datasets [22]. 

A potential solution to these challenges is to exploit 

models that allow extraction of the core information 

describing a patient’s status. Such computer models, which 

are complex enough to model heterogeneous human 

pathophysiological states, are often referred to as "virtual 

patient (VP) models" or "in silico" patients [23]. These 

mechanistic models are based on well accepted and 

understood physiological principles and can be adapted to 

represent individual patients. They rely on real patient data 

and represent a specific pathophysiological state of a patient. 

Therefore, they can be considered a "digital twin" of a real 

patient at a given point in time [24]. VP models aim to 

capture specific features of patient dynamics while avoiding 

excessive detail. In other words, VP models can be 

conceptualized as "filters" to process heterogeneous data and 

extract information (parameters) which are essential to 

describe a patient’s state. 

In this paper, we investigate how a mechanistic VP model 

can be employed as a model-based filter for ICU data pooled 

from diverse hospitals. We show that such model-based 

filtering allows a reduction in the bias introduced by diverse 

datasets, and provides clinically relevant information from 

noisy heterogeneous data, for instance from data pooled from 

different hospitals. We demonstrate our approach on a cohort 

of patients with suspected acute respiratory distress 

syndrome (ARDS) - a potentially life-threatening condition 

leading to respiratory insufficiency with relevantly impaired 

pulmonary gas exchange and possible multi-organ failure 

and fatal outcomes [25, 26] assessed from multiple hospitals 

in Germany as part of the ASIC project [27]. 

Despite the existence of an explicit clinical definition (the 

Berlin definition [28]), significant numbers of patients with 

ARDS are unrecognized or recognized late by clinicians [29-

31]. Patients must fulfil a set of clinical criteria within a 

specific time frame that have relatively high sensitivity but 

low specificity, while the inter-observer reliability of the 

Berlin ARDS definition is moderate, mainly due to 

variability in chest X-ray interpretation. In addition, the 

oxygenation criterion, namely the ratio of arterial PO2 to 

inspired oxygen fraction, is not measured at standardized 

ventilator settings, and can vary substantially in a single 

patient for different FiO2 levels. Failure to recognize ARDS 

in a timely fashion leads to failure to use strategies that 

improve survival [31]. Early diagnosis of ARDS may 

facilitate measures to avoid progression of the lung injury, 

including protective mechanical ventilation, fluid restriction, 

and adjunctive measures proven to improve survival such as 

prone positioning. 

Therefore, there is an urgent need for methods that could 

assist clinicians in early recognition of ARDS in the ICU 

setting. ML models for early recognition of ARDS 

developed to date have shown limited positive predictive 

value and have not been judged ready for clinical 

implementation [31]. In fact, under-recognition of ARDS by 

clinicians represents an important challenge to successful 

development of applicable ML models, since it causes 

insufficient quality of ARDS labeling in retrospective 

datasets, which in turn prevents the development of reliable 

ML models. In this paper we provide a way to address this 

issue. We show that clinically relevant information about 

individual patients can be extracted from raw data using a 

mechanistic VP model, and used to identify non-diagnosed 

ARDS patients, providing a route to improved ML model 

development for early ARDS recognition. 

II. MATERIALS AND METHODS 

A. Computational model 

The simulator used in this study includes a comprehensive 

simulation model of the pulmonary system based on 

mechanistic models of ventilation and gas exchange [32]. It 

was later extended to include cardiovascular components 

[33]. The simulator has already been validated using real 

patient data [34, 35]. Internally, the model is constructed as 

a system of differential algebraic equations obtained from 

published literature, experimental data, and observational 

studies, that quantitatively represent established 

physiological processes. The equations are solved iteratively, 

with the solutions of one iteration at a time point used as 

inputs to the iteration at the next time step. This allows 

accurate representation and observation of gradual changes 

in several parameters that are otherwise difficult to estimate. 

The simulator consists of different modules representing the 

airways, the lung as a collection of ventilated alveolar 

compartments coupled to mechanical ventilator, anatomical 

shunt, dead space and the tissue compartment. The lung is 

modeled using 100 alveolar compartments, each of which 

may have different properties such as flow resistance, 

vascular resistance, compliance, etc. Thus, ventilation-

perfusion mismatch can be modeled, allowing the simulation 

of conditions such as ARDS [36-38]. 

The simulator represents a dynamic cardiopulmonary state 

in vivo that is initialized with numerous input parameters. 

Some of these parameters are routinely measured in intensive 
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care setting, such as blood gas analysis (BGA) measurements 

or respirator settings (the full list of parameters used as inputs 

for the model is given in the Supplementary List I). Others, 

however, are rarely measured, such as cardiac output, 

anatomical shunt or biophysical characteristics of individual 

alveolar compartments, and thus these must be estimated 

using optimization procedures. 

B. Creation of a virtual patient cohort 

To fully define each of the virtual patients, the simulator 

was fitted to individual patient data using advanced global 

optimization algorithm [39-41]. The model parameters that 

were identified in the optimization procedure included 2 

groups of parameters. Firstly, rarely measured physiological 

parameters (anatomical shunt, respiratory quotient, 

anatomical dead space volume, metabolic rate of O2, cardiac 

stroke volume, and inspiration to expiration ratio), were 

determined through optimization if they were missing in 

patient data. Parameters defining distributions of properties 

of alveolar compartmental parameters (vascular resistance 

and flow resistance of compartments) were also identified in 

the optimization process. During the development of ARDS, 

due to an inflammatory process and a diffuse damage of 

alveolar-capillary membrane, protein-rich fluid enters the 

alveolar space impairing gas exchange. The weight of such a 

“wet lung” leads to an increased gravitational pressure on the 

lower, dependent lung compartments. This pressure in 

combination with the already present edema leads to the 

formation of atelectases, especially under mechanical 

ventilation (MV) with inadequate settings [42-44]. To model 

ARDS development, another main parameter was introduced 

to the optimization procedure – the number of closed 

alveolar compartments (ncc), accounting for the formation of 

atelectases and modeled through increased external pressure 

on the compartment leading to no ventilation and complete 

alveolar shunt. The optimization problem was formulated to 

find a configuration of model parameters that minimizes the 

difference between the model outputs and the observed 

patient data (arterial blood gas values at all time points in a 

window). Further details on the optimization procedure are 

given in the Supplementary File. 

The optimization procedure was performed in two time 

windows relative to the onset of ARDS (t0): from t0 - 2d to 

t0 - 1d (window 1) and from t0 to t0 + 1d (window 2), where 

d stands for 1 day. The optimal parameterization of the 

simulator for each patient in the window 1 comprised a VP 

configuration. To model ARDS development, in the window 

2 optimization was performed exclusively for the ncc keeping 

the VP configuration found in the first window intact. 

After fitting the simulator to individual patients, a list of 

parameters was calculated based on simulator outputs and 

parameters found in the optimization procedure in both time 

windows for each of the patients. These parameters, among 

others, included ncc, ventilation and shunted blood fraction 

(the full list of optimized and simulation output parameters 

is given in the Supplementary List II). For each of the 

patients, these parameters comprised model-based filtered 

data consisting of 18 features. 

C. Data 

Four German hospitals (later referred to as Hosp A, Hosp 

C, Hosp D and Hosp E) provided retrospective, fully 

depersonalized data on ICU patients collected during the 

project “Algorithmic surveillance of ICU patients with acute 

respiratory distress syndrome“ (ASIC) [27] of the SMITH 

consortium, which is part of the German Medical Informatics 

Initiative. The ASIC project was approved by the 

independent Ethics Committee (EC) at the RWTH Aachen 

Faculty of Medicine (local EC reference number: EK 102/19, 

date of approval: 26.03.2019). The ASIC project was 

registered at the German Clinical Trials Register 

(Registration Number: DRKS00014330). The Ethics 

Committee waived the need to obtain Informed consent for 

the collection and retrospective analysis of the de-identified 

data as well as the publication of the results of the analysis. 

Additionally, a historic retrospective dataset from one of the 

participating hospitals was included into the analysis (Hosp 

B). It comprised fully depersonalized data of ICU patients 

that were extracted according to the same rules as within the 

ASIC project. The time period for the historical dataset 

started with the introduction of the patient data management 

system in the ICU of the respective hospital and ended with 

the start of the ASIC project and covered a period of 10 years. 

Patient inclusion criteria were age above 18 years and a 

cumulative duration of invasive MV of at least 24 hours. 

There were no explicit exclusion criteria. Each patient’s data 

included routinely charted ICU parameters collected over the 

whole ICU stay, biometric data and ICD-10 codes. The full 

list of parameters used in this study is given in 

Supplementary List I. Data from all five datasets were 

brought to the same units of measurement and were checked 

for consistency. During depersonalization, the concept of k-

anonymity was applied to several parameters that posed a 

risk to privacy. Due to this, not all datasets of patients who 

initially met the inclusion criteria could be extracted from the 

respective hospital and included in the final dataset. The 

overall number of patients in the final dataset comprised 

29,275 patients. 

The criteria for the diagnosis of ARDS are defined in the 

Berlin criteria [28]. As medical imaging data were missing 

in our dataset, only suspected ARDS onset time could be 

determined according to the Berlin criteria. It was defined as 

the timepoint when the ratio of arterial partial pressure of 

oxygen (PaO2) and the inspired fraction of oxygen (FiO2), 

also known as P/F ratio or Horovitz index, dropped below 

300 mmHg for the first time and stayed below this threshold 

for at least 24 hours. Moreover, to be able to fit a simulator 

TABLE I 
INITIAL AND FINAL NUMBER OF PATIENTS IN THE HOSPITALS UNDER 

CONSIDERATION. 

Hospital 
Initial number of 

patients 
Final number of patients 

Hosp A  3,591  127  

Hosp B  13,067  467  

Hosp C  1,360  110  

Hosp D  2,217  114  

Hosp E  9,040  189 
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to the ICU data and create a cohort of virtual patients, only 

patients having specific MV, blood gas analysis and other 

parameters charted both before and after the suspected 

ARDS onset were selected. The final number of patients 

fulfilling these criteria comprised 1,007 patients. The 

number of patients before and after filtering in corresponding 

hospitals is given in Table I. A full description of data 

preparation and filtering is given in the Supplementary File. 

D. Consensus clustering and enrichment analysis 

We generated two datasets from the patient data 

representing the individual disease status to be used in the 

clustering algorithm. The first dataset comprised mean 

values of original measured parameters, which were used as 

inputs to the simulator, calculated on time windows 1 and 2 

(before and after suspected ARDS onset respectively, see 

Supplementary List III). The second dataset comprised 

model-based filtered data: simulator outputs and parameters 

found in the optimization procedure (see Supplementary List 

II). The former dataset thus represented data from the cohort 

of original patients, while the latter represented the model-

based filtered data or data from the virtual patient cohort.  

Consensus k-means clustering was performed for different 

number of clusters in each of the cases. Consensus clustering 

is based on repeated multiple times (1000 times) clustering 

of the sampled data from the original dataset and is known to 

produce robust clusters [45]. To further increase robustness 

of discovered clusters, another step was introduced to the 

clustering procedure. It was allowed to assign an outlier label 

to some patients, if they could not be securely assigned to 

any of observed clusters. In the clustering procedure, quality 

of clustering was assessed using mean cluster’s consensus, 

as described in [45]. This metric is introduced based on 

consensus matrix D:  

𝐷(𝑖, 𝑗) =
∑ 𝑀(ℎ)(𝑖,𝑗)ℎ

∑ 𝐼(ℎ)(𝑖,𝑗)ℎ
 (1), 

where M(h) is a connectivity matrix of the perturbed dataset 

obtained in the h-th resampling of the original dataset and 

M(h)(i, j) is equal to 1, if items i and j belong to the same 

cluster in h-th clustering repetition and 0 otherwise. I(h) is the 

(N × N) indicator matrix such that its (i, j)-th entry is equal 

to 1 if both items i and j are present in the perturbed dataset 

and 0 otherwise. Then, a cluster’s consensus m(k) is defined 

as the average consensus index between all pairs of items 

belonging to the same cluster k: 

 

𝑚(𝑘)  =  
1

𝑁𝑘(𝑁𝑘 − 1)

2

∑ 𝐷(𝑖,  𝑗) 
𝑖, 𝑗 ∈ 𝐼𝑘, 𝑖<𝑗

 (2), 

where Ik is the set of indices of items belonging to cluster k 

and Nk is a number of items in cluster k. Finally, the mean 

cluster’s consensus is the cluster’s consensus averaged over 

all clusters. This metric is a summary statistic which reflects 

the mean stability of clusters discovered in the consensus 

clustering algorithm and represents the overall robustness of 

discovered configuration of clusters. Mean clustering quality 

with 95 % confidence intervals was calculated by repeated 

(100 times) clustering on subsamples (80%) of dataset. A full 

description of the clustering procedure is given in the 

Supplementary File. 

For each of the discovered clusters, enrichment with 

respect to clinical conditions and to underlying hospitals was 

evaluated using hypergeometric tests. Analogously to gene 

set enrichment analysis, this method allows to identify 

clinical conditions that are over-represented in a particular 

cohort (cluster) of patients compared to the whole 

population. Observed statistical significance values for each 

of conditions under consideration were corrected for 

multiple testing using Benjamini-Hochberg correction [46]. 

E. Modules used in the study 

In this study, the RBFOpt package [39] was used for 

fitting the VP model to real patient data in the optimization 

procedure. The following Python programming language 

[47] implementations were used in the study: scikit-learn 

[48] implementation of k-means clustering was used in the 

consensus clustering algorithm (sklearn.cluster.KMeans); 

scipy [49] implementations of hierarchical clustering were 

used in the consensus clustering algorithm 

(scipy.cluster.hierarchy, scipy.spatial.distance); statistical 

analysis was performed with scipy library 

(scipy.stats.hypergeom, scipy.stats.ttest_ind). Clustering 

results were compared using a two-tailed Student's t-test with 

a significance level of α = 0.05. 

 

 

 

 

 

 

 

TABLE II 
CLUSTERING QUALITY FOR CONFIGURATIONS WITH DIFFERENT NUMBER OF CLUSTERS IN CASE OF CLUSTERING ON ORIGINAL MEASURED DATA AND MODEL-BASED 

FILTERED DATA. MEAN CLUSTERING QUALITY WITH 95 % CONFIDENCE INTERVAL AND RESULTS OF A TWO-TAILED STUDENT’S T-TEST FOR MEAN QUALITY OF 

CLUSTERING ARE SHOWN. 

Number of Clusters Mean Quality Measured Mean Quality Simulated Statistic p-value 

2 0.965 (0.960, 0.970) 0.994 (0.993, 0.995) 11.726 9.481E-21 
3 0.869 (0.860, 0.878) 0.994 (0.993, 0.995) 26.205 1.103E-46 

4 0.825 (0.815, 0.835) 0.936 (0.930, 0.942) 18.137 2.373E-41 

5 0.830 (0.823, 0.837) 0.993 (0.992, 0.994) 43.713 3.222E-67 
6 0.788 (0.782, 0.794) 0.935 (0.931, 0.939) 39.515 2.879E-88 

7 0.738 (0.732, 0.744) 0.854 (0.848, 0.860) 28.077 6.148E-71 

8 0.693 (0.688, 0.698) 0.801 (0.796, 0.806) 29.223 2.781E-73 
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III. RESULTS  

A.  Optimization results 

Fitting quality of the optimization procedure for all patients 

is shown in Fig. 1. Acceptable quality of fitting (simulator 

outputs within 2 standard deviations of measured data) was 

observed for 95.9% patients in the window before suspected 

ARDS onset and for 84.5% patients in the time window after 

suspected ARDS onset. Acceptable quality of fitting in both 

windows was observed for 81.7% or 823 patients, which 

were used in the subsequent analysis.  

B. Clustering on original measured data 

Clustering quality for different configurations of the 

number of clusters is shown in Fig. 2. The best clustering 

quality was observed for 2 clusters, followed by a steep 

decrease in clustering quality for 3 clusters and gradual 

decrease of clustering quality for clustering configurations 

with a cluster number larger than 5. Therefore, the number 

of clusters for further investigation was fixed to 5.  

Each of the 5 discovered clusters had characteristic 

clinical conditions, which were over-represented in the 

respective clusters. However, all clusters were found to be 

driven by data from one or several particular hospitals, i.e. 

significant enrichment with respect to the hospital was 

found. Furthermore, 4 out of 5 clusters were dominated by 

significant over-representation of underlying hospitals, i.e. 

the highest enrichment was observed with respect to the 

hospital and not to the medical condition, see Fig. 3 (a). 

Enrichment results are given in Supplementary Table I. 

Finally, none of the discovered clusters had significant 

enrichment of diagnosed ARDS patients (according to ICD-

10 code J80.x).  

C. Clustering on model-filtered data 

In contrast to the clustering on the original measured data, 

the clustering quality on model-based filtered data was found 

to be significantly higher for all configurations of number of 

clusters (see Fig. 2 for the results of clustering, Table II for 

the results of the t-test, and Supplementary Table II for 

enrichment results). While on the original measured data, the 

quality decreased significantly already after increasing the 

number of clusters to 3, in the model-based filtered data, the 

quality remained high for 2, 3 and 5 clusters. However, a 

cluster number above 5 also resulted in a steep decrease in 

clustering quality in this dataset, and thus the number of 

clusters for further investigation was fixed to 5, similarly to 

the case of clustering on the original data. 

Clustering on model-based filtered data revealed 2 mixed 

clusters, i.e. clusters without over-representation of any 

underlying hospital. In the remaining 3 clusters, although 

such an over-representation could be observed, it was 

significantly lower than in the clustering on measured 

original data, see Fig. 3 (b) (significance of 5.0E-49, 2.2E-

34, 1.2E-12, 2.5E-8, 5.8E-5 in measured data vs. 1.3E-8, 

6.9E-7, 1.2E-6 in model-based filtered data). 

Additionally, clustering on model-based data was able to 

discover a cluster with significant ARDS over-representation 

of diagnosed ARDS patients. This group of patients 

exhibited multiple properties which are specific for ARDS 

patients. These encompass the lowest Horovitz index among 

all clusters, the lowest number of ventilation-free days and 

the highest mortality. Finally, this cluster showed the largest 

increase in number of closed alveolar compartments (ncc) 

among all clusters. 

IV. DISCUSSION  

Data which are gathered in the ICU setting consist of 

global indices and parameters that reflect the state of the 

lung, such as BGA values or MV settings. However, these 

features in reality represent surrogate markers for the real 

pathophysiological state of the patient, leading to a 

significant simplification of clinical reality. In essence, ICU 

data are based on systematic monitoring of the enormous 

complexity of mechanisms accompanying the occurrence 

and progression of acute syndromes in individual patients. 

The development of complex syndromes is controlled not 

only by the core processes of disease progression (often 

molecular), but also by a large number of covariates arising 

from a diverse genetic background, lifestyle, exobiotic stress 

 
                          (a)            (b) 

Fig. 1.  Quality of fitting the simulator to real patient in the time window before 
suspected ARDS onset (a) and after suspected ARDS onset (b). Cohort of 1007 

patients with suspected ARDS. Acceptable quality of fitting (simulator outputs 

within 2 standard deviations of measured data) was observed for 95.9% 
patients in the window before suspected ARDS onset and for 84.5% patients 

in the time window after suspected ARDS onset. 

  

 

 
Fig. 2.  Clustering quality for different numbers of clusters for clustering on 

original measured data (orange line) and model-filtered data (blue line) data. 

Mean clustering quality with 95 % confidence intervals over repeated (100 

times) clustering on subsample (80%) of dataset is shown. Mean clustering 

quality and results of a two-tailed Student’s t-test for mean quality of 

clustering are given in Table II. 
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factors, and comorbidities. Another important factor is the 

large number of medical interventions in the context of 

intensive care, such as drug administration or MV. All these 

factors form highly complex feedback systems, in which the 

patient's condition causes and influences the interventions to 

be performed, which in turn influence the patient's condition. 

Such interventions can differ significantly among diverse 

hospitals introducing additional hospital bias to the datasets 

[50, 51]. Subsequently, relevant medical signals about a 

patient’s state are often disturbed by noise or are missing 

completely. For instance, the human lung has 

inhomogeneous characteristics such as structural 

asymmetries and regional variations in ventilation and 

perfusion that cannot be captured by standard diagnostic 

methods. 

To be able to extract relevant patient information, 

approaches of systems medicine and computational 

physiology can be used. Systems medicine aims to describe, 

model, and simulate living, medically relevant systems using 

methods similar to those used for complex technical 

processes. The main goal of computational physiology as a 

part of systems medicine is the adequate description of these 

relationships in a computationally efficient manner and the 

development of models that consider unique properties of the 

living organisms in response to their environment [23, 52]. 

One of the pillars of computational physiology is VP 

modeling. The overall VP approach relies on the ability to 

determine parameters from data that are both patient-specific 

and time-varying, accounting for variability within and 

between patients. The ability of VP models, when 

appropriately adapted, to create a digital twin for a real 

patient also enables assessment of patient-specific 

parameters that are not readily measurable (e.g., vascular 

resistances, transpulmonary pressures, anatomic shunt, etc.). 

These unmeasurable parameters contain potentially 

important information about the patient's health status, which 

cannot be extracted from routinely measured ICU data due 

to the previously mentioned reasons [24]. 

In this paper, we demonstrate how a VP modeling 

framework can be applied to large ICU patient cohorts 

pooled from different hospitals to reduce dataset bias and to 

extract medically relevant information. First, we show how 

a mechanistic VP model can be used to extract model-based 

filtered data of individual patients with suspected ARDS. 

Secondly, we show how these data can be further utilized to 

improve clustering quality and discover medically relevant 

patient subpopulations. 

A comprehensive physiological model, that was used in 

this study was already validated against real patient data [34, 

35]. However, in the current study, the simulator was firstly 

used to create a large (>1000 patients) cohort of virtual 

patients based on the retrospective observational data pooled 

from different hospitals. VP model fitting to real ICU 

patients showed a reasonable fitting quality. Acceptable fit 

in both time windows was observed for 81.7% of the patients 

in the cohort. The larger ratio of patients with acceptable 

quality of fitting in the first window can be explained by the 

fact that 11 parameters were optimized in the window 1, 

whereas only 1 parameter, namely ncc, was determined in the 

window 2. Therefore, reliable model-based filtered data were 

extracted for 823 patients. 

 To demonstrate the utility of the obtained model-based 

filtered data, we used a classic unsupervised learning 

approach, namely clustering. We compared the clustering on 

original data vs. clustering on extracted model-based filtered 

data. Intermediate clustering quality was observed in the 

clustering on original data, meaning that the consensus 

clustering method was struggling to split a full cohort into 

homogeneous groups and find a stable configuration of 

clusters. In contrast, clustering on model-based filtered data 

revealed significantly better clustering quality for all 

configurations of number of clusters.  

 

 
Fig. 2.  Significance of enriched clinical conditions and hospitals in discovered clusters for clustering on original measured data (a) and model-based filtered data 

(b). The highest enrichment in each of the clusters is shown both for enrichment of clinical conditions (green bar) and for enrichment with respect to hospital (red 

bar). In clustering on original data, all 5 discovered clusters are significantly enriched with data from some hospitals. In clustering on simulation data, 2 clusters 
without enrichment for a hospital are observed and overall magnitude of enrichment with respect to a hospital is decreased. 
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More importantly, clustering based on the original data 

was strongly affected by the diversity of underlying 

hospitals. In all discovered clusters, patients from a particular 

hospital were significantly over-represented. In 4 out of 5 

clusters, such enrichment was found to be the most 

significant for that cluster. These observations indicate that 

clustering on observed data is dominated more by the 

hospital source and much less by underlying medical 

conditions. Therefore, clustering on the pooled data is biased 

by the data source and does not allow to find mixed 

subgroups of patients. This finding is even more striking 

given the fact that we did not use external ICU datasets for 

this study, which could have covered different patient 

populations. All patients in this study satisfied the same strict 

inclusion criteria and were later filtered and chosen 

according to uniform rules. However, clustering on model-

based filtered data obtained from each of the virtual patients 

allowed us to find 2 clusters of mixed hospital origin, i.e. 

clusters without over-representation of any underlying 

hospital. Moreover, although significant enrichment with 

respect to the hospital was still present in 3 out of 5 clusters, 

its magnitude was much less than in the clustering on original 

data (see Fig. 3). 

These findings support the main characteristic of the VP 

models, namely the ability to identify relevant data patterns 

and extract hidden medical information from underlying data 

by leveraging mechanistic physiological principles while 

simultaneously avoiding an excessive level of detail. 

Another interesting observation was that clustering on 

original measured data was not able to find a subgroup of 

“true” diagnosed ARDS patients. Partially, these patients 

were uniformly distributed among discovered clusters and 

did not form a separate group with typical ARDS properties, 

e.g. an impaired oxygenation or high driving pressures for 

MV. In contrast, clustering on model-based data was able to 

discover a cluster with significant ARDS over-representation 

and clinical properties, which resemble those of ARDS 

patients. 

This finding is especially important in the context of 

unreliable ARDS labeling in retrospective data. Insufficient 

quality of labeling represents an additional factor that 

contributes to impaired generalization of AI/ML models 

developed on retrospective ICU data. For the proper 

development of ML models for ARDS diagnosis and 

prediction, such models have to be trained on reliably labeled 

data. On the one hand, patients labeled with ARDS ICD 

codes still represent a lower bound on the number of true 

ARDS cases, as large numbers of ARDS patients are not 

diagnosed [29-31]. On the other hand, reliable retrospective 

labeling constitutes a challenging task, due to the fact that 

diagnosis according to the Berlin definition requires the 

clinical appraisal of certain conditions, such as 

hypervolemia, which are not assessable retrospectively. 

Moreover, medical imaging data are frequently lacking in 

retrospective databases with observational ICU data. 

However, even if imaging data are available, reliable 

identification of the ARDS event remains a challenge due to 

a high interrater variability in chest imaging [53]. Finally, 

studies on the development of AI models for ARDS are 

utilizing diverging rules to retrospectively label ARDS 

patients [54-56]. 

All patients in the cohort under consideration had a time 

point (suspected ARDS onset), when a part of the Berlin 

definition which accounts for the impaired oxygenation was 

satisfied. Presence of “true” ARDS patients in the cohort was 

guaranteed by the fact, that some patients had ICD-10 code 

for diagnosed ARDS. However, some of the patients might 

have had ARDS, but were not diagnosed and therefore 

lacked the ICD-10 code for ARDS, since it is known that a 

relevant number of ARDS cases stays undiagnosed. 

Therefore, the “true” ARDS cohort would have consisted of 

these two groups of patients: the “true positives” and “false 

negatives”. Our hypothesis was that the patients from these 

two groups would be similar to each other and form a shared 

cluster in the clustering procedure. However, that was not the 

case for the clustering on original measured data, as none of 

the discovered clusters was enriched with diagnosed ARDS 

patients. Clustering on measured data was therefore not able 

to differentiate between ARDS patients and patients with 

other conditions, that could have led to decreased Horovitz 

index. In contrast, through clustering on model-based data 

we were able to discover a cluster with significant ARDS 

over-representation and clinical properties, which resemble 

those of ARDS patients. At the same time this cluster was 

not enriched with other pathological conditions, which often 

have similar clinical picture, such as for instance Heart 

Failure [57]. Furthermore, this ARDS cluster had the largest 

increase in the number of closed compartments (ncc) in the 

model, which fully supports our approach of modeling 

ARDS by introducing closed alveolar compartments. Our 

findings suggest that the identified ARDS cluster might also 

include those ARDS patients which were not diagnosed by 

the ICU staff. Therefore, this model-based filtering approach 

could be additionally used to identify non-diagnosed ARDS 

patients, although further research and retrospective 

validation is needed to prove this hypothesis. 

Our study has some limitations that have to be considered. 

Parameters of the virtual patients that were identified in the 

window before suspected ARDS onset were assumed to stay 

constant in the observation window of 2 days. This is only 

partially true, as most of the identified parameters are 

changing with time. Therefore, our approach to model ARDS 

development represents a significant simplification of the 

complex pathophysiological processes, which are happening 

during this critical condition. However, in our opinion, it 

covers the most important clinical manifestation of ARDS 

and can be used as the first approximation for the modeling. 

Moreover, our ARDS modeling approach was validated by 

the fact that the ARDS cluster, which was discovered in the 

data, had the largest increase in number of closed 

compartments, as expected. Nevertheless, VP modeling has 

the potential to extract a lot of additional information about 

the patient status which was not used in this study. By 

introducing physiologically meaningful changes in other VP 
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parameters during ARDS development, one might 

significantly improve quality of ARDS modeling. 

Extensive data requirements and complexity of the fitting 

process of the VP model constituted additional limitations of 

the study. The former did not allow us to use all available 

patient data and was the reason for the significantly lower of 

number of patients in the final analysis cohort compared to 

the initial cohort (see Table I). It must be considered that to 

reach the aim to create a sufficiently large dataset for the 

analysis, not only data collected during the current project 

but also older datasets were included. It cannot be ruled out 

that patient populations or therapeutic concepts have 

changed over the years introducing additional bias into the 

analysis. However, this limitation reflects the real-world 

situation, as ML models are mostly developed on 

retrospective datasets with some temporal separation from 

datasets, where such models are intended to be used. 

Furthermore, this limitation does not influence the overall 

conclusions of the study, as enrichment of a similar 

magnitude was observed with respect to this dataset and to 4 

datasets from other hospitals. The latter limitation required 

the use of the computing cluster for the optimization 

procedure. Although our approach was limited only to the 

identification of at most 11 parameters for each of the virtual 

patients, it required the use of advanced global optimization 

algorithm and significant computational resources. All this 

still tremendously complicates a straightforward 

implementation of such methods at the bedside. 

In general, VP modeling possesses further limitations, 

restraining its applicability in real-world setting. First, it 

requires complex validation of the developed models [24]. 

Second, VP models are usually limited to an organizational 

level of the human body and do not consider the influence of 

exogenous covariates, e.g., preexisting diseases, lifestyle, 

genetic predispositions, or environmental influences. This 

conceptual problem can be solved using a hybrid modeling 

approach [58, 59].   

V. CONCLUSIONS  

In this study we have shown how a mechanistic VP model 

can be used to extract relevant medical information on 

individual patients with suspected ARDS from observational 

data of mixed origin. Our results support the hypothesis that 

mechanistic modeling can be used as a filter to significantly 

reduce biases in data, introduced by pooling of data from 

different hospitals and to allow a discovery of patient cohorts 

driven exclusively by medical conditions. Overall, the 

continuous development of hybrid modeling approaches 

integrating diverse computational technologies, continuing 

increases in computational power, and ever-growing 

numbers of available datasets leads to the expectation that 

these technologies will make a significant contribution to 

precision medicine, with benefits for patients, physicians, 

and the healthcare system as a whole. 

SUPPLEMENTARY MATERIALS 

Supplementary materials include description of data 

preparation and filtering, optimization, and clustering 

approaches used in the study. Supplementary List I contains 

the full list of parameters used as inputs for the model. 

Supplementary List II contains the full list of optimized and 

simulation output parameters which comprise model-based 

filtered data. Supplementary List III contains the full list of 

features which were extracted from original measured data 

and used in the clustering procedure. Enrichment analysis 

results for each of discovered clusters in case of clustering 

on original measured data are given in Supplementary Table 

I. Finally, enrichment analysis results for each of discovered 

clusters in case of clustering on model-based filtered are 

given in Supplementary Table II. 
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