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Abstract 

Background 

BrainAge models based on neuroimaging data have shown good accuracy for diagnostic 
classification. However, they have replicability issues due to site and patient variability intrinsic 
to neuroimaging techniques. We aimed to develop a BrainAge model trained on 
neuropsychological tests to identify a biomarker to distinguish stable mild cognitive impairment 
(sMCI) from progressive mild cognitive impairment (pMCI) to Alzheimer’s disease (AD). 

Methods 

Using a linear regressor, a BrainAge model was trained on healthy controls (CN) based on 
neuropsychological tests. The model was applied to sMCI and pMCI subjects to obtain predicted 
ages. The BrainAge delta, the predicted age minus the chronological age, was used as a biomarker 
to distinguish between sMCI and pMCI. We compared the model to one trained on neuroimaging 
features. 

Findings 

The AUC of the ROC curve for differentiating sMCI from pMCI was 0.91. It greatly outperforms 
the model trained on neuroimaging features which only obtains an AUC of 0.681. The AUC 
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achieved is at par with the State-of-the-Art BrainAge models that use Deep Learning. The 
BrainAge delta was correlated with the time to conversion, the time taken for a pMCI subject to 
convert to AD.  

Interpretation 

We suggest that the BrainAge delta trained only with neuropsychological tests is a good 
biomarker to distinguish between sMCI and pMCI. This opens up the possibility to study other 
neurological and psychiatric disorders using this technique but with different neuropsychological 
tests. 

Funding 

A full list of funding bodies that supported this study can be found in the Acknowledgments 
section. 
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Research in Context 
 
Evidence before this study 
 
A major application of recent neuroimaging BrainAge models has been demonstrating its value 
in diagnostic classification. In spite of the good performance, most models based on 
neuroimaging data have limitations in real data as the distribution between sites can be different 
from training cohorts. They can also suffer from lack of specificity to a disease, for those based 
on BrainAge deltas trained on healthy controls or insufficient training data, for those trained to 
directly identify a specific disease. We develop a BrainAge model trained on neuropsychological 
tests used in Alzheimer’s disease research to identify a biomarker to distinguish sMCI from pMCI 
subjects. We propose a model that is trained on healthy controls for which there is more data to 
then reliably distinguish sMCI from pMCI subjects. 
 
Added value of this study 
 
This is the first study to use a BrainAge model based on neuropsychological test features to study 
Alzheimer’s disease. We suggest the NeuropsychBrainAge delta, which measure the difference 
between the model predicted age of the subject trained on healthy controls and the 
chronological age of the subject, as a biomarker of Alzheimer’s Disease. The NeuropsychBrainAge 
delta could differentiate between sMCI and pMCI. Moreover, we also show that the proposed 
biomarker is correlated with the time to conversion, the time taken for a pMCI subject to convert 
to Alzheimer’s Disease. 
 
Implications of all the available evidence 
 
Our approach could be used for the identification of patients with mild cognitive impairment at 
risk of developing Alzheimer’s disease. The NeuropsychBrainAge delta can also be used as a 
quantitative marker to measure disease severity due to its correlation with time to conversion. 
This study shows that using healthy controls for which there is more data but using features 
specific to a disease such as neuropsychological test can lead to reliable BrainAge models to 
identify specific neurological and psychiatric disorders. 
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1. Introduction 
 
Recent advances in ageing modelling have been aided by the use of machine learning and deep 
learning to create BrainAge models [1–4] based on neuroimaging data. BrainAge models have 
rapidly been applied to the medical fields to identify neurological disorders, such as mild 
cognitive impairment (MCI) and Alzheimer’s disease (AD) [5–11], traumatic brain injury [12,13] 
and multiple sclerosis [14,15] and also psychiatric disorders, such as schizophrenia [16–19] and 
bipolar disorder [19,20]. There are two types of models used in classification tasks. Those that 
use the difference between subject’s predicted age trained on healthy controls (CN) and subject’s 
chronological age, BrainAge delta, as a biomarker for classification [1], and those that modify a 
deep learning model originally trained on BrainAge prediction and retrain the network on a 
classification task to distinguish CN from patients [4]. The first type of model suffers from a lack 
of specificity for a given disease and the BrainAge delta seems to vary considerably between 
studies and models [3]. The second type of models does not have a specificity problem, but may 
suffer from the lack of enough training data for the patient subjects. One of the critical limitations 
of using neuroimaging is the variability intrinsic to this type of imaging across sites. If analyses 
are not carried out appropriately, site effects can dominate and make the models unusable. This 
poses a great challenge when thinking about bringing these methods to a clinical setting. An 
alternative is to train these types of models with other less site-dependent features, such as 
neuropsychological tests.  
 
We aimed to develop a BrainAge model trained on neuropsychological features that can be used 
to identify a biomarker of MCI to AD conversion. We used the data consisting only of  cognitive 
normal subjects for training. The output of the model, defined as NeuropsychBrainAge delta in 
this study, represents the difference between the subject’s predicted age by the model and the 
subject’s chronological age. To show the applicability of this model to a neurological disorder in 
the clinical setting, we applied the model to a cohort of subjects with MCI, of whom some 
remained stable and others progressed to AD. The proposed biomarker is capable of 
distinguishing with good accuracy between stable MCI (sMCI), those who remain MCI, and 
progressive MCI (pMCI), those who converted to AD. There have been BrainAge models based 
on neuropsychological features to study cognitive age [21] and to predict age directly from 
behavioural tests [22]. However, to the authors' knowledge, there are no previous studies to use 
these tests to predict age and then use the difference between predicted age and chronological 
age as a biomarker. 
 

2. Methods 
 

2.1 Subjects 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [23]. The ADNI was launched in 2003 
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 
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emission tomography (PET), other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.  

All subjects in the ADNI2 and ADNI3 phases who had an initial visit T1-weighted imaging and 
neuropsychological evaluation were extracted from the ADNI database. This included healthy 
controls (CN), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects. The 
dataset statistics is summarized in Table 1. Using longitudinal data, we identified conversors: 
those who converted from CN to MCI (N=64), those who converted from MCI to AD (N=152) and 
those who converted from CN to AD (N=7). 
 
A second dataset was created to study the effect of homogenisation on the results. For this 
dataset only sites with more than 10 CN subjects were used and which had at least 1 MCI and 1 
AD subject. The CN and MCI cohorts were also resampled to ensure they have the same age 
distribution as the AD cohort. 
 
The model was tested in the task of distinguishing between stable MCI (sMCI) subjects, those 
who remained MCI, and progressive MCI (pMCI) subjects, those who converted to AD. As it is 
impossible to know whether or not a sMCI subject will convert to AD at a future date, sMCI 
patients were considered stable if they remained with a diagnosis of MCI after 3 years from the 
initial visit. Similarly, only subjects with pMCI who converted to AD within 3 years from the initial 
visit were used. As there are more sMCI subjects, these were randomly sampled to obtain a 
balanced dataset containing equal amounts of sMCI (N=98) and pMCI (N=98) subjects. 
 

2.2 Features 
 
Models were built using two different types of features: structural brain features extracted from 
T1-weighted images and neuropsychological features. The first set of features were used to build 
a reference model so that we can compare our second model.    
 
T1-weighted images from each subject's first baseline visit were processed to obtain volumes of 
different brain structures. SIENAX [24], part of FSL [25] was used to obtain grey matter volume, 
white matter volume, cerebrospinal fluid volume, and peripheral grey matter volume as well as 
a volume scale value. FIRST [26] was used to segment and calculate the volumes of the thalamus, 
caudate, putamen, palidum, brainstem, hippocampus, amygdala and accumbens. The volume 
scale value was used to control for differences in brain size. For the dataset used for more 
powerful homogenisation, PyCombat [27] was used to homogenise taking into account the 
volume scale value, gender, and phase in which the patient was recruited. 12 features were used 
in total.  
 
Neuropsychological assessments from each subject's first baseline visit were used as features for 
the second model. This consisted of scores from standard neuropsychological tests: MMSE [28], 
ADAS [29], FAQ [30] and MOCA [31], as well as two metrics generated in the ADNI study: ADNI 
Memory score [32] and ADNI Executive Function [33]. 6 features were used in total. 
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2.3 Model 

 
A linear regressor was trained in a supervised fashion (code can be found in 
https://github.com/JGarciaCondado/ADNIBrainAge). The task at hand is to use the features 
extracted from each subject at the initial visit to predict the age of the subject at the initial visit 
(Figure 1a). The model is trained using only CN subjects. For training 85% of all CN subjects are 
used and 15% are used for testing. The features are normalized by subtracting the training mean 
and dividing by the training standard deviation. The model can be summarized below: 
 

𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 =  ∑ 𝑤𝑖𝑓𝑖 + 𝑏𝑖  (Eq. 1) 
 
were fi is the value of each normalized feature, wi the weight of each feature and b the intercept. 
The weights and intercept are chosen to minimize the mean square error between the predicted 
age (Brain Age) and the subject’s age at the initial visit (Chronological Age, Ω): 
 

min 
𝑤,𝑏

‖𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 − Ω‖2
2 (Eq. 2) 

 
There is a bias in the model as younger controls tend to be given higher ages and older controls 
are given lower ages than they are as it is a regression to the mean problem. It can be thought of 
in terms of our best estimate for a subject which we know nothing about, being the mean, so 
younger patients tend to be given higher ages and older patients lower ages. This can be fixed by 
adjusting the predicted BrainAge taking into account the actual age of the training subjects to 
correct for this bias by first fitting the following model [34]: 
 

𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 =  𝛼 × Ω + 𝛽  (Eq. 3) 
 
The coefficients α and β represent the slope and intercept, which are then used to correct the 
predictions in a test set using: 
 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 = 𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 + [Ω − 𝛼 × Ω + 𝛽]  (Eq. 4) 
 

2.4 Biomarker 
 
The model is trained on CN subjects only, so it is then applied to our test CN subjects, MCI subjects 
and AD subjects to predict their BrainAges. Our biomarker to differentiate our subjects is the 
BrainAge delta, defined as: 
 

𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 𝑑𝑒𝑙𝑡𝑎 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑟𝑎𝑖𝑛𝐴𝑔𝑒 − Ω  (Eq. 5) 
 
Notice that by using the corrected BrainAge, the BrainAge delta will not correlate with age but 
will be related to our variable of interest, the cohort each subject belongs to.  
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Finally, to assess the potential of BrainAge delta to differentiate between sMCI and pMCI 
subjects, a logistic regressor is trained using a 5-fold cross validation strategy on our task dataset 
(Figure 1b). Four logistic regressors are trained with the following inputs: one using 
StructBrainAge delta (delta found using the model trained using structural imaging features), one 
using NeuropsychBrainAge delta (delta found using the model trained using neuropsychological 
features), one using the sum of both deltas, and finally one using both deltas independently. 
Moreover, we also follow a different strategy of training logistic regressors but directly on the 
features (using only structural features, using neuropsychological features, and using all features) 
to compare to the logistic regressors trained on BrainAge deltas. In total 7 different logistic 
regressors were trained. 
 

3. Results 
 

3.1 Correlation between features and age 
 
 As a first initial assessment of the suitability of the proposed features for predicting age Pearson 
correlation coefficients were calculated between each feature and age of the CN subjects. 
Correlations between structural features and age is shown in Figure 2a, ranging from cmin=0.12 

(brainstem, p<0.02) to cmax=0.55 (grey matter, p<310-39). As noted in previous research [35], 
there is a strong linear correlation between certain brain structures and population ageing above 
50 years. Correlations between neuropsychological features and age is shown in Figure 2b, 

ranging from cmin=0.08 (FAQ, p<0.10) to cmax=0.35 (grey matter, p<710-15). These have a weaker 
correlation yet there is still one.  
 

3.2 A model trained only on healthy controls 
 
A BrainAge model was trained on CN subjects on two set of features (neuroimaging and 
neuropsychological features) and tested on a different set of CN subjects. The results in Table 2 
showcase the mean absolute error on the test set before and after correction for age bias. 
 

3.3 Differences in BrainAge deltas between cohorts 
 
We applied both BrainAge models, one trained on neuroimaging features and another trained 
on neuropsychological features, after age bias correction to all cohorts: the test set CN, MCI and 
AD subjects. Then we calculated the BrainAge delta for each subject. BrainAge delta was 

significantly higher between CN and MCI for both neuroimaging (-0.323.28 vs 1.923.97, 

p<110-7) and neuropsychology (-0.212.19 vs 4.423.95, p<110-26), as well as between MCI 

and AD subjects, for neuroimaging (1.923.97 vs 4.984.50, p<110-17) and neuropsychology 

(4.423.95 vs 16.076.38, p<110-83). The differences are shown in Figure 3a.  
 
We next addressed the BrainAge delta of the pMCI cohort, those labelled as MCI at the baseline 
visit but who would progress to AD during follow-ups. There was a correlation between the 
BrainAge delta and the conversion time, the number of years until the subject was labelled AD.  
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Pearson’s correlation between conversion time and BrainAge delta was stronger when 

neuropsychological features were used (-0.48, p<110-10) as compared to neuroimaging features 
(-0.23, p<0.004), illustrated in Figure 3b. 
 

3.4 Feasibility of application to identify sMCI vs pMCI subjects using BrainAge deltas 
 
Next, we asked whether the Brain Age Delta could discriminate between sMCI subjects, those 
who remain MCI for at least 3 years after the initial visit from pMCI subjects, those who convert 
to AD within 3 years of the initial visit. A logistic regressor was trained on these BrainAge deltas 
using either the neuroimaging model (StructBrainAge delta), the neuropsychological model 
(NeuropsychBrainAge delta), the sum of both deltas, or each delta individually. The ROC curve 
for each can be seen in Figure 4. The best results were obtained when using the 
NeuropsychBrainAge deltas only as seen in Table 3. 
 
Further investigations were carried out to compare whether it would be better to use the 
features directly in a logistic regressor. For this purpose, logistic regressors to classify sMCI vs 
pMCI were trained using a 5-fold CV scheme directly on neuroimaging and neuropsychological 
features instead of BrainAge deltas as the input variables. The NeuropsychBrainAge delta-trained 
logistic regressor outperformed all other logistic regressors trained directly on neuroimaging or 
neuropsychological features, as shown in Table 4.  
 

3.5 Effects of homogenisation of neuroimaging features 
 
Lastly, we also tested whether the use of homogenisation techniques on neuroimaging features 
improved the performance of logistic regressors in the sMCI vs pMCI discrimination task. 
Neuroimaging homogenisation did improve performance (Table 5), but it was still lower than the 
performance achieved by NeuropsychBrainAge delta. 
 

4. Discussion 
 
One of the key issues in the clinical application of BrainAge models is developing models that are 
reliable and reproducible. To achieve this, one strategy is to accurately track the trajectory of 
ageing in a normal healthy population. Deviations from this normal ageing trajectory can then 
indicate risks of developing certain conditions. The advantage of this type of modelling is twofold. 
The first is that by training the model on a healthy population and then tracking deviations from 
this, no assumptions are made about the condition under study that could bias the results. 
Second, it is much easier to collect data for healthy individuals and hence get larger datasets to 
train with. These models are then tested on the cohort with an underlying condition that we aim 
to identify to ensure the biomarker can correctly distinguish subjects in each cohort. Our 
BrainAge delta-trained logistic regressors were able to outperform logistic regressors trained 
directly on features because the deltas were extracted from a model trained on a larger dataset 
of healthy controls. BrainAge models were trained on healthy controls (N=474) and then the 
logistic regressors only had to find a threshold to divide the BrainAge deltas (a single feature) of 
sMCI (N=95) vs pMCI (N=95). On the other hand, logistic regressors trained directly on 
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neuroimaging features had to combine information from multiple features (12 in the case of 
neuroimaging, 6 in the case of neuropsychological, or 18 in total) directly only on our task set of 
sMCI (N=95) vs pMCI (N=95) therefore leading to worse generalization due to lower number of 
datapoints. 
 
The logistic regressor trained on NeuropsychBrainAge deltas was able to outperform all other 
models. It performs very similarly to using each BrainAge delta as separate inputs to the logistic 
regressor (multidomain approach), showing that all the information captured by StructBrainAge 
is already captured by NeuropsychBrainAge. In comparison to other State-of-the-Art models such 
as that original developed by Gaser et al. 2013 [1], based on structural imaging features and 
therefore similar to our study’s StructBrainAge, which achieved accuracies of 0.81, even lower 
than the 0.85 achieved by ours. It should be noted that the BrainAge model based on 
neuropsychological features performs worse in the task of predicting age, since its MAE in the 
test set for healthy controls is worse before bias correction than the model trained on 
neuroimaging data.  
 
The large difference in accuracy between models trained in neuroimaging and 
neuropsychological tests, and after careful inspection of other models in the literature raises the 
question of whether the concept of BrainAge as a biomarker is robust and not strongly model 
dependent. Further studies are required to better understand whether there is a correlation 
between MAE before age bias correction and better performance on different classification tasks. 
There is a wide variety in reported BrainAge deltas between studies for similar cohorts. For 
example, AD subjects may have mean BrainAge deltas ranging from +5.35 years in one study to 
+10.70 in another [3]. This great variability indicates the need for further research on how to 
ensure that BrainAge-derived biomarkers are robust for clinical application across sites and 
subjects.  
 
There might be concern in using neuropsychological tests to assess conversion, since they are 
used to assign the healthy control, MCI and AD labels in the first place. In ADNI, a selection of 
these tests  are used in combination with cut-off points to assign those labels as well as other 
clinical assessments [23]. Various tests, such as  CDR [36], are used to assign labels that we did 
not use in our study. However, the most important remark is that we trained our BrainAge model 
on healthy controls and then assessed the MCI conversion from baseline scores. There is no data 
leakage in terms of biases in the BrainAge deltas as the model is not trained on MCI subjects but 
on healthy controls. These tests have been used to assign subjects who belong to MCI at baseline, 
but we can predict future conversion to AD with those same scores without requiring future 
scores beyond the AD cut-off points. This is evidence to show that hard cut-off points are not the 
optimal tool for assigning labels as with hard cut-offs we label subjects into the same category 
(MCI) that have different pathological trajectories (sMCI vs pMCI). It is important to note that 
pMCIs are assigned as MCIs with the baseline scores because of the test cut-off scores and we 
can distinguish them from sMCI in the future with the baseline scores, but never using future 
assessment scores which make them their label to switch from MCI to AD. This shows that more 
information can be extracted from neuropsychological tests than is obvious by using cut-off 
points.  
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In this study we have shown that neuropsychological features combined with BrainAge modelling 
can yield a valuable biomarker to distinguish between sMCI and pMCI subjects. This biomarker 
also shows a strong correlation with conversion time, which is a sign of a robust biomarker as 
good biomarkers should have higher values with higher levels of severity, in this case, less time 
to conversion. Neuropsychological tests are better suited for clinical application as neuroimaging 
derived features suffer from a problem of greater variability between sites. Even when 
accounting for this with homogenisation techniques that make the pipeline more complex the 
neuropsychological based models still outperformed the neuroimaging ones. This comes to show 
that the use of BrainAge models combined with specific neuropsychological tests for a specific 
condition can provide valuable and accurate biomarkers. 
 

5. Conclusion 
 
We present a BrainAge model trained on neuropsychological tests able to discriminate stable 
MCI subjects from progressive MCI subjects. BrainAge models have the advantage of training on 
a larger cohort of healthy controls to measure deviations from the norm. By using features tightly 
linked to a specific condition, such as the neuropsychological tests for AD determination, we were 
able to achieve good performance on the classification tasks. Furthermore, we have shown that 
it is a robust biomarker because it was correlated with the conversion time from MCI patients to 
AD. We expect that our approach can be extended to other neurological and psychological 
disorders by applying the same models but with different neuropsychological tests specific to 
each condition. 
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Figures 

Figure 1 Overview of the BrainAge model and classification task. a) Training of the BrainAge model on 
healthy controls with input data consisting of structural features or neuropsychological features. A total 
of 12 structural brain features were used, consisting of volume measured in mm3 for: white matter, grey 
matter, peripheral grey matter, cerebrospinal fluid, thalamus, caudate, putamen, pallidum, hippocampus, 
amygdala, accumbens and brainstem. A total of 6 neuropsychological features were used: MMSE, ADAS, 
FAQ, MoCA, ADNI Memory and ADNI Executive Function. After training the linear regressor on the healthy 
controls age estimation task, an age bias correction was applied to deal with the inherent bias of 
regression to the mean problem. b) Description of the classification task between stable mild cognitive 
impairment (sMCI) and progressive mild cognitive impairment (pMCI). First, features were extracted for 
each subject as with healthy controls. Then, using either neuropsychological features or structural 
features, the trained model and bias correction were applied to obtain a predicted age. The BrainAge delta 
was calculated by subtracting the chronological age from the predicted age. This delta was then used as 
an input to a logistic regressor to determine a threshold for labelling using a 5-fold CV scheme. c) Number 
of subjects used for training with healthy controls, the number of subjects used to test the performance of 
BrainAge models on unseen healthy controls, and number of sMCI and pMCI used in the classification task. 
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Figure 2 Correlation between BrainAge model features and age in healthy controls (CN) subjects 
resulting from a) Structural imaging features and b) Neuropsychological test features.  The title of each 
graph describes the precise feature and its value of the Pearson's correlation coefficient with age. *p < 
0.05, **p<0.01, ***p < 0.001 
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Figure 3 BrainAge delta for each subject group and its relation to conversion time for progressive mild 
cognitive impairment subjects. Structural BrainAge refers to the model trained on neuroimaging features 
and Neuropsych BrainAge refers to the model trained on neuropsychological features. a) BrainAge delta 
for each cohort, healthy control (CN), mild cognitive impairment (MCI) and Alzheimer’s disease. b) Time to 
conversion for subjects with progressive mild cognitive impairment (pMCI) as a function of BrainAge delta, 
where R indicates the Pearson correlation coefficient. Time to conversion is defined as the time between 
the subject's first baseline visit and the visit at which the subject is labelled with Alzheimer’s disease (AD). 
*p < 0.05, **p < 0.01, ***p<0.001  
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Figure 4 ROC curve for different logistic regressors models trained in a 5-fold CV scheme to discriminate 
between sMCI and pMCI subjects. (light blue) Structural refers to using the Structural BrainAge delta as 
the input to the logistic regressor. (orange) Neuropsych refers to using the Neuropsych BrainAge delta as 
the input to the logistic regressor. (green) Addition refers to using the sum of the Structural BrainAge delta 
and the Neuropsych BrainAge delta for each subject as a single input to the logistic regressor. (red) 
Multidomain refers to using Neuropsych BrainAge delta and Structural BrainAge delta as two separate 
inputs to the logistic regressor, hence in this logistic regressor there are two input features instead of one. 
(dashed) Represents the performance of a truly random classifier.  
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Tables 

Table 1 Dataset Distribution 

Category CN MCI AD 

Nº Subjects 629 635 208 
Age distribution (Years) 72.16.8 72.57.8 74.78.2 

Nº Male / Nº Female 265 / 364 356 / 279 121/87 
 

Table 2 MAE of BrainAge models on test dataset of healthy controls without age bias correction and with age bias correction 

Features MAE (Years) Age Bias Corrected (Years) 

Neuroimaging 4.13 2.61 

Neuropsychological 4.51 1.80 

 
Table 3 Results of different logistic regressors trained in a 5-fold CV scheme to distinguish between sMCI and pMCI subjects 

using different BrainAge deltas as inputs and possible combinations 

Model AUC Accuracy Sensitivity Specificity 

StructBrainAge 
delta 

0.68 [0.53-0.83] 0.61 [0.51-0.72] 0.63 [0.49-0.76] 0.63 [0.47-0.80] 

NeuropsychBra
inAge delta 

0.91 [0.84-0.98] 0.85 [0.76-0.94] 0.87 [0.78-0.97] 0.87 [0.76-0.99] 

Addition 0.86 [0.79-0.94] 0.79 [0.69-0.89] 0.81 [0.70-0.93] 0.81 [0.66-0.96] 

Multidomain 0.90 [0.85-0.96] 0.85 [0.77-0.93] 0.86 [0.77-0.95] 0.85 [0.72-0.95] 

 
Table 4 Results of different logistic regressors trained in a 5-fold CV scheme to distinguish between sMCI and pMCI subjects 

using individual features extracted as compared to BrainAge deltas 

Model AUC Accuracy Sensitivity Specificity 

Neuroimaging 
Features 

0.63 [0.59-0.68] 0.57 [0.52-0.61] 0.57 [0.49-0.66] 0.58 [0.46-0.70] 

Neuropsycholo
gical Features 

0.90 [0.86-0.95] 0.82 [0.77-0.87] 0.83 [0.75-0.92] 0.82 [0.71-0.94] 

All Features 0.87 [0.79-0.95] 0.77 [0.74-0.80] 0.78 [0.73-0.84] 0.78 [0.69-0.88] 

StructBrainAge 
delta 

0.68 [0.53-0.83] 0.61 [0.51-0.72] 0.63 [0.49-0.76] 0.63 [0.47-0.80] 

NeuropsychBra
inAge delta 

0.91 [0.84-0.98] 0.85 [0.76-0.94] 0.87 [0.78-0.97] 0.87 [0.76-0.99] 
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Table 5 Performance of logistic regressors on neuroimaging features without and with homogenisation 

Model AUC Accuracy Sensitivity Specificity 

Neuroimaging 
Features 

0.63 [0.59-0.68] 0.57 [0.52-0.61] 0.57 [0.49-0.66] 0.58 [0.46-0.70] 

Neuroimaging 
Features 

Homogenised 

0.73 [0.60-0.85] 0.63 [0.43-0.84] 0.54 [0.29-0.78] 0.79 [0.63-0.93] 

StructBrainAge 
delta 

0.68 [0.53-0.83] 0.61 [0.51-0.72] 0.63 [0.49-0.76] 0.63 [0.47-0.80] 

StructBrainAge 
delta 

Homogenised 

0.74 [0.54-0.93] 0.69 [0.55-0.82] 0.63 [0.25-0.98] 0.80 [0.65-0.96] 

NeuropsychBra
inAge delta 

0.91 [0.84-0.98] 0.85 [0.76-0.94] 0.87 [0.78-0.97] 0.87 [0.76-0.99] 
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