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Abstract
Chest X-rays (CXRs) are a rich source of information for physicians – essential for disease
diagnosis and treatment selection. Recent deep learning models aim to alleviate strain on medical
resources and improve patient care by automating the detection of diseases from CXRs. However,
shortages of labeled CXRs can pose a serious challenge when training models. Currently, models
are generally pretrained on ImageNet, but they often need to then be finetuned on hundreds of
thousands of labeled CXRs to achieve high performance. Therefore, the current approach to model
development is not viable on tasks with only a small amount of labeled data. An emerging method
for reducing reliance on large amounts of labeled data is self-supervised learning (SSL), which
uses unlabeled CXR datasets to automatically learn features that can be leveraged for
downstream interpretation tasks. In this work, we investigated whether self-supervised pretraining
methods could outperform traditional ImageNet pretraining for chest X-ray interpretation. We found
that SSL-pretrained models outperformed ImageNet-pretrained models on thirteen different
datasets representing high diversity in geographies, clinical settings, and prediction tasks. We thus
show that SSL on unlabeled CXR data is a promising pretraining approach for a wide variety of
CXR interpretation tasks, enabling a shift away from costly labeled datasets.
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Introduction
Chest X-rays (CXRs) are the most commonly used type of medical imaging globally, critical for the
screening, diagnosis, and management of many life-threatening diseases. However, many medical
systems currently lack the resources to accurately read CXRs, due to the time-consuming nature
of CXR interpretation and an international shortage of radiologists1,2. Therefore, there have been
significant efforts to create AI tools that can assist with CXR interpretation. Deep learning models
have shown promise in this area, matching the performance of trained radiologists on a variety of
tasks3,4,5,6.

In current practice, AI tools for any given CXR interpretation task are usually trained using a large
CXR dataset with labels specifically addressing that task. Unfortunately, obtaining CXR data can
itself be a costly, time-consuming process. Furthermore, obtaining high-quality labels requires
experienced radiologists to manually interpret and annotate each CXR, which is extremely
expensive7. The resulting lack of reliably labeled CXR data has posed a significant challenge for
CXR model development, especially for less common tasks unaddressed by labels in existing
datasets. For reference, one of the most frequently used datasets is CheXpert, a single-center
dataset of 224,316 CXRs. While this dataset offers lower-quality “weak” labels automatically
extracted from the radiology reports, board-certified radiologists manually annotated only  700
images.8 Our project aims to overcome the label shortage, addressing a key question: whether we
train high-performing models without relying on large, densely annotated datasets.

We focus on transfer learning, a procedure that is widely used to improve model performance. In
transfer learning, models are first pretrained on a large, general-purpose dataset and then
finetuned on a more specific dataset addressing the target task. The pretraining step can
compensate for weaknesses in downstream target datasets, such as when datasets are small or
have weak labels. Over the past ten years, models for image interpretation have usually been
pretrained specifically on ImageNet, a large dataset of natural images9; ImageNet pretraining has
been successfully applied to a variety of medical image tasks, ranging from CXR interpretation to
skin cancer classification to the diagnosis of retinal disease10,11,12. Unfortunately, the benefits of
transfer learning lessen when the source data differs dramatically from the target data, as in the
case of ImageNet images, which capture color images naturally occurring in the world, and CXRs,
which are often taken in standard grayscale views with subtle local pixel differences accounting for
differences in their classification.13 ImageNet-pretrained models often need to be finetuned on
large, labeled CXR datasets containing tens or hundreds of thousands of datapoints in order to
achieve high performance on downstream tasks. We hypothesize that pretraining on source
datasets that more closely resemble target CXR datasets can improve downstream performance,
potentially allowing CXR models to use significantly less labeled data during finetuning.

Self-supervised approaches, which train models without labels, have shown promising results on
medical imaging tasks.14 For example, smaller scale studies have shown that self-supervised
models pretrained on CheXpert had better performance and generalized better than models
pretrained through supervised learning on ImageNet15. Furthermore, self-supervised models like
MedAug have been shown to achieve high performance on specific chest X-ray pathology
classification tasks using as little as 1% of CheXpert training dataset, making self-supervised
learning (SSL) a promising approach to label-efficient training16.  However, it is unknown whether
self-supervised pretraining on unlabeled CXRs can outperform ImageNet-pretrained models across
a range of CXR tasks.

To evaluate whether self-supervised models outperform ImageNet-pretrained models across
clinical distributions, we implemented seven self-supervised learning approaches to pretrain
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models on a large CXR dataset without using labels. We compared the performance of these
models against traditional Imagenet-pretrained models on thirteen datasets covering a variety of
tasks, such as lung nodule detection, line and tube placement, edema severity classification,
pediatric pneumonia detection, pneumothorax detection and multi-class differential diagnosis
across demographics and clinical settings. After performing supervised learning on our target
datasets, we evaluated how models behave across different distributions covering datasets of
different sizes with different labeling methodologies.

Our results demonstrate that self-supervised pretrained models may learn generalizable chest
X-ray representations, which improve performance over ImageNet-pretrained models; using such
models can enable a shift away from costly labeled datasets for a large variety of chest-X-ray
interpretation tasks across different clinical distributions. By eliminating the need to train models on
large labeled datasets that are difficult to obtain, this work will enable institutions to more rapidly
train and evaluate models across distinct clinical tasks, getting a step closer to model deployment
into clinical settings.

Results

Experimental Setup
To evaluate whether self-supervised CXR pretraining outperforms ImageNet pretraining, we
selected seven SSL methods, three that only use CXR images (MedAug16, S2MTS217,
MoCo-CXR18) and four that use both chest X-ray images and corresponding radiology reports
(CXR-RePaiR-CLIP19, ConVIRT20,REFERS21, GLoRIA22). We give further details on these learning
algorithms in the Methods section. Significantly, none of these methods used any labels, requiring
only CXRs, reports, and metadata that were naturally produced as part of medical workflows.

To assess whether models can generalize across clinical distributions,  we chose a wide variety of
downstream CXR datasets that we used to finetune and validate our models. These datasets came
from diverse sites, including Brazil23, China24,25, United States,25,,26,27,28,29,30,31, Spain32, Japan33,
Vietnam34 and other countries in Eastern Europe and Central Asia.35 They also addressed a large
set of tasks, such as lung nodule detection, line and tube placement, edema severity classification,
pediatric pneumonia detection, pneumothorax detection and multi-class differential diagnosis;
some datasets address wide-ranging detection tasks for multiple pathologies. Furthermore, these
datasets were collected in a variety of clinical settings, including a pediatric setting (Pediatric
Pneumonia); a Tuberculosis screening program (Montgomery); an emergency department (MIMIC
CXR); outpatient (Shenzhen) and in-hospital settings (see Table 1).
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Table 1: Overview of each target dataset: number of radiographs, number of unique patients and description of the
patient population (country and setting), descriptions of prediction task and task type for each dataset. We selected
thirteen distinct datasets that vary in size, patient population (age, gender, country) and the type of predictive task.

Once pretrained, models were adapted for each downstream task, using all available training data
in the target dataset. In our first set of experiments, we fine tuned all model parameters and
compared the performance of SSL CXR-pretrained models against the ImageNet-pretrained
models, controlling for the model capacity and hyperparameter search (as detailed in Methods). In
the second set of experiments, we performed linear probing, freezing the weights of our CXR
pretrained models and training one final fully-connected classifier layer for each. These
experiments directly evaluated the quality of the features learned through CXR self-supervision.
After training, we tested the performance of our models using the testing data from each dataset.
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Table 2: Maximum AUC improvements over ImageNet pretraining achieved across the seven self-supervised models for
each dataset. Starred entries indicate statistically significant improvements (p < 0.05) over the ImageNet Pretrained
baseline. SSL models outperformed ImageNet pretrained models across datasets with distinct clinical tasks and patient
populations.

Self-supervised CXR pretrained models outperform ImageNet pretrained models across
clinical distributions
We found that finetuned SSL models consistently provided improvements over ImageNet
pretraining across datasets (see Table 2). The complete tables showing these results can be found
in Supplementary Note 3. In particular, the highest improvements in the average AUC achieved
across tasks were seen on the NIH dataset with ConVIRT (0.108 improvement; [95 % CI 0.082,
0.1333]) and on the REFLACX dataset, also with ConVIRT (0.103 improvement, [95 % CI
[0.035,0.181]). On both datasets, the highest AUC for each task (each pathology/condition in a
dataset) was obtained by a self-supervised model; on the NIH dataset, the highest improvement
was seen when identifying atelectasis (0.250 improvement  [95% CI 0.224,0.278] with ConVIRT),
while on the REFLACX dataset, the highest improvement was seen for pneumothorax detection
(AUC improvement of 0.256 [95% CI 0.118, 0.437] with GLoRIA).
Figure 1 shows a per-task comparison across all multi-label datasets between each dataset’s best
SSL model and the ImageNet-pretrained model.
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Figure 1. AUC score breakdown by task for the seven multi-label datasets with finetuning. On each task, we compare
the AUC of the dataset’s overall best-performing model against that of the ImageNet-pretrained model. Across datasets,
SSL models had a great performance detecting cardiomegaly, pleural effusion, pneumothorax and ETT placement.

We found that with linear probing, SSL models outperformed the finetuned ImageNet model on
twelve of thirteen datasets (see Table 2).  The largest average improvements in performance
across tasks were seen on the REFLACX dataset with GLoRIA (0.109 difference over the
supervised model, [95% CI 0.037, 0.190]) and on the NIH ChestX-ray14 dataset with REFERS
(0.091 difference, [95% CI 0.061,0.118]). On both datasets, the highest AUC per task was
achieved by a self supervised CXR pretrained model. On the pathologies within REFLACX, the
largest performance improvement was achieved by GLoRIA when recognizing pneumothorax
(0.215 improvement, [95% CI 0.068,0.412] over the ImageNet-pretrained model after finetuning).
Within the NIH dataset, the largest improvement was seen with CXR-RePaiR-CLIP when
identifying atelectasis (0.244 improvement, [95% CI 0.221,0.266]). PadChest is the only dataset
where the finetuned ImageNet pretrained model outperformed all self-supervised models after
linear probing, though its improvement was not statistically significant: the AUC of the
best-performing self-supervised model (CXR-RePaiR-CLIP) was lower by only -0.005 [95 % CI
-0.088,0.073].
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Comparing Different SSL Methods
To evaluate whether pretraining on images and text together yielded an advantage over
image-only methods, we compared the average performance across all datasets of image-text with
image-only SSL models with finetuning and linear probing. To further assess whether finetuning
significantly boosted SSL models’ performance, for both image-text and image-only methods, we
compared each model's average performance across all datasets between finetuning and linear
probing.

We found that finetuned SSL models that used both images and text outperformed the image-only
self-supervised methods (See Figure 2 and Table 4 of Supplementary Note 3).  On four of the
thirteen datasets, the highest average AUC was achieved by GLoRIA and ConVIRT. The
best-performing (highest average finetuning improvement across all datasets) image-text methods
were ConVIRT (AUC of 0.810) and REFERS (AUC of 0.810), closely followed by GLoRIA (AUC of
0.799). The best-performing image-only method was S2MTS2 (AUC of 0.781).
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Figure 2. Finetuning AUC (averaged across tasks for datasets containing multiple tasks) achieved by finetuning of each
ImageNet-pretrained model and seven self-supervised models on thirteen datasets. The figure shows the AUC of each
SSL model and the ImageNet-pretrained model. SSL models that used both image and text outperformed image only
SSL models.

We found that, with linear probing, all image-text SSL models outperformed image-only SSL
models averaged across datasets. (See Figure 3 and Table 5 of Supplementary Note 3). REFERS
had the best average performance (AUC 0.802), followed closely by ConVIRT (average AUC
0.792), CXR-RePaiR-CLIP (average AUC 0.789) and GloRIA (average AUC 0.783). All three
image-only SSL models underperformed the finetuned ImageNet-pretrained model. The best
image-only SSL model was MedAug, which achieved an average AUC of 0.724 across datasets.

We found that the best linear probing models outperformed the best finetuned models on six out of
thirteen datasets. However, model performance on average across datasets was better after
finetuning. Only CXR-RePaiR-CLIP had a higher performance with linear probing (0.025 average
improvement over finetuning). The three models that benefited the most from finetuning were
pretrained only on images: S2MTS2 (0.069 difference over linear probing), MoCo-CXR (0.059),
and MedAug (0.041).
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Figure 3. Linear Probing AUC (averaged across tasks for datasets containing multiple tasks) achieved through linear
probing of each ImageNet-pretrained model and seven self-supervised models on thirteen datasets. (A) to (M) figure
shows the AUC of each SSL model and the ImageNet-pretrained model. SSL models that used both image and text
outperformed image only SSL models.

Discussion

Performance across distribution shifts
Several studies have demonstrated a significant drop in performance across a variety of CXR
applications when deep learning systems were tested on datasets outside their training
domain36,37,38 . Machine learning models trained through supervised learning often achieve high
performance on only a single dataset due to multiple factors, such as technical differences in how
CXR images are captured across datasets and varying disease distributions across different
populations37. We demonstrated that the best self-supervised models maintained their performance
across datasets from different geographies, populations and tasks. Although there was not a single
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model that maintained high performance across all thirteen datasets, our results are promising,
suggesting that self-supervised pretraining can broadly improve generalizability. We believe that
labeled data is still essential for high performance and generalization, since both supervised and
self-supervised models had consistently poor performance across PadChest and JSRT both for
finetuning and linear probing.

Self-supervised models learn better representations using both images and reports
Image-text models learned higher-quality, more generalizable representations than image-only
models, across both our finetuning and linear probing experiments. Amongst the image-text
models, ConVIRT and REFERS were generally the best-performing models after both finetuning
and linear probing. However, they did not achieve the highest performance on all datasets,
indicating that while certain models can learn more useful representations on average, they may
still falter on specific tasks. Our results did not find any one SSL model that consistently
outperforms other models on every new dataset / new task, and work remains to be done on this
front.

Clinical Implications
Although the performance of CXR self-supervised models was overall better than
ImageNet-pretrained supervised models, results were not homogeneous across different tasks and
datasets.

For tasks that assess the placement of lines and tubes, as seen on the the RANCZR CLiP dataset,
CXR-pretrained models generally did better than the ImageNet-pretrained model. Both kinds of
models could successfully detect NGT or ETT placement, but neither model did well enough to
evaluate central line placements. The latter is a more complicated task, because this dataset
includes different types of central catheters (central line, peripherally inserted central catheter,
Ports, Hickman’s) and because these catheters can be inserted at different levels and from either
the right or left side of the body. Performance likely dropped due to the increased complexity of the
task.

For complex tasks with multiple pathologies, we observed that our models performed poorly on
datasets with multiple labels that did not clearly distinguish between a specific finding and a
diagnostic impression. Specifically, they underperformed on PadChest when distinguishing
between heart insufficiency and pulmonary edema or emphysema and chronic obstructive
pulmonary disease (COPD), even though PadChest is a relatively large dataset with more than
160,000 images. These labels can be particularly difficult to apply, and even the most experienced
radiologists disagree on the correct label due to ambiguity in instructions. These findings contribute
to the hypothesis that size is not the only important feature of a dataset; it is also necessary to
have clear, specific labels, especially for complex tasks.

When the task involves a more subjective appraisal, as when determining the severity of
pulmonary edema or of subtlety of a pulmonary nodule, we found that neither set of models did
well. These results mirror clinical practice, where board-certified radiologists and emergency
medicine physicians demonstrate a sensitivity of 77% and 59% respectively, when detecting the
presence of edema, and their inter-agreement is also low39,40. Similarly, when detecting
lower-subtlety pulmonary nodules, performance decreases even among experienced radiologists41.
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Although more research is necessary, self-supervised pretraining is a promising approach to image
interpretation tasks, especially for tasks where datasets are small but contain clear, specific labels.
A recent study found that pretraining the data on natural images, followed by pretraining on large
weakly labeled CXR datasets, and finally, task-specific training on small labeled datasets could
significantly reduce label requirements on the target dataset42; thus the composition of large-scale
out-of-domain pretraining and self-supervised pre training may be a fruitful direction for future work.

Overall, CXR self-supervised pretrained models did better than ImageNet-pretrained models,
especially for image-text models. There was no task where the ImageNet-pretrained model
consistently did better than models pretrained through CXR self-supervision. Tasks where CXR
self-supervised models did particularly well included the detection of pneumothorax, cardiomegaly,
pleural effusion, and tube placement. Within these tasks, models maintained high performance
across different populations and clinical settings, indicating that these models could be ready for
deployment, assisting clinicians in identifying those critical conditions instantly. It is also important
to note that the quality of the labels may influence performance more than the number of images
and labels in a specific dataset; this is an important consideration when creating future datasets.

Conclusion
In this study, we tested whether the emerging paradigm of self-supervised pretraining would
outperform the traditional paradigm of ImageNet pretraining on different chest x-ray interpretation
tasks. Traditionally, ImageNet pretraining has been the dominant approach to tackling medical
imaging tasks with limited data. However, our results indicate that self-supervised pretraining on
medical data could take over as the traditional paradigm for low-data medical tasks. In addition to
significantly improving performance across downstream tasks, this study represents a step forward
in learning generalizable representations of chest X-rays. Such self-supervised pretrained models
could be easily adapted to and deployed in diverse clinical settings.

Methods

Model Descriptions
We benchmarked the performance of seven SSL methods. The methods were primarily divided into
two categories, depending on whether the pretraining tasks used images alone or used both images
and reports. The image-only models (MedAug, S2MTS2, MoCo-CXR) were pretrained on CXR
images, whereas image+reports models (CXR-RePaiR-CLIP, ConVIRT, REFERS, GLoRIA) were
pretrained on the CXR images along with corresponding reports. These models used different
backbone architectures (ResNet-5043, CLIP-ViT44, Dense12145) and underlying pretraining
frameworks (contrastive learning46, CLiP, transformers47, self-attention48, student-teacher49,
cross-supervision50). A detailed description of these methods is given in Table 3.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.19.22282519doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.19.22282519
http://creativecommons.org/licenses/by/4.0/


13

Table 3. Overview of SSL methods with backbone architecture, pretraining  dataset, pretraining type, description and number of
tunable parameters during linear probing and finetuning.

Adapting Strategies
We adapted self-supervised models in two ways: linear probing and finetuning. For linear probing,
we added a logistic regression layer on top of the last layer of the backbones for 100 epochs, using
the L2 norm and Limited-memory Broyden–Fletcher–Goldfarb–Shanno solver. For finetuning, we
tuned all the model parameters with SGD optimizer for 100 epochs with a learning rate of 0.001, a
batch size of 32, and a learning rate scheduling step of 200 with cosine annealing. These sets of
hyperparameters are given in the official implementation of respective methods. Model parameter
selection was based on the model with the highest AUC on the validation set. We ran the
finetuning of SSL methods on a single NVIDIA RTX A4000 GPU card.

Dataset Selection
We evaluated CXR self-supervised models across a range of tasks, using fourteen distinct
datasets that vary in size, patient population, geography, setting, and type of predictive task. These
tasks are a mix of binary classification (5 datasets), multi-label (7 datasets) and multi-class (2
datasets) tasks. The tasks that we have selected are described in Table 1.

Dataset Processing
We split every dataset except the Pediatric Pneumonia and VinDr-CXR datasets into training,
validation and test sets with 60%, 20%, and 20% of datapoints respectively. We ensured that there
was no patient overlap between the three sets. The Pediatric Pneumonia and VinDr-CXR datasets
were split into (80%, 10%, 10%) and (66%, 16%, 16%) respectively, as we retained the test split
provided by the creators of the dataset.

Statistical Analysis
We evaluated the performance of models using AUC scores, representing the area under the
receiver operating characteristic curve. We reported the variability in our estimate of this measure
using the percentile bootstrap: we constructed bootstrap confidence intervals by taking 1000
replicates of sampling test data points with replacement.
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The nonparametric bootstrap was used to estimate the variability around each of the perfor-
mance measures; 1000 bootstrap replicates from the test set were drawn, and each performance
measure was calculated for the ImageNet-pretrained baseline model and the seven
self-supervised models on these same 1000 bootstrap replicates. This process produced a
distribution for each estimate, and the 95% bootstrap percentile intervals (2.5th and 97.5th
percentiles) are reported. To find the performance improvement provided by the best SSL model
over the ImageNet supervised learning model, we computed the differences of 1000 replicated
AUCs and reported the 95% bootstrap percentile intervals51. The analyses were performed using
statsmodels, scikit-learn and SciPy packages in Python.

Package description - cxrlearn
The SSL methods implemented in this work were developed by multiple research groups across
different platforms with multiple dependencies. We have integrated all SSL codebases into one
reusable library called cxrlearn. cxrlearn provides documented functions for dataset conversion,
self-supervised learning, model object generation, finetuning, linear probing, and evaluation. Our
open-source library codebase is available here.

Data availability
Most datasets used in this study are public and can be accessed through their respective websites.
Requests concerning the TB portals dataset should be addressed to  Maha Farhat,
(Maha_Farhat@hms.harvard.edu).
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