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1 Data

Demographic and epidemic data. Data about demographics comes from the United Nation World
Population Prospects [1]. Epidemiological data are taken from the COVID-19 Data Repository by
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University and from official
sources [2].

Vaccination data. Data on global vaccine inequities used in the Introduction and in Fig. 1 of the main
text are taken from the United Nations Development Programme via their Global Futures Platform [3].
Vaccination data used in the simulations are taken from Our World in Data [4]. The dataset provides
the cumulative share of people partially (pt) and fully (ft) vaccinated against SARS-CoV-2 at time t.
We turn these two quantities into daily number of administered doses. Consider the cumulative fraction
of partially vaccinated individuals pt. First, we fix possible null values using a linear interpolation.
Second, we turn pt into the actual number of partially vaccinated Pt by simply multiplying it by the
total population N of the country (i.e., Pt = N × pt). Finally, we take daily increases in the cumulative
number of partially vaccinated individuals to get the number of daily first doses administered in the
country. Through analogous calculations we get the number of daily second doses administered. In
Fig. 1-A we show the percentage of individuals partially and fully vaccinated in the countries considered.

2 Epidemic model

We adopt a SLIR-like compartmental model (see Figure 2 for a schematic depiction). The susceptible
individuals are placed in the compartment S. Getting in contact with the Infectious (I) they transition
to the compartment of the Latent (L). Latent individuals are infected but become infectious only after
ϵ−1 days when they eventually pass to the compartment I. After µ−1 days, infectious subjects finally
transition to the compartment of the Recovered (R). By considering the COVID-19 characteristics we
set ϵ−1 = 4days and µ−1 = 2.5days. [5, 6]. We compute the number of deaths on daily recovered. In
particular, the individuals that exit from the I compartment, can either transition to the Recovered
compartment (R) or the Dead compartment (D). The share of individuals transitioning to the D
compartment is regulated by the age-stratified Infection Fatality Rate (IFR) from Ref. [7]. To account
for possible delays due to hospitalization and reporting between the transition I → R and actual death,
we record the number of deaths computed on the recovered of day t only after ∆ days. In other words,
D individuals transition to the compartment Do (superscript o stands for “observed”) at a rate 1/∆.
Individuals are divided into 10 age groups (0 − 9, 10 − 19, 20 − 24, 25 − 29, 30 − 39, 40 − 49, 50 − 59,
60− 69, 70− 79, 80+). The age-stratified rate of interaction are defined by the country specific contacts
matrix C from Ref. [8].

We also introduce a seasonal term to capture modulation of the force of infection regulated by changes
in factors such as temperature and humidity [9, 10]. This means that in our simulation Rt is multiplied

by a rescaling factor si(t) defined as si(t) =
1
2

[(
1− αmin

αmax

)
sin

(
2π
365 (t− tmax,i) +

π
2

)
+ 1 + αmin

αmax

]
, where

i refers to the hemisphere considered, and tmax,i is the day associated to the maximum of the rescaling
function. For the northern hemisphere it is set to January 15th and to July 15th for the southern
hemisphere, while we consider no seasonal modulation in the tropical hemisphere. If a country extends
across multiple zones, the seasonal factor is a weighted average of the different si(t) according to the
population living in the different hemispheres. We fix αmax = 1 and consider αmin as a free parameter
(see more details below).

In these settings, we model both vaccinations and the introduction of a second, more transmissible
virus strain. In particular, individuals who received one dose of vaccine move to the compartments
denoted with the superscript V1. We assume that all individuals except for the infectious can receive
the vaccine. Hence, susceptible, latent and recovered are vaccinated proportionally to their number. For
SV1 individuals the force of infection is reduced by a factor (1−V ES1). If these individuals get infected,
their IFR is also reduced by a factor 1−V EM1. It follows that, in our simulations, the overall efficacy of
a single dose of vaccine against death is V E1 = 1− (1− V ES1)(1− V EM1). After receiving the second
dose, individuals transition to the compartments with superscript V2. Similarly, force of infection and
IFR for them is reduced, respectively, by (1 − V ES2) and (1 − V EM2), implying an overall efficacy of
V E2 = 1 − (1 − V ES2)(1 − V EM2). We also assume that vaccinated individuals that get infected are
less infectious by a factor (1 − V EI) [11]. Since vaccine protection is not immediate, we introduce a
delay of ∆V days between administration (of both 1st and 2nd dose) and actual effect of the vaccine.
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Figure 1: Vaccinations. A) Percentage of partially and fully vaccinated individuals in LMIC up to
2021/10/01. B) Percentage of partially and fully vaccinated individuals in high income settings up to
2021/10/01.
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For example, an individual who received the 1st dose on day t, will be protected with efficacy V E1 only,
on average, after ∆V days. Hence, the transitions to compartments with superscript V1 and V2 take
place at rate ∆−1

V after first and second inoculation. We set ∆V = 14days. We do not have detailed
information about the age of individuals receiving vaccines in all the countries considered. Therefore,
we assume that the rollout proceeds prioritizing the elderly. We note how this is the strategy followed
by the vast majority of governments worldwide [12–14]. This means that, in our model, vaccines are
distributed in decreasing age order until all 50+ individuals are vaccinated, after vaccines are distributed
homogeneously to the age groups 10 − 50. We inform the model with the number of daily 1st and 2nd

doses in different countries from Ref. [15]. In this work we set V E1 = 80% (V ES1 = 70%), V E2 = 90%
(V ES2 = 80%), and V EI = 40% [11].

We add specific L and I compartments to account for the introduction and emergence of a variant
of concern. Considering the period under examination and the evidence from genomic surveillance in all
countries under examination we consider the arrival and spread of the SARS-CoV-2 variant of concern
Delta. Looking at genomic sequence data from Ref. [16–18] we get a proxy date for its introduction (more
details provided below). We imagine that Delta is ψ times more transmissible than the strain circulating
previously and has a shorter latent period ϵ−1

Delta = 3days [19]. We also assume that vaccines have a
reduced efficacy against Delta VOC: V EDelta

1 = 70% (V EDelta
S1 = 30%), V EDelta

2 = 90% (V EDelta
S2 =

60%) [11].
The model is stochastic and transitions among compartments are simulated through chain binomial

processes. More in detail, at time step t the number of individuals in age group k and compartment X
transiting to compartment Y is sampled from PrBin(Xk(t), pXk→Yk

(t)), where pXk→Yk
(t) is the transition

probability. As an illustrative example consider the number of new infected individuals from the S
compartment. The rate for this transition is called force of infection (generally referred as λ) and may
depend on several factors, from transmissibility of the pathogen to contact rates and seasonality. In our
case, the force of infection for age group k at time t is defined as:

λk(t) = β × s(t)× r(t)×

{∑
k′

Ckk′

Nk′

[
Ik′ + (1− V EI)(I

V 1
k′ + IV 2

k′ )
]}

(1)

Where β is the transmission rate, s(t) is the seasonality factor, r(t) captures contacts reduction due
to NPIs (more details below), and the term in brackets is the probability of contacting an infectious
individual in age group k′ given the contact rates and the number of individuals per group. Notice how
infectious individuals that received a vaccine (either one or two dose) have their infectiousness reduced
by the (1 − V EI) factor. The probability of the infection transition is simply the force of infection
multiplied by the length of the simulation step ∆t (i.e., pSk→Lk

(t) = λk(t)∆t). Here, the unit of time
of the simulation is the day, therefore ∆t = 1. The number of Sk individuals getting infected at time t
is then extracted from PrBin(Sk(t), λk(t)). Given this, we can easily get the infection probability also
for susceptible individuals that received one or two vaccine doses, namely SV1 and SV2 . Indeed, since
vaccines offer a protection V ES from infection, we have that p

S
V1
k →LV 1

k

(t) = (1 − V ES1) × λk(t) and

p
S

V2
k →LV 2

k

(t) = (1− V ES2)× λk(t).

3 Model calibration

The free parameters of the model are calibrated through a rejection algorithm based on Approximate
Bayesian Computation [20, 21]. We define a prior distribution P (θ) on the free parameters θ. At each

step of the iterative algorithm, we sample a set of parameters θ̂ from P (θ) and an instance of the model

is generated using θ̂. Then, an output quantity of the model E′ is compared to the corresponding real
quantity E using an error metric S(E,E′): if S(E,E′) is smaller than a tolerance δ, θ̂ is accepted
otherwise is rejected. Repeating this procedure iteratively we obtain an approximation of the posterior
distribution of the parameters θ. In this work we consider weekly deaths as output quantity and the
weighted mean absolute percentage error (wMAPE) as distance metric. The free parameters and the
relative priors are:

• the transmission rate β; we explore uniformly values such that the Rt on the first simulation date
is between 0.6 and 2.0;

• the delay in deaths ∆ ∼ U(10, 35) [22];
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Figure 2: Schematic representation of the epidemic model. For simplicity, we represent the model
for a single age group. Dashed lines indicate data-driven transitions linked to vaccination status, solid
lines indicate that simulated transitions. In the bottom of the figure we report the rate of transitions
related to both infection and and recovery/death.
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• the seasonality parameter αmin ∼ U(0.5, 1.0) (0.5 indicates strong seasonality while 1.0 absence of
seasonality);

• the initial number of infected individuals; we explore uniformly values between 1 and 25 times the
number of cases notified in the 7 days prior the beginning of the simulation (Infmult

start). We divide
these individuals in the infected compartments (L, I) proportionally to the time spent there by
individuals (ϵ−1 for L and µ−1 for I);

• the initial number of recovered; we explore uniformly values between 1 and 25 times the total
number of reported cases up to the start of the simulation (Recmult

start);

• the relative transmissibility advantage of the Delta VOC ψ ∼ U(1.0, 2.5)

• the date of the introduction of the Delta VOC. We consider values between 1 month before and
after the date when Delta was responsible for at least 5% of sequenced samples according to the
data from Ref. [16] (more details below);

• the IFR multiplier ∼ U(0.5, 2.0); this number multiplies the IFR from Ref. [7];

• the percentage of deaths reported ∼ U(5%, 100%);

The model is calibrated separately for different countries during the period 2020/12/01 − 2021/10/01.
Here, instead of defining a tolerance, For a single country we run 1M simulations, and we keep the 1000
parameter samples that achieve the lowest wMAPEs. These sets represent the posterior distributions
and are used to run the calibrated models. In Tab. 1, 2, 3, 4, 5 we report the posterior distributions
(median and interquartile range) of the free parameters.

Sri Lanka El Salvador Morocco Bolivia

Rstart
t 0.89 [0.86, 0.91] 1.05 [1.0, 1.11] 1.21 [1.12, 1.31] 1.19 [1.13, 1.28]

∆ 14 [12, 17] 26 [12, 32] 12 [11, 15] 20 [19, 22]

αmin 0.75 [0.61, 0.89] 0.76 [0.62, 0.86] 0.82 [0.71, 0.93] 0.75 [0.63, 0.88]

ψ 2.43 [2.34, 2.47] 1.58 [1.4, 1.71] 1.81 [1.65, 2.12] 1.52 [1.23, 1.93]

Infmult
start 2.93 [1.84, 4.81] 24.04 [23.33, 24.58] 6.03 [3.94, 9.12] 14.4 [13.11, 15.75]

Recmult
start 10.04 [5.47, 16.89] 19.79 [15.12, 22.58] 14.08 [8.17, 19.85] 8.59 [4.8, 13.83]

IFR Multiplier 1.1 [0.78, 1.49] 1.18 [0.8, 1.62] 1.05 [0.73, 1.43] 1.81 [1.69, 1.91]

% deaths reported 51.6 [35.33, 71.19] 40.74 [27.06, 64.1] 33.25 [24.13, 48.22] 89.73 [83.82, 95.12]

Date intro. VOC 05-02 [05-01, 05-04] 06-06 [05-28, 06-12] 05-02 [04-28, 05-08] 08-23 [08-10, 09-02]

Table 1: Posterior distributions of free parameters obtained via ABC calibration (Sri Lanka,
El Salvador, Morocco, Bolivia). We show median and interquartile range of the different parameters.
Dates are represented with a mm− dd format and refer all to the year 2021.
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Honduras Philippines Indonesia Pakistan

Rstart
t 1.44 [1.35, 1.53] 1.35 [1.31, 1.39] 1.23 [1.21, 1.25] 0.97 [0.96, 0.99]

∆ 32 [29, 33] 33 [25, 34] 29 [27, 32] 24 [21, 26]

αmin 0.74 [0.63, 0.87] 0.75 [0.63, 0.87] 0.72 [0.62, 0.86] 0.88 [0.86, 0.9]

ψ 1.74 [1.65, 1.8] 1.53 [1.24, 1.77] 1.51 [1.38, 1.67] 1.12 [1.07, 1.16]

Infmult
start 9.25 [8.29, 10.87] 5.82 [4.17, 7.31] 14.53 [11.0, 17.73] 16.12 [12.02, 20.69]

Recmult
start 11.5 [6.69, 17.49] 13.81 [7.03, 18.7] 12.74 [5.9, 17.89] 13.07 [7.68, 19.43]

IFR Multiplier 1.2 [0.87, 1.54] 1.0 [0.71, 1.41] 1.35 [1.05, 1.7] 1.25 [0.91, 1.62]

% deaths reported 54.41 [41.19, 74.39] 31.54 [22.57, 45.36] 69.12 [52.71, 84.26] 55.17 [39.26, 75.44]

Date intro. VOC 06-09 [06-03, 06-12] 06-29 [06-20, 07-04] 05-11 [04-27, 05-18] 05-26 [05-08, 06-05]

Table 2: Posterior distributions of free parameters obtained via ABC calibration (Hon-
duras, Philippines, Indonesia, Pakistan). We show median and interquartile range of the different
parameters. Dates are represented with a mm− dd format and refer all to the year 2021.

Rwanda Bangladesh Kyrgyzstan Egypt

Rstart
t 1.35 [1.33, 1.36] 1.11 [1.08, 1.14] 1.4 [1.31, 1.51] 1.17 [1.12, 1.2]

∆ 13 [12, 15] 19 [17, 21] 28 [25, 32] 21 [16, 25]

αmin 0.75 [0.63, 0.88] 0.92 [0.84, 0.96] 0.91 [0.83, 0.95] 0.8 [0.74, 0.85]

ψ 1.07 [1.03, 1.13] 1.54 [1.41, 1.69] 1.27 [1.15, 1.4] 1.16 [1.08, 1.24]

Infmult
start 18.79 [14.32, 21.82] 7.37 [3.68, 12.45] 2.48 [1.81, 3.23] 21.59 [18.35, 23.37]

Recmult
start 12.89 [7.68, 17.9] 12.9 [6.72, 18.31] 13.19 [7.39, 19.07] 12.35 [6.76, 18.97]

IFR Multiplier 1.3 [0.92, 1.62] 1.05 [0.71, 1.46] 1.25 [0.9, 1.63] 1.16 [0.77, 1.65]

% deaths reported 56.07 [40.37, 74.8] 16.92 [11.28, 25.17] 42.39 [30.42, 59.53] 14.95 [10.04, 23.69]

Date intro. VOC 05-02 [04-19, 05-25] 04-11 [03-28, 04-23] 04-03 [03-19, 04-13] 05-17 [04-28, 06-02]

Table 3: Posterior distributions of free parameters obtained via ABC calibration (Rwanda,
Bangladesh, Kyrgyzstan, Egypt). We show median and interquartile range of the different param-
eters. Dates are represented with a mm− dd format and refer all to the year 2021.
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Mozambique Afghanistan Angola Ghana

Rstart
t 1.59 [1.56, 1.63] 1.34 [1.29, 1.38] 1.56 [1.54, 1.58] 1.58 [1.55, 1.61]

∆ 28 [26, 31] 12 [11, 15] 31 [29, 33] 15 [12, 18]

αmin 0.72 [0.61, 0.85] 0.93 [0.83, 0.97] 0.74 [0.62, 0.87] 0.75 [0.62, 0.87]

ψ 1.39 [1.3, 1.47] 1.48 [1.3, 1.62] 2.18 [2.03, 2.32] 1.98 [1.87, 2.1]

Infmult
start 20.71 [17.64, 22.87] 3.41 [1.67, 8.06] 19.69 [15.99, 22.6] 19.76 [15.97, 22.5]

Recmult
start 12.95 [7.34, 19.1] 12.67 [6.76, 18.84] 12.19 [6.29, 18.62] 13.82 [7.3, 19.38]

IFR Multiplier 1.0 [0.72, 1.43] 0.97 [0.7, 1.39] 1.04 [0.71, 1.45] 0.91 [0.67, 1.26]

% deaths reported 5.58 [3.88, 7.7] 19.9 [13.59, 27.68] 2.32 [1.66, 3.31] 1.83 [1.35, 2.51]

Date intro. VOC 04-22 [04-08, 05-04] 04-12 [04-07, 04-28] 05-31 [05-26, 06-03] 05-26 [05-18, 06-02]

Table 4: Posterior distributions of free parameters obtained via ABC calibration (Mozam-
bique, Afghanistan, Angola, Ghana). We show median and interquartile range of the different
parameters. Dates are represented with a mm− dd format and refer all to the year 2021.

Zambia Côte d’Ivoire Kenya Uganda

Rstart
t 1.25 [1.24, 1.27] 1.08 [1.06, 1.09] 1.38 [1.37, 1.41] 1.41 [1.39, 1.44]

∆ 12 [11, 14] 27 [19, 31] 30 [27, 32] 30 [28, 31]

αmin 0.73 [0.62, 0.86] 0.77 [0.64, 0.88] 0.74 [0.62, 0.89] 0.76 [0.64, 0.86]

ψ 1.13 [1.08, 1.2] 1.09 [1.05, 1.15] 1.41 [1.36, 1.47] 1.11 [1.06, 1.18]

Infmult
start 16.27 [10.17, 21.0] 16.07 [9.63, 20.61] 20.5 [17.8, 22.96] 1.62 [1.27, 2.14]

Recmult
start 13.13 [7.4, 19.23] 13.19 [7.32, 19.05] 13.02 [7.93, 19.22] 13.84 [7.91, 19.86]

IFR Multiplier 1.05 [0.71, 1.46] 1.0 [0.73, 1.39] 0.99 [0.72, 1.38] 1.04 [0.77, 1.43]

% deaths reported 21.87 [15.94, 31.72] 2.11 [1.57, 2.96] 6.58 [4.78, 9.31] 42.36 [26.11, 63.94]

Date intro. VOC 04-08 [03-22, 04-21] 05-31 [05-13, 06-14] 05-01 [04-23, 05-07] 03-17 [03-01, 03-31]

Table 5: Posterior distributions of free parameters obtained via ABC calibration (Zambia,
Côte d’Ivoire, Kenya, Uganda). We show median and interquartile range of the different parameters.
Dates are represented with a mm− dd format and refer all to the year 2021.

4 Non-pharmaceutical interventions

We model the effects of non-pharmaceutical interventions (NPIs) on contacts using the COVID-19 Com-
munity Mobility Report By Google [23]. The dataset provides, for various countries and spatial resolu-
tions, a percentage change in mobility r(t) on day t. We convert this quantity into a contacts reduction
parameters c(t) following the relation: c(t) = (1+ r(t)/100)2. Indeed, the number of contacts scale with
the square of the number of individuals. For example, a percentage reduction of −20% translates into a
contacts reduction factor of 0.64. In the simulations the contacts matrix C is multiplied by this reduc-
tion parameter c(t) to account for the modulation in contacts induced by NPIs. The dataset provides
mobility changes with respect to specific locations. In this work, we compute r(t) by using the average
of the fields workplaces percent change from baseline, retail and recreation percent change

from baseline and transit stations percent change from baseline.
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5 Modeling the introduction of a second SARS-CoV-2 strain

We model the introduction of a second SARS-CoV-2 strain considering genomic sequencing data from Co-
Variants [16]. The data provides the fraction of processed samples by virus variant in different countries.
As clear from the plots, in the period and countries under examination we observed the introduction and
rapid growth of the Delta variant of concern. To reduce the impact of noise on seeding date estimates,
for each country, we fit a logistic curve of the type ŝ(t) = 1/(1+e−γ(t−t1/2)) to the real fractions of Delta
variant samples s(t). The fit is performed via least square using the python library scipy [24]. In Fig. 3
we show the actual Delta prevalence (i.e., fraction of samples that fall into the Delta group) to the fitted
prevalence. We also show the total number of samples processed in each week. In the case of countries
for which genomic data is not available, we perform the logistic fit on all the samples from neighbouring
countries for which data is available.

After the fit, we pick the first date on which the fitted Delta prevalence is greater or equal to 5% (i.e.,
t | ŝ(t) ≥ 0.05). When running the simulations, on that date we calculate the 5% of the daily simulated
infected individuals and we use them to initialize the compartment of the infected with the Delta variant.
We choose a 5% threshold to avoid a prevalence that is too low and therefore more affected by noise. At
the same time, we did not choose a higher prevalence threshold to avoid imposing a strong discontinuity
on the Rt on the simulations.

6 Counterfactual scenarios

6.1 Vaccination rates of high income settings

We propose scenarios in which the LMIC considered manage the same vaccines availability of three high
income contexts: United States (shown in the main text), European Union, and Israel (shown here). To
do so, we run simulations in which, instead of the factual vaccination data of the LMIC considered, we
use the daily number of first and second doses administered in the three high income settings. To account
for different population sizes among geographical regions, we rescale the number of doses available in
the counterfactual. For example, consider the case when we apply to Mozambique the vaccination
rates of Israel. If Israel administered XIsrael

t doses on day t, in the counterfactual scenario we administer

X ′Mozambique
t = XIsrael

t
NMozambique

NIsrael
. In Fig. 1-B we show the percentage of partially and fully vaccinated

in the three high income settings. Vaccinations started on 2020/12/14 in US, on 2020/12/27 in most
of European countries, and on 2020/12/19 in Israel. As of 2021/10/01, the European Union shows the
highest percentage of fully vaccinated (63%), followed by Israel (61%), and US (57%). Nonetheless, we
acknowledge differences among the three vaccination rollout especially at the beginning. Indeed, we see
that in Israel and, to a lower extent also in the US, vaccinations were much faster after the start respect
to the European Union. For example, the percentage of fully vaccinated on the 2021/03/01 was: 2.6%,
9.2%, and 37.3% in, respectively, EU, US, and Israel.

In Fig. 4, we show the percentage of deaths that are averted applying to LMIC the vaccination rates
of US, EU, and Israel with respect to simulations with factual doses. The overall picture presented in
the main text for US vaccination rates holds also with EU and Israel rates. Indeed, in both cases we
observe that additional doses of vaccine bring a huge benefit in terms of reduction of fatalities. When
considering dose availability of Israel, averted deaths in LMIC span between 60% to nearly 100%, while
these figures lie between 40% and 90% when EU rates are considered. We also note that the ordering of
the countries is the same when considering the three different rates. Across the LMIC considered, the
greatest decrease in deaths is achieved by Israel rates, while EU rates are the least effective at reducing
the number of deaths. A possible explanation is that, as noted previously, while EU reached a higher
vaccine coverage as of 2021/10/01, the vaccine rollout in Israel was much faster in the early months
of 2021, allowing to provide significant level of protection at the population level quicker. The results
obtained with US rates lie in the middle between those obtained with Israel and EU rates. In light of
the previous explanation, this makes sense: the early rollout in US was quicker than EU but slower than
Israel.
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Figure 3: Introduction of Delta variant. We represent the actual fraction of Delta samples and the
fitted Delta prevalence. We also display the total number of samples processed per week. For countries
denoted by * data are not available, therefore in those cases the fit is performed on all samples from
neighbouring countries for which data are available.
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Figure 4: Averted Deaths with High Income regions vaccination rates.Averted deaths (median
and inter-quartile range) expressed as a percentage with respect to the factual vaccination baseline using
the vaccination rates of the United States, European Union, and Israel.

6.2 Earlier start of factual vaccinations

As a second counterfactual analysis, we anticipate the factual vaccination campaign in the LMIC in
order to match the start of vaccine rollout in high income settings. As new starting date we choose
the 2020/12/14, when COVID-19 vaccinations started in United States. If the shift of vaccination data
causes missing data at the end of the time series of LMIC, we fill it considering the average number of
doses administered during the last 7 days. It is important to stress how this counterfactual does not
increases the number of doses nor the rate of vaccination. It is a solid shift of the starting date to an
earlier point.

6.3 NPIs increase

We consider simulations in which we modify the factual NPIs quantified with the COVID-19 Community
Mobility Report. More in detail, given the contacts reduction factor of week t c(t), in the new simulations
with X% additional NPIs the new factor will be c′(t) = c(t)(1−X/100). The increase of NPIs is modeled
as a contacts reduction factors after week 51 of 2020, a proxy date for the start of vaccinations in the
United States. Indeed, our goal is to estimate the additional amount of NPIs needed to match the
number of deaths averted when applying vaccination rates of a high income setting such as US. Finally,
the increase of NPIs is sustained for a limited number of weeks. We explore multiple scenarios with NPIs
that are increased in the range of 5% to 95% and that are sustained for a number of weeks between 4
and 40. We run additional simulations in which we modify the NPIs as described and we compute the
fraction of averted deaths with respect to simulations with factual NPIs and vaccine rollout.
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7 Estimating the impact of the factual vaccination campaigns

In Figure 1-A we have shown the evolution of the percentage of partially and fully vaccinated in the
twenty LMIC countries up to 2021/10/01. As clear from the graphs, there is a high level of heterogeneity.
We go from fractions of fully vaccinated above 50% in Sri Lanka and Morocco, to values below 10% in
Kyrgyzstan, Mozambique, Egypt, and even below 1% in Uganda. Honduras, Bolivia, Indonesia are
around the middle between these two groups with a fraction of fully vaccinated between 20% and 30%.
When interpreting the numbers it is important to recognize the differences in terms of populations.
Indonesia and Pakistan are the largest with 273M and 220M people respectively. El Salvador and
Kyrgyzstan are the smallest with around 6M residents each. Hence, the differences in terms of the
absolute number of vaccinated individuals and doses administered span several orders of magnitudes
among these countries.

In Figure 5, we show the real data of confirmed deaths (dark blue dots). In most countries, the latest
epidemic wave, caused by the Delta variant, was, unfortunately, the most deadly. Clearly in contrast
with observations across high income countries where, despite the increased transmissibility and severity,
the Delta wave was strongly limited by high vaccination rates with respect to the previous [25, 26]. This
observation is a first clear hint about the impact that vaccines could have had in these settings. In the
plots, we also report the median and confidence intervals of our fits (light green lines and shaded areas).
Across the board, the model can capture the evolution of the pandemic with accuracy. It is however
important to highlight the few misses. In the case of Sri Lanka the model produces a peak that is slightly
delayed with respect to observations. In the case of Zambia and Côte d’Ivoire, the model fails to capture
the surge in deaths in early 2021. Each plot reports also the model’s prediction of what would have
happened in total absence of vaccines (red dashed lines and shaded areas). In particular, we run the model
keeping all the same fitted parameters, NPIs, but remove all doses administered. In doing so, we provide
estimates of the impact of the factual vaccines in each country. Again, we find large heterogeneity induced
by the radically different vaccination coverage. Countries that managed to vaccinate more, such as Sri
Lanka, El Salvador, and Morocco show the largest differences between the real evolution of confirmed
deaths and those in the hypothetical scenario without vaccines (i.e., baseline). Conversely, in countries
such as Kenya, and Uganda, that have a minimal vaccination coverage, the differences are very small.
Figure 6 confirms this picture but provides a more clear estimation of the impact of vaccines. We plot
the deaths averted by the factual vaccination campaigns (median) versus the fraction of individuals fully
vaccinated as of 2021/10/01 in the LMIC considered. Here, averted deaths are computed with respect to
the baseline simulations without vaccines administered. We observe a high correlation between averted
deaths and vaccination coverage (Pearson coefficient r = 0.93, pvalue < 0.001). In Sri Lanka, Morocco
and El Salvador the vaccine rollout averted about 70% of the deaths with respect to the baseline. In
Bolivia, Indonesia, Honduras, and Philippines the numbers are lower but still significant. Finally, we
observe the group of countries where the doses administered are very limited (< 10%) but their impact
is still positive and not negligible. While interpreting the results and comparing countries it is important
to stress how the model is fitted separately to each nation. Hence, some values of the free parameters
such as the effective transmissibility of the strains circulating might be estimated as slightly different
even though they refer to the same variants. For example, the posterior distribution for the relative
transmissibility advantage of the Delta variant with respect to Alpha peaks at 1.8 in Morocco while
at 2.4 in Sri Lanka. These are effective parameters selected based on the available data. As such,
they factor in many behavioral factors that are not explicitly modeled. Examples are the relations
among mobility reduction, contact rates modifications, and infections. These might differ in different
contexts/environments and affect the scenarios modelled here.
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Figure 5: Calibration results and impact of factual vaccinations in LMIC. We show the actual
number of weekly deaths (blue dots) and the simulated weekly deaths via the calibrated model (median
and 90% CI). We also show the estimated number of weekly deaths in absence of vaccines (red dashed
line).
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Katy Gaythorpe, and Neil Ferguson. Estimates of the severity of coronavirus disease 2019: a model-
based analysis. The Lancet Infectious Diseases, 20, 03 2020.

[8] Dina Mistry, Maria Litvinova, Ana Pastore y Piontti, Matteo Chinazzi, Laura Fumanelli, Marcelo
F C Gomes, Syed A Haque, Quan-Hui Liu, Kunpeng Mu, Xinyue Xiong, M Elizabeth Halloran,
Ira M Longini, Stefano Merler, Marco Ajelli, and Alessandro Vespignani. Inferring high-resolution
human mixing patterns for disease modeling. Nature Communications, 12(1):323, 2021.
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