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Abstract 
 

Background 
Substantial effort has been directed towards demonstrating use cases of Artificial Intelligence in 
healthcare, yet limited evidence exists about the long-term viability and consequences of 
machine learning model deployment.  
 

Methods 
We use data from 130,000 patients spread across two large hospital systems to create a 
simulation framework for emulating real-world deployment of machine learning models. We 
consider interactions resulting from models being re-trained to improve performance or correct 
degradation, model deployment with respect to future model development, and simultaneous 
deployment of multiple models. We simulate possible combinations of deployment conditions, 
degree of physician adherence to model predictions, and the effectiveness of these predictions.  
 

Results 
Model performance shows a severe decline following re-training even when overall model use 
and effectiveness is relatively low. Further, the deployment of any model erodes the validity of 
labels for outcomes linked on a pathophysiological basis, thereby resulting in loss of 
performance for future models. In either case, mitigations applied to offset loss of performance 
are not fully corrective. Finally, the randomness inherent to a system with multiple deployed 
models increases exponentially with adherence to model predictions. 
 

Conclusions 
Our results indicate that model use precipitates interactions that damage the validity of deployed 
models, and of models developed in the future. Without mechanisms which track the 
implementation of model predictions, the true effect of model deployment on clinical care may 
be unmeasurable, and lead to patient data tainted by model use being permanently archived 
within the Electronic Healthcare Record.   
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Introduction 
Artificial Intelligence (AI) promises to bring transformative change to the practice of 

medicine1. Underpinning this promise are machine learning (ML) models – mathematical 
constructs capable of deriving patterns within data. The creation of performant, generalizable 
models is heavily dependent on access to copious, high-quality data2. In healthcare settings, the 
Electronic Healthcare Record (EHR) is the primary mechanism for storage, retention, and 
retrieval of patient data3; making it the principal source of truth both for model inputs, and labels 
indicative of the occurrence and timing of clinical outcomes. As such, ML models are inexorably 
linked to the EHR during the entirety of their lifecycle i.e., during development, and post-
deployment. 

Substantial effort directed towards the early, developmental part of this process has 
translated into a large body of work demonstrating use cases of ML in healthcare4-7, and 
commentary about best practices regarding model development8-10. Conversely, relatively little 
attention has been paid to the later, post-deployment part of the process11. This is concerning 
since post-deployment monitoring has revealed that performance in laboratory settings does not 
guarantee success in real-world settings12. Real-world usability of ML models is entirely 
contingent upon on the maintenance on the data and label relationship13, and model failure 
manifesting as unacceptably high error rates may occur when data encountered during 
deployment is substantially different from data available during development. For example, the 
COVID-19 pandemic resulted in a dataset shift leading to the decommissioning of a sepsis 
detection model14. The recommended solution for this problem is re-training and re-calibrating 
the model against a larger corpus of patient data representative of all patient groups14. 
However, since this solution does not consider the relationship between models and the EHR, it 
may exacerbate an insidious phenomenon. Paradoxically, this is the effect of a model working 
as intended. 

ML in healthcare is tied to one central thesis – a deployed model will help improve 
patient outcomes15. This can only occur if model predictions modify both provider behavior, and 
the natural course of disease beyond what is seen in usual medical practice. However, since 
such modifications are recorded within the EHR, deployed models have the ability to interact 
with the apparatus of their creation. Mechanistically, a model recognizing a pattern associated 
with a deleterious clinical outcome (e.g., death) will signal the need for more intensive 
monitoring or alternative care pathways. Ideally, implementation of these measures will prevent 
the outcome, essentially inverting the label that the model predicted. Simultaneously, both the 
pattern at presentation, and lack of an outcome will come to be associated with that patient’s 
records in perpetuity. Extending this to the entire EHR, while most hazardous patterns will 
continue to correspond to the outcome, an increasing number of these patterns will start to 
correspond to the outcome not occurring. These mixed associations now form part of any new 
data sourced from the EHR, potentially confounding any attempts at re-training the model. 

Further, the sequalae and underlying pathology of a deleterious clinical event can extend 
to involve other organ systems within the body, and precipitate linked clinical events. For 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.22282440doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.17.22282440


example, either of acute kidney injury (AKI) or sepsis can be a precursor to mortality16,17. Within 
such clinical cascades, preventing or delaying the incidence of an upstream event can offset the 
incidence of the downstream outcome18. Therefore, a model able to prevent the initial event will 
culminate in the EHR recording a hazardous pattern at presentation, and non-occurrence of 
both the initial and linked outcome. As before, these mixed associations may confound the 
development of any future model for the linked outcome. 

Finally, models are trained on and make predictions on the biological state of a patient 
as described by their labs, vitals, and imaging. More predictions are available for each patient 
with multiple model deployment. Upon implementation, any actions taken due to a prediction 
may influence biological state sufficiently to render an existing prediction from another model 
invalid or inapplicable. 

In each case, model implementation precipitates interactions wherein usage of one 
model influences the function of another. Such interactions are unintended, and their effects 
largely unaccounted for given the relative novelty of real-world machine learning model 
deployments in healthcare settings. To better understand these effects, we create a framework 
that simulates model deployment in addition subsequent changes in clinical outcomes and 
model performance using real-world data from a diverse cohort of New York City patients, and a 
publicly available dataset of ICU admissions19. We discuss the implications of these interactions 
on the future of machine learning in healthcare and recommend measures to mitigate their 
effects.  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.22282440doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.17.22282440


Methods 
 

Data sources and outcomes 
We utilize data from two sources – the MIMIC IV database19 containing records for 

inpatient ICU admissions to the Beth Israel Deaconess medical center from 2008 – 2019; and 
pooled data from five facilities within the Mount Sinai Health System (MSHS) – containing 
inpatient ICU admission records from Jan 2010 – Jan 2020. For both sources, we extract 
demographics, vitals, and lab investigations restricted to a period of 12 hours prior to an 
“anchor” time related to the outcome of interest. We model common clinical outcomes, i.e. AKI20 
in critically ill patients, critical care mortality, and post cardiac catheterization AKI 
(Supplementary Table 1). Salient characteristics of patient populations for each outcome of 
interest are shown in Supplementary Tables 2 – 4. 

The study was approved by the Institutional Review Board at the Icahn School of 
Medicine at Mount Sinai. The study was exempt from the requirement of informed consent 
owing to its retrospective design. 
 

Model development and evaluation 
 We train and evaluate both complex non-linear models (XGBoost21), and simpler, 
explainable linear models (LASSO) for outcomes of interest. 

 Model performance22 is measured using threshold independent metrics i.e., Area Under 
the Receiver Operating Characteristic Curve (AUROC), and Area Under the Precision Recall 
Curve (AUPRC), in addition to threshold dependent metrics i.e., sensitivity, specificity, and 
accuracy. (Supplementary Methods) 
 

Label inversion 
We define a label inversion as a change in recorded outcome due to the influence of a 

deployed model. (Figure 1A.) 
 

Quantification of model usage and effectiveness  
We define intervention rate (IR) as the proportion of true positive model predictions 

adhered to leading to changes in management – independent of effect on outcome. We also 
define a separate effective intervention rate (EIR) as the proportion of true positive model 
predictions that are both adhered to by healthcare workers and induce a label inversion. 

Either rate is given as a number between 0 – 1, and simulated as discrete values of 0, 
0.05, 0.1, 0.2, 0.5, and 0.75. A value of 0 is equivalent to model development in laboratory 
conditions and implies the model had no real-world impact. Higher values imply greater 
application and/or effectiveness of predictions. For example, an intervention rate of 0.1 implies 
10% of true positive predictions led to a change in care, whereas an effective intervention rate 
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of 0.1 implies 10% of true positive predictions prevented a deleterious outcome. 
 

Simulation scenarios 
We consider three scenarios of model deployment detailed algorithmically in 

Supplementary Methods. Scenarios I and II consist of simulations examining re-training and 
future model development respectively at different EIR’s. Scenario III examines multiple, 
simultaneous model deployments at different IR’s. 

For Scenario I (Re-training), each problem-specific dataset is partitioned into ten 
intervals of equal duration. We train a model given data for an interval and simulate its 
deployment during the next interval by inducing label inversions according to EIR. The model is 
re-trained, recalibrated, and its performance evaluated at the end of each such interval keeping 
prior label inversions in place. (Figure 1B.) 

For Scenario II (Future model development), each dataset is partitioned into a 
development and deployment interval. Using data from the development interval, we train a 
model for an outcome from earlier in a clinical cascade. Label inversions according to EIR are 
induced for a linked outcome within data from the deployment interval. Following this, we 
develop a model for the linked outcome keeping label inversions in place. (Figure 1C.) 

For Scenario III (Multiple deployment), we simulate concurrent model deployment. 
Absent protocol or centralized documentation about other models in play, model predictions are 
implemented in random order as influenced by IR. Implemented predictions modify baseline 
biological state on which predictions were made and render other/prior predictions invalid for 
use. (Figure 1D.) Effective accuracy is calculated as the ratio of the number of valid predictions 
matching the target outcome vs the total number of predictions. 
 

Mitigations 
We consider two dataset modification methods to mitigate the effect of label inversions 

for scenarios I and II. One, the addition of a feature that keeps track of whether a patient has 
had a prediction implemented. Two, dropping those patients from the dataset for whom 
predictions have been implemented. (Table 1) 
 

Neglect 
 ML models may precipitate patient neglect due to provider adherence to false negative 
model predictions resulting in incorrect patient triage11 (Figure 1A, Supplementary Table 5). 
We quantify this effect by inducing label inversions for such predictions. For Scenario I, we 
induce inversions for true negatives, and for Scenario II, we induce inversions in the linked 
outcome following a false negative prediction for the initial outcome. In either case, we limit the 
degree of neglect to 1% of such predictions independently of the EIR. Neglect is not factored in 
for Scenario III since unimplemented negative predictions cannot influence patient state. 
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Results 
We perform multiple in-silico experiments within each scenario accounting for variations 

in deployment conditions (Supplementary Table 5). Changes in model performance are 
measured at different intervention rates and compared to baseline performance with an 
intervention rate of 0. 

The following results describe simulation experiments reflective of real-world conditions 
– classification thresholds are set for a sensitivity of 90%, population class distribution is 
maintained, hyperparameter optimization is performed, neglect is factored in for scenarios I and 
II, and no mitigations are in place. 
 

Scenario I – Re-training 
We simulate the deployment of a model for prediction of post-ICU admission mortality in 

a large, tertiary care hospital center using data from the MIMIC IV database. 

We observe a loss of performance across all metrics after one or two iterations of re-
training followed by a relative stabilization. Compared to baseline, AUROC drops 9.5% (0.82 to 
0.74), AUPRC drops 15.8% (0.38 to 0.32), and specificity drops 38.6% (0.44 to 0.27) at the 
lowest simulated EIR of 0.05 after one iteration of re-training. (Figure 2, Supplementary Table 
6) Cumulative label inversions and loss in performance increase with increasing EIR. Average 
specificity across all iterations of re-training drops 20% (0.60 to 0.48) over baseline at an EIR of 
0.05, and 31.1% at an EIR of 0.5 (0.60 to 0.41). Applicable mitigations mostly correct AUPRC, 
but not loss in specificity. (Supplementary Figure 1) 

Factors that improve performance across all experiments include hyperparameter 
optimization, choice of XGBoost model, and either of the feature-based or patient exclusion 
strategies. Shuffling patient admission times to account for changes in incoming data is seen to 
have little effect on relevant simulations. Interestingly, model performance for prospective data 
is not consistent with the classification threshold derived for currently available data, with large 
fluctuations in both the sensitivity and specificity across each update interval. Finally, model 
calibration is seen to be worse after re-training with models tending to under-estimate risk 
(Supplementary Figures 2, 3, 4.) Results using Mount Sinai data show similar trends. 
(Supplementary Appendix 1) 
 

Scenario II – Future model development 
We simulate the creation of a model for prediction of 5-day mortality post-ICU admission 

following the use of an initial model for prediction of 5-day AKI post-ICU admission, within the 
MSHS. We consider AKI linked to mortality if death occurs within 72 hours of the AKI. Utilization 
of the AKI prediction model as quantified by its OES leads to label inversions within the training 
data for the mortality prediction model. 
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Of a total 1,074 deaths in the training data for the mortality prediction model, 404 are 
linked to an AKI. Of the linked outcomes, we find 18 inversions at the lowest simulated EIR of 
0.05, increasing to 185 inversions at 0.5. We observe relatively minimal changes in the AUROC 
over baseline regardless of EIR. A value of 0.86 possible in laboratory conditions drops by a 
maximum of 4.1% to 0.83 at an OES of 0.5. In comparison, AUPRC drops 10.8% (0.23 to 0.20) 
at an EIR of 0.05, and 28.6% (0.23 to 0.16) at an EIR of 0.5. Similarly, specificity drops 8.1% 
(0.63 to 0.58) at an EIR of 0.05, and 14.5% (0.63 to 0.54) at an EIR of 0.5. (Figure 3, 
Supplementary Table 7). 

Applicable mitigations show a variable degree of correction across all performance 
metrics at lower intervention rates. At higher intervention rates, mitigations do not noticeably 
correct performance. (Supplementary Figure 5) 

Total label inversions increase with use of a better performing model for the initial 
outcome, as well as leaving this model in deployment for longer. Hyperparameter optimization 
for the linked outcome model compensates for loss of performance to a limited extent in either 
case. Additionally, model calibration is seen to suffer with over-estimation of risk compared to 
baseline (Supplementary Figures 4, 6, 7.) Results using MIMIC IV data show similar trends. 
 

Scenario III – Multiple deployment 
We simulate simultaneous deployment of a model each for prediction of 5-day mortality 

post-ICU admission, and 5-day AKI post-ICU admission using data from the MSHS. 

Total number of invalid predictions is seen to increase exponentially with greater 
adherence to model predictions. Out of a total 23,053 predictions, 118 predictions for AKI, and 
141 predictions for mortality are rendered invalid at an IR of 0.1. At an IR of 0.75, these values 
increase to 5,841 invalid predictions for AKI, and 6,962 invalid predictions for mortality. 

Effective accuracy reduces slowly from baseline with increasing IR, going from 0.45 to 
0.44 at an IES of 0.1 for AKI, and remaining around 0.49 for mortality. At an IR of 0.75, effective 
accuracy drops 25% (0.45 to 0.33) for AKI, and 28.2% (0.49 to 0.35) in the case of mortality. 
(Figure 4, Supplementary Table 8) 

In general, effective accuracy is seen to be affected to a much smaller extent at low 
intervention rates. Hyperparameter optimization is seen to have minimal impact on the total 
number of predictions invalidated. However, choice of the XGBoost model, false positive 
predictions affecting patient state, and additional models being active dramatically increase the 
overall unpredictability of the system. (Supplementary Figures 8, 9) Results using MIMIC IV 
data show similar trends (Supplementary Appendix 1)  
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Discussion 
Our findings indicate that model use precipitates interactions which damage the validity 

of deployed models, and of models developed in the future. We realize these findings through 
the creation of a simulation framework that can quantify aftereffects of model use and anticipate 
post-deployment issues. For the clinician, these issues may manifest as reduced specificity – 
entailing unnecessary investigations or procedures, reduced sensitivity – entailing neglect or 
underreporting of at-risk cases, or the implementation of invalid predictions leading to a 
combination of the above in an unpredictable manner. 

Re-training has been recommended as a remedy for waning model performance due to 
dataset shift in recent work14. In Scenario I, we demonstrate that naïve re-training of a model 
after deployment and usage quickly and dramatically reduces its performance. The rate and 
extent of loss of performance is seen to be in direct proportion to the use and usefulness of the 
model. Previous work regarding such “feedback loops” is limited to consideration of unrealistic 
levels of physician neglect coupled to rigid adherence to erroneous model predictions23. As we 
demonstrate, re-training even in low adoption settings with no or minimal consideration of 
neglect is sufficient to impair a model. Equally, never updating the model may also degrade 

performance due to changes in incidence24,25, and population level or contextual changes14,26. 

In Scenario II, we explore the effect of label inversions due to linked outcomes within 
clinical cascades. Simulations again show performance degradation in direct proportion to the 
effectiveness of the model from earlier in the cascade. While reduction in performance is lower 
relative to Scenario I, linkage is additive – the same downstream outcome (e.g., death) can form 
part of multiple cascades with differing upstream events (e.g., AKI, sepsis, pneumonia etc.). 
Further, linkage is bi-directional – increased monitoring for a patient at risk of a terminal 
cascade event may prevent an earlier linked event. Additionally, while we discuss clearly 
defined, overt clinical outcomes, the effect will also influence outcomes with less obvious and/or 
longer-term associations, with an increased magnitude when linkage occurs across longer 
periods of time owing to a corresponding increase in the number of label inversions. Overall, 
outcome linkage can result in passive, progressive dilution of label veracity within the EHR that 
may not be easily apparent. 

ML models in healthcare may be broadly divided27 into diagnostic models which infer 
state at the time of data collection, and prognostic models which infer state at some time in the 
future. Interventions cannot change past diagnoses, and therefore, diagnostic models are 
immune to label inversions. However, deployed diagnostic models which prioritize care for 
sicker individuals can confound future model development by upending the relationship between 
severe disease presentation and eventual outcome28,29. Taken together, we posit that any 
deployed model, diagnostic or prognostic, stands to irreversibly taint present and future data for 
a patient for whom a prediction influences clinical care. Caution must be exercised if including 
such a patient within a cohort for any future prognostic model development, especially when 
considering their data from a period intersecting with a prior presentation-prediction cycle. While 
the influence of an implemented prediction may reduce with time, more work is required to 
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identify if or when data from such patients will be valid for use again. In our experiments, 
enumerated mitigations (Table 1) do not fully correct for loss of performance. Continued dilution 
of EHR integrity may eventually require less efficient post-effect corrections once sufficient label 
inversions have taken hold. (Supplementary Table 9) 

Label inversions leading to disruptions in the data and label relationship might appear to 
be similar to Concept drift26,30 – model degradation over time due to changes in a hidden context 
linked to the label. Literature recommends periodically re-training models to account for the 
change in the hidden context26. However, concept drift does not extend to developing models 
using tainted data sources; and as we demonstrate, re-training models may not be a viable 
solution. 

In Scenario III, we consider the effect of models interacting directly at patient level. A 
change in the biological state of a patient either guided by, or independent of a model stands to 
invalidate prior predictions. The degree of change in biological state, and how this change will 
affect predictions from a model, cannot be easily quantified. Therefore, we believe each 
interaction with a healthcare provider resulting in a change in management necessitates a 
reissue of all applicable predictions before acting on or continuing prior model recommended 
paths of action. Models utilized in outpatient settings are especially important to consider in this 
context since issued predictions may only be updated during infrequent visits to the clinic31 but 
may influence care on a long-term basis. Within inpatient settings, getting all predictions in a 
batch every few hours is a potentially harmful practice which may increase the likelihood of an 
invalid prediction getting implemented. 

Further, since simply implementing a prediction may modify biological state, considering 
larger intervention rates for these simulations is more reflective of reality – especially in settings 
with high model adoption.32 In comparison to models utilizing only coarse demographic or 
comorbidity data, commonly applicable models utilizing relatively more volatile measurements 
such as labs, vitals, and prior interventions are substantially more susceptible to this effect. 

Cumulative effects observed across all deployment scenarios stand to increase with the 
number of deployed models and total deployment time – culminating not just in a loss of 
performance, but also confounding measurements of model performance. Owing to the 
permanence of data within the EHR, these effects persist despite new patients and data 
entering the modeling pipeline. Therefore, we strongly recommend immediate measures to track 
how and when predictions are implemented. Currently prevalent practices of opaque, unaudited, 
“fire-and-forget” deployment within the EHR, often by EHR vendors14,33, will result in additional 
burdens on healthcare systems; irreparable problems for future machine learning research and 
development; and impact the viability of learning health-systems34. 

Our work is subject to certain limitations. Clinical deployment may work better with 
models structured as continuous risk predictors outputting calibrated probabilities instead of 
binary classifiers35. However, continuous risk models will still precipitate interactions subject to 
provider interpretation of low/high risk numbers, while requiring an intractably high number of 
simulation experiments to describe fully. Further, we only consider models working with tabular 
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data while newer approaches use multi-modal healthcare data encompassing histopathology, 
imaging, and notes. However, the effects described within our experiments happen at the level 
of the label derived from the EHR, and models trained on multi-modal data will be subject to 
similar long-term implications as purely tabular models. 

In conclusion, owing to the nascence of ML implementation science in healthcare 
coupled to a lack of long-term follow-up, current research lacks understanding of interactions 
between models and the EHR, and interactions between models themselves. In a model eat 
model world, a deployed model can confound the current operation and future development of 
other models, in addition to eventually rendering itself unusable. 
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Figure 1: Overview of label inversions and simulation scenarios 
Panel A shows a schematic of how label inversions occur, both in the case of nominal model 
function, and neglect caused by over-reliance on a model, or redistribution of clinical resources 
due to a model. 
Panel B shows an overview of Scenario I. A model is trained as usual (1), and its use leads to 
prevention of the deleterious outcome it was trained to detect (2) – leading to a label inversion. 
The inverted label is inserted into the EHR, as well as the training dataset at the time of re-
training (3), followed by the actual re-training of the model with the inverted label in place (4). 
Panel C shows an overview of Scenario II. A model designed to prevent a deleterious clinical 
outcome (1) prevents both that outcome, as well as a downstream linked outcome – leading to a 
label inversion (2). The inverted label is inserted into the EHR, as well as the training dataset for 
a future model developed for the linked outcome (3), followed by the development of a model for 
the linked outcome (4). 
Panel D shows an overview of Scenario III. Models for two separate outcomes are trained 
independently (1) and deployed simultaneously. With incoming data on the biological state of 
new patients (2), predictions are issued together. The first implemented prediction modifies this 
biological state (3), resulting in other predictions being rendered invalid (4a, 4b). 
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Figure 2. Scenario I: Re-training | Deployment and re-training of a model for prediction of 
post-ICU admission mortality (MIMIC IV data) 
Simulation parameters – Model: XGBoost, threshold calibration: 90% sensitivity, account for 
effect of neglect, hyperparameter optimization performed, population class distribution 
maintained, no mitigation in place 
Each line signifies an effective intervention rate (EIR) for a performance metric across iterations 
of re-training. Primary deployment of the model is at interval 1, with each subsequent interval 
indicating one model instance of implementation and re-training. Panels A, B, and C show 
changes in AUROC, AUPRC, and specificity respectively. Bar plots in panels A, B, and C show 
percentage difference in performance between a model developed in baseline laboratory 
conditions (EIR of 0), and the lowest simulated EIR of 0.05. Sensitivity is constant at 0.9 across 
all intervals since the model’s classification threshold is set for 90% sensitivity after each 
update. Panel D shows the cumulative number of label inversions leading up to an interval for 
an effective intervention rate. 
Relatively small changes are seen in AUROC, while AUPRC and specificity reduce much more 
dramatically depending on intervention rate and number of iterations of re-training. Drop in 
performance stabilizes following 2-3 iterations of re-training.  
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Figure 3. Scenario II: Future model development | Change in performance for a new post-
ICU admission mortality prediction model following deployment of an initial post-ICU 
admission Acute Kidney Injury (AKI) prediction model (MSHS data) 
Simulation parameters – Model: XGBoost, threshold calibration: 90% sensitivity, account for 
effect of neglect, hyperparameter optimization performed, population class distribution 
maintained, equal split of training and deployment data, no mitigation in place 
Effective intervention rates (EIR) indicate use and effectiveness of the AKI model. AKI and 
mortality are considered part of the same clinical cascade if death occurs within 72 hours of the 
AKI. Panels A, B, and C show changes in AUROC, AUPRC, and specificity respectively with 
increasing effective intervention rate. Bar plots in these panels indicate percentage change in 
performance between a model developed in baseline laboratory conditions (EIR of 0), and each 
simulated EIR. Sensitivity is constant at 0.9 across all intervention rates since the new model’s 
classification threshold is set for 90% sensitivity. Panel D shows the number and percentage of 
label inversions for mortality linked to AKI due to the function of the AKI prediction model. These 
inversions later form part of the training dataset for the mortality prediction model. Total number 
of datapoints in training dataset for mortality linked to AKI: 404. Relatively small changes are 
seen in AUROC, with larger reductions in AUPRC and specificity given greater use and 
effectiveness of the AKI prediction model. 
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Figure 4. Scenario III: Multiple deployment | Simultaneous deployment of a model each 
for prediction of post-ICU admission Acute Kidney Injury (AKI), and post-ICU admission 
mortality (MSHS data) 
Simulation parameters – Model: XGBoost, Model: threshold calibration: 90% sensitivity, 
hyperparameter optimization performed, equal split of training and deployment data, one 
dummy model part of system, false positive predictions are implemented 
Effective Accuracy is calculated as the ratio of the number of valid predictions matching the 
target outcome vs the total number of predictions. Panels A and C show changes in effective 
accuracy for the AKI and mortality prediction models respectively with an increasing intervention 
rate (IR). Bar plots in panels A and C show percentage change in performance between a 
model developed in baseline laboratory conditions (IR of 0), and each simulated IR. Panels B 
and D show the number and percentage of predictions for either of the AKI and mortality 
outcomes made invalid by the prior implementation of a prediction from another model. 
Total number of predictions made by AKI and death models: 23,053. For both models, effective 
accuracy is seen to reduce while the number of invalid predictions is seen to increase with 
physician adoption of predictions. 
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Tables 
 Mitigation Description Caveats 

S
ce

n
ar

io
s 

I a
n

d
 II

 

Keep track of all 
implemented 
predictions 

Mechanisms which deliver model 
predictions to clinicians also keep track of 
whether a physician decides to implement 
these predictions. 

• Will require immediate cessation 
of model use until better prediction 
delivery mechanisms can be 
implemented. 

Additional 
feature 

Utilize an additional feature that makes a 
model aware if a patient has had a 
prediction implemented before. 

• Simulations show models tend to 
overfit to the feature and 
prospective testing performance 
falls for re-training. 

• Image/text-based models will 
need to be restructured to account 
for an additional tabular feature. 

Remove 
patients with 
implemented 
predictions from 
dataset 

Drop all data points with an implemented 
positive prediction for re-training the same 
model, or for development of any new 
model. 

• Exacerbation of class imbalance 
in clinical datasets.36 

• Experiments have been performed 
with removals in proportion to 
intervention rate. Unless accurate 
record keeping is performed, all 
patients with a positive prediction 
may be rendered unsuitable for 
future inclusion in training data. 

Model selection Optimized XGBoost models outperform 
optimized LASSO models for the same 
datasets, subject to the same constraints. 

• Less transparent/Black-box 
models may reduce clinician 
acceptance.37 

S
ce

n
ar

io
 II

I 

Restrict number 
of models 
applied to one 
patient 

Selective use of models. • Reduces usability of ML models. 

Time between 
prediction and 
implementation 

Reduce the time a prediction is “valid” for. 
E.g., 12-hour mortality risk instead of 3-
day mortality risk. Reduces chances of 
interference from another model. 

• Datasets may become extremely 
imbalanced36 since not all 
outcomes are proximal to the time 
of data collection. 

Reissue 
predictions 

Predictions from all models relevant to a 
patient must be reissued after a change in 
management. Predictions from models 
which influence outpatient care must be 
refreshed regularly especially if they 
influence long term therapy. 

• Expensive to continuously collect 
new model specific data for 
prediction pipelines and deliver 
resulting predictions. 

 
Table 1. Mitigation measures for each deployment scenario  
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