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Abstract
Electronic health records represent a large data source for outcomes research, but the majority
of EHR data is unstructured (e.g. free text of clinical notes) and not conducive to computational
methods. While there are currently approaches to handle unstructured data, such as manual
abstraction, structured proxy variables, and model-assisted abstraction, these methods are
time-consuming, not scalable, and require clinical domain expertise. This paper aims to
determine whether selective prediction, which gives a model the option to abstain from
generating a prediction, can improve the accuracy and efficiency of unstructured clinical data
abstraction. We trained selective prediction models to identify the presence of four distinct
clinical variables in free-text pathology reports: primary cancer diagnosis of glioblastoma (GBM,
n = 659), resection of rectal adenocarcinoma (RRA, n = 601), and two procedures for resection
of rectal adenocarcinoma: abdominoperineal resection (APR, n = 601) and low anterior
resection (LAR, n = 601). Data were manually abstracted from pathology reports and used to
train L1-regularized logistic regression models using
term-frequency-inverse-document-frequency features. Data points that the model was unable to
predict with high certainty were manually abstracted. All four selective prediction models
achieved a test-set sensitivity, specificity, positive predictive value, and negative predictive value
above 0.91. The use of selective prediction led to sizable gains in automation (anywhere from
57% to 95% reduction in manual abstraction of charts across the four outcomes). For our GBM
classifier, the selective prediction model saw improvements to sensitivity (0.94 to 0.96),
specificity (0.79 to 0.96), PPV (0.89 to 0.98), and NPV (0.88 to 0.91) when compared to a
non-selective classifier. Selective prediction using utility-based probability thresholds can
facilitate unstructured data extraction by giving “easy” charts to a model and “hard” charts to
human abstractors, thus increasing efficiency while maintaining or improving accuracy.

INTRODUCTION
Electronic health records (EHRs) are a valuable data source for clinical outcomes research and
quality improvement1,2. EHRs typically contain structured and unstructured data. Structured data
refers to data captured from drop-down menus, multi-select menus, or other data modalities that
follow a consistent format when entered into the EHR3. Unstructured data refers to free-form
text, prose, or data that does not follow a consistent format when entered into the EHR. While
structured data like medication orders and ICD (International Classification of Diseases) codes
have been used for research purposes, important variables for outcomes research (e.g.
diagnosis dates, cancer progression and recurrence events, treatment response, comorbidities,
adverse events, mortality, etc.) are typically available only as unstructured data. It has been
estimated that over 80% of all healthcare data is unstructured4 — therefore, we need scalable
methods of extracting unstructured data to enable clinical research and quality improvement
efforts.
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Unstructured variables in EHRs are usually dealt with using manual abstraction and proxy
variables available as structured data5. Manual abstraction is time-consuming and not scalable,
especially with the increase in EHR data6. Additionally, manual abstraction can be expensive if a
highly trained professional (e.g. clinician) is required to comprehend the clinical nuances of EHR
data.

In cases where manual abstraction is logistically infeasible, structured data proxy variables have
been used in population-based research. Crucially, structured proxies are imperfect and can
introduce bias into downstream analyses. For example, the presence of an ICD code
(structured) may be used as a proxy for clinician-confirmed diagnosis (unstructured) for a certain
condition. However, the use and accuracy of ICD codes may vary substantially across sites, is
not validated, and can present challenges when updating to newer versions7–9. Additionally, CPT
codes are frequently miscoded10.

Given these limitations of manual clinical abstraction, new approaches that leverage machine
learning to increase efficiency and accuracy must be explored6,11. Despite recent advances in
the field, ​​machine learning (ML) models still do not perform as well as humans on several
unstructured data extraction tasks, such as those involving negation terms or small misspellings,
and tasks requiring reasoning from context12–15. Therefore, for use cases that require high
accuracy, model-based abstraction may not always be acceptable.
Another approach to unstructured data extraction is model-assisted abstraction, where humans
use the output of machine learning models to improve the efficiency or accuracy of manual
abstraction16. One common approach for model-assisted abstraction is using models to identify
records that may require human review16. For example, this may be used to build a cohort of
patients that meet certain inclusion criteria. While this approach may improve abstraction
efficiency, charts not flagged by the model may never be included in the final dataset, leading to
lower sample sizes and systematic exclusion of certain patients. Therefore, there is still no
effective way to synthesize the terabytes of unstructured EHR data produced daily, and as a
result, the quality and quantity of clinical outcomes research are limited17.

To address the above limitations of manual abstraction and model-assisted abstraction, we used
selective prediction, a modeling framework that allows a model to abstain from generating a
prediction under certain scenarios, for example when uncertainty in the prediction is high. We
hypothesized that this approach would lead to improved accuracy compared to traditional
prediction for data points where the model generated a prediction. We applied this workflow to
four clinical variables: diagnosis of glioblastoma (GBM) (binary, yes/no), diagnosis of rectal
adenocarcinoma (binary, yes/no), laparoscopic surgical resection of colorectal adenocarcinoma
(binary, yes/no), laparoscopic surgical resection approach for colorectal adenocarcinoma
(categorical, LAR/APR/other). The final output of our models is high-quality structured data that
can be used for research or quality improvement.
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METHODS

Approach
First, manual abstraction of a fixed number of data points was performed by human abstractors
(Figure 1a). This decreases the costs typically associated with having highly trained clinicians
perform chart abstraction. Second, natural language processing (NLP) selective prediction
models were developed using the data collected by manual abstraction. In contrast to typical ML
models that generate a prediction for any input, selective prediction models may abstain from
generating a prediction for certain data points (Figure 1b)18. Third, we leveraged selective
prediction modeling to generate predictions for data points that the model can predict with high
accuracy and used manual abstraction for data points that the model abstains from predicting.
Lastly, we applied a series of quality checks to ensure the fidelity of the final variables.

Data source
This study was a retrospective analysis of EHR data collected at Stanford Hospital, Stanford,
CA. This data source included any patient treated at Stanford from 1998-2022. Ethics approval
was granted through Stanford University IRB (#50031).

Study Population

Glioblastoma cohort
Patients with mention of the word “glioblastoma” in a pathology report were included. Filtering
for pathology reports with the word “glioblastoma” is an effective way of identifying patients who
are likely to have primary GBM, since any patient diagnosed with primary GBM would have a
pathology report indicating that diagnosis (high sensitivity). Patients younger than 18 at the date
of the pathology report that contained the word “glioblastoma” were excluded due to differences
in the clinical management of pediatric GBM. The remaining 1195 patients were considered for
subsequent analyses. Of these, 629 patients (659 charts) were randomly selected for manual
abstraction.

Colorectal cancer cohort
The colorectal cancer cohort was created by selecting patients between January 2012 and
December 2021 that had ICD-9 and ICD-10 codes for rectal cancer (154.0 and 154.1 for IDC-9
and C19 and C20 for ICD-10), and Current Procedural Terminology (CPT) codes for treatment
of rectal cancer (45110, 45111, 45112, 45114, 45116, 45126, 45395, 44146, 44208, 48.4, 48.5,
48.6, 1007599, 1007604). Patients younger than 18 at the date of the pathology report were
excluded due to differences in clinical management. Of the remaining 726 patients, 298 patients
(601 charts) were randomly selected for manual abstraction and considered for subsequent
analysis.
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Outcomes

Confirmation of primary glioblastoma diagnosis
Primary glioblastoma diagnosis was determined by reviewing the relevant pathology reports of
patients with suspected GBM. In general, patients diagnosed via surgical resection, biopsy, or
specimen review with GBM (WHO grade IV), with or without oligodendroglial or gliosarcoma
features, were considered to have primary glioblastoma. Patients with transformed or recurrent
GBM diagnoses were not considered to have primary glioblastoma.

Confirmation of rectal adenocarcinoma diagnosis
Rectal adenocarcinoma diagnosis was determined by reviewing the relevant pathology reports
of patients with suspected rectal adenocarcinoma. In general, patients diagnosed via surgical
resection of rectal adenocarcinoma were considered to have a rectal adenocarcinoma
diagnosis.

Confirmation of laparoscopic surgical resection of rectal adenocarcinoma
Confirmation of laparoscopic surgical resection (binary) of rectal adenocarcinoma was made
after a patient was confirmed to have been diagnosed with rectal adenocarcinoma. There are
two laparoscopic surgical approaches for resection of rectal adenocarcinoma of interest. The
first approach is low anterior resection (LAR), which involves removing part of the rectum. The
second approach is abdominoperineal resection (APR), which involves removing the anus,
rectum, and sigmoid colon. A third, less common approach, is called pelvic exenteration (PE),
which involves removing reproductive organs, the bladder or rectum or both, and lymph nodes
in the pelvis. Here, we built models to identify patients who underwent APR or LAR. A model to
identify patients who underwent PE was not built due to insufficient data.

Data abstraction
Of the patients that met the initial inclusion criteria, 629 patients were randomly selected for
manual abstraction to collect training data for the NLP models.  To confirm GBM diagnosis, we
used the methodology described below to perform abstraction. For the variables related to
colorectal cancer, we used existing data that had been manually abstracted for other research
purposes.

First, a chart review was performed to understand how GBM diagnosis was documented in the
EHR. Second, based on the findings from the preliminary chart review, a detailed abstraction
instruction guide was created that described how to determine a diagnosis of GBM from a
patient’s chart. Instructions for dealing with ambiguous cases (ex. gliosarcoma or glioblastoma
with oligodendroglioma features) were included, as well as guidance for cases that the
abstractor could not determine. Third, a standardized abstraction data entry tool was developed,
and a pilot round of abstraction was conducted to refine the instruction guide and data entry
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tool. The data entry tool had a “flag” feature that abstractors could use to indicate charts for
which they were not able to make a determination. Fourth, patient charts were allocated to
non-clinician abstractors (with duplication to allow for calculation of inter-rater reliability) and
abstraction was performed. A subset of charts was assigned to clinician abstractors to calculate
the accuracy of non-clinician abstractors. Lastly, all flagged charts were reviewed, and data
quality checks were performed.

We ran selective prediction models on 4 datasets taken from pathology reports, each of which
confirmed GBM diagnosis, resection of rectal adenocarcinoma (RRA), LAR of rectal
adenocarcinoma, or APR of rectal adenocarcinoma (Table 1).

Statistical Analysis

Feature engineering and feature selection
For each variable, modeling was performed at the level of a patient chart, and each patient may
have multiple charts. A randomly selected 60% of charts were used for model training, and the
remaining 40% were used for model testing. Features were derived entirely from the free text of
pathology reports. Using the text of these documents, TF-IDF
(term-frequency-inverse-document-frequency) scores were calculated for unigrams, bigrams,
trigrams, and 4-grams. Briefly, TF-IDF is a method used to quantify the relative frequency of an
n-gram (an n-word phrase) in a corpus of documents. For example, the TF-IDF score for the
unigram “cancer” in a patient’s pathology report is calculated by dividing the frequency of the
word “cancer” in that patient’s pathology report (term frequency) by the frequency of the word
“cancer” across all pathology reports across all patients (inverse document frequency).
L1-regularized logistic regression (Lasso) was used for feature selection and prediction.
Hyperparameters (regularization for Lasso and sparsity for document term matrix) were tuned
using 10-fold cross-validation. The metric for cross-validation was misclassification cost
(described below). Selected features were examined for sensibility and clinical meaningfulness
(Supplementary Table 1).

Binary classification
For each binary variable, the output of the lasso regression model was a probability between 0
and 1 indicating the probability that the given chart contains the variable of interest. Typically, a
probability threshold is applied to convert a probability prediction model into a classifier. In
selecting an optimal probability threshold, relative costs for false negatives and false positives
must be specified. Here, “cost” refers not to monetary cost but rather real-world utilities. In the
example of GBM diagnosis, the cost of a false positive corresponds to the cost of incorrectly
labeling a chart as having GBM, and the cost of a false negative corresponds to the cost of
incorrectly labeling a chart as not having GBM. The former results in incorrectly including a
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patient in the final dataset, whereas the latter results in incorrectly excluding a patient from the
final dataset.

We implemented selective prediction by selecting two probability thresholds instead of one. Any
chart with a predicted probability of falling between the two thresholds is considered
“undetermined”. The idea behind this approach is that a predicted probability very close to 0 or 1
indicates higher model confidence. By labeling charts whose predicted probability is far from 0
or 1 as “undetermined”, the model performance on the charts not labeled “undetermined” is
likely to be better than the model performance on the overall sample.

The double threshold requires specifying a relative cost to labeling a chart as “undermined”, as
well as costs for false positives and false negatives. A grid search was used to identify the two
thresholds which minimize the total cost, defined as follows:

Equation 1:
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =

𝑐𝑜𝑠𝑡 𝑜𝑓 𝐹𝑃( ) # 𝑜𝑓 𝐹𝑃( )+ 𝑐𝑜𝑠𝑡 𝑜𝑓 𝐹𝑁( ) # 𝑜𝑓 𝐹𝑁( )+(𝑐𝑜𝑠𝑡 𝑜𝑓 𝑢𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑)(# 𝑜𝑓 𝑢𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑)
𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

where, # is number, FP is false positive, and FN is false negative. With this double threshold
approach, we can expect abstraction efficiency gains equal to 100% minus the “undetermined
rate”, or the percentage of charts labeled as “undetermined”. Although the model may not be
able to classify 100% of charts, we expect more accurate performance on the subset of charts
the model is able to classify, thus leading to gains in abstraction efficiency with minimal loss of
accuracy.

We compare the double threshold approach to the typical single threshold approach, where
predicted probabilities above or below the threshold are labeled “positive” or “negative”
respectively.

To quantify the relative costs of FPs, FNs, and undetermined as viewed by researchers (the end
users of the model), we created a survey that uses a regret-based approach19. This validated
method asks respondents to consider their preferences and willingness to accept tradeoffs in
hypothetical scenarios about patient care. Our survey presents a scenario with 100 patient
charts to be classified by an imperfect prediction model and asks respondents to quantify how
many patient charts they would be willing to review manually to avoid a false positive and false
negative. The responses can be used to generate cost ratios for FP:undetermined and
FN:undetermined, respectively. A total of seven clinician and abstractor responses were
received. Responses were scanned for consistency and follow up conversations were used to
understand motivations for all responses. After removing one outlier response, the remaining
responses had similar values and reasoning. A simple average of the remaining six preferences
gave the cost ratio for FP:FN:undetermined of 13.5:8:1. This means that the model returning a
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false positive is 13.5 times more costly than abstaining. Similarly, a false negative result is 8
times more costly than the model abstaining.

Model evaluation
Misclassification cost, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) were calculated, treating the abstracted labels as ground truth. In
addition, we introduce three metrics for the evaluation of selective prediction models:
undetermined rate, positive undetermined rate, and negative undetermined rate.  Positive
undetermined rate is defined as the number of positive observations labeled as undetermined
(undetermined positives or UP) over the total number of positive observations within the training
dataset (TP + FN + UP). Similarly, the negative undetermined rate is defined as the number of
negative observations (UN) labeled as undetermined over the total number of negative
observations within the training dataset (TN + FP + UN). Positive and negative undetermined
rates give insight into the composition of the undetermined rate. The undetermined rate is
defined as the number of predictions a selective prediction model abstains from making (UN +
UP), over the total number of possible predictions (UN + UP + FN + FP + TN + TP). A selective
prediction model with a lower undetermined rate yields greater efficiency gains than a model
with a larger undetermined rate and similar levels of accuracy. For example, if there is an equal
proportion of cases and controls in the training dataset, but the positive undetermined rate is
much larger than the negative undetermined rate, this suggests the selective prediction model is
struggling to predict labels for cases accurately.

After training, the final model was applied to all unlabeled data, yielding three types of
predictions: “positive”, “negative” or “undetermined”. For charts labeled positive or negative, the
model’s prediction was considered final. Charts labeled “undetermined” were those for which the
model abstained from making a definitive prediction. These charts were given to abstractors for
manual review.

Failure analysis
Failure analysis involved a manual review of observations where the model prediction resulted
in false positives or false negatives during cross-validation. The goal of failure analysis was to
determine the reasons for the model’s incorrect prediction. In some cases, the model’s
prediction was correct and erroneously labeled as a false positive or false negative due to
abstractor error. Potential reasons for abstractor error include mixing up dates of records,
misreading or misinterpreting similar words or synonyms, and failing to notice words and
phrases. In these cases, the underlying data was amended, the model was retrained, and
model accuracy metrics were recalculated.

Comparison to structured data proxies
We assessed whether the output of selective prediction models for GBM diagnosis was more
accurate than EHR-derived structured proxy variables. This analysis was not performed for the
colorectal cancer cohorts because structured variables were considered in the inclusion criteria
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for those cohorts. Structured proxy variables for diagnosis of GBM may include the presence of
an ICD or CPT code or documented treatment with antineoplastics typically used to treat GBM.
The following ICD codes relevant to GBM were included: C71.0 - C71.9 and C72.9 in the
ICD-10 scheme; C191.9 in the ICD-9 scheme20–22. CPT codes related to “glioblastoma” (81287,
81345), “malignant neoplasm of the brain” (70554, 70555, 78600, 78601, 78605, 78606, 78608,
78609, 78610), and surgical procedures related to GBM (61510) were included23. The proxy for
treatment included any documented order or administration of temozolomide or bevacizumab.
The labels generated by the model were compared with these structured data elements using
the performance metrics described above to quantify the increased accuracy obtained by using
an NLP-based model.

RESULTS

Cost survey
Based on the survey conducted (n = 6), a cost ratio for FP:FN:undetermined was assigned as
13.5:8:1 (Table 1).

Colorectal cancer models
Overall, our double threshold models performed better than the single threshold models, with
16%, 35%, and 41% decreases in total cost compared to single threshold models for resection
of rectal adenocarcinoma (RRA), abdominoperineal resection (APR), and low anterior resection
(LAR), respectively (Table 2). Among the three colorectal cancer (CRC) models, the LAR double
threshold classifier had the highest undetermined rate (10%), where 90% of charts were
automatically labeled by the LAR classifier. This led to improvements over single threshold
modeling in sensitivity (0.71 to 0.91), specificity (0.99 to 1.00), PPV (0.94 to 0.98), and NPV
(0.94 to 0.99). Our RRA double threshold classifier had the second highest undetermined rate
(9%), where 91% of charts were automatically labeled by the RRA classifier. Similarly, we saw
improvements over single threshold modeling in sensitivity (0.87 to 0.93), specificity (0.92 to
0.93), PPV (0.90 to 0.92), and NPV (0.90 to 0.94). Lastly, our APR double threshold classifier
had the lowest undetermined rate (5%), where 95% of charts were automatically labeled by our
APR classifier. This led to improvements over single threshold modeling in sensitivity (0.81 to
0.91), specificity (0.99 to 0.99), PPV (0.88 to 0.94), and NPV (0.98 to 0.99).

Glioblastoma model
The double threshold model performed better than the single threshold models, with a 51%
decrease in total cost compared to the single threshold models (Table 2). The GBM double
threshold classifier had an undetermined rate of 43%, meaning that 57% of charts were
automatically labeled by the model. This led to improvements over single threshold modeling in
sensitivity (0.94 to 0.96), specificity (0.79 to 0.96), PPV (0.89 to 0.98), and NPV (0.88 to 0.91).
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For GBM, the double threshold model outperformed all structured proxy variables, yielding costs
anywhere from 84.8% to 87.1% lower than those of structured proxy variables (Table 3).
Compared to ICD codes, the double threshold model had higher sensitivity (0.96 to 0.62),
specificity (0.96 to 0.46), PPV (0.98 to 0.70) and NPV (0.91 to 0.38). Compared to CPT codes,
the double threshold model had higher sensitivity (0.96 to 0.36), specificity (0.96 to 0.59), PPV
(0.98 to 0.64) and NPV (0.91 to 0.32). Compared to the proxy variable of GBM-related
treatment, the double threshold model had higher sensitivity (0.96 to 0.21), specificity (0.96 to
0.84), PPV (0.98 to 0.71) and NPV (0.91 to 0.34).

DISCUSSION

EHR data is a valuable resource for investigating clinical questions, but it is hard to analyze in
its unstructured form. Currently, data extraction techniques rely on manual abstractors, which
can be time-consuming and resource-intensive. We propose an approach that leverages
selective prediction and human abstractors to improve the accuracy and efficiency of clinical
data abstraction. Specifically, we used selective prediction implemented via cost-based
probability thresholding to allow our classifier to abstain from predicting certain data points,
which were then given to a human for manual abstraction.

The double threshold model led to sizable gains in automation (anywhere from 57% to 95%
across our four outcomes) and for GBM diagnosis, outperformed all structured proxy variables
in terms of misclassification cost.

For any prediction model, the resulting prediction has a higher chance of being wrong when
model uncertainty is high. In many healthcare settings, making a wrong prediction is more
harmful than not making a prediction at all. Selective prediction has the potential to improve
efficiency and accuracy in healthcare applications where the cost of abstaining from a prediction
is lower than the cost of a misclassification. One such scenario is automated chart abstraction
for cohort selection because the cost of abstaining is the cost of manually reviewing a chart. The
relative preference for abstaining compared to making an incorrect classification is reflected in
the results of the cost survey. Other examples of selective prediction exist; for example,
Kotropoulos and Arce reported building a linear classifier with the option to postpone
decision-making, which they called a rejection24,25. In this paper, postponed decisions required
further advice by a domain expert in the context of the paper’s intended application. Another
example comes from Guan et al., where they used a selective prediction classification model to
abstain from prediction when the classification task has a large amount of uncertainty26. The
results for our double-threshold model are comparable to state-of-the-art algorithms; for
instance, one set of models for various clinical concepts reported an average sensitivity of
95.5% and PPV of 95.3% for unstructured data27.
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Defining misclassification cost is a critical step in developing classification models. Common
metrics for assessing ML model performance include F1 score, area under the curve (AUC),
and calibration, but such metrics fail to consider real-world consequences of model errors28.
These numbers have little context in the clinical setting e.g. there is no cutoff F1 score that
indicates a model is safe to use in making clinical decisions. Assigning costs for false positives
and false negatives is an attempt to capture the difficulty of trade-offs in medical
decision-making and tie the output of the model to the would-be impact of the model’s output. To
establish cost ratios, we used stakeholder surveys but other methods may be implemented.
Through this survey, stakeholders must implicitly consider how much they value quantities such
as clinical accuracy, time, and monetary cost. Since there is no single right cost ratio, a survey
that directly asks relevant stakeholders about their preferences, as we did, can help elicit the
relative costs associated with the model outputs. Such a survey that makes people consider
consequences and anticipate regret has been suggested to be effective because it combines
both intuitive and deliberative systems of thinking19.

One key question that selective prediction raises is how to deal with the data points where the
model abstained. One simple approach is to have humans review all undetermined data points
by hand. This may be preferable when the number of undetermined data points is small, when
the total cost of manual review is low, or when the outcome is difficult to predict for
undetermined data points. Beyond a certain number of training data points, the signal-to-noise
ratio decreases and improvements in classification performance diminish29. The manual review
of undetermined data points could lend insight into methods to help fine-tune models. Another
approach could leverage active learning techniques like uncertainty sampling to preferentially
sample undetermined data points and retraining on charts that were initially labeled as
uncertain.

Our approach has some limitations. First, we tested the algorithm on clinical oncology
documents (pathology reports) and binary variables (diagnosis and procedures). Further testing
is needed to confirm that the model can work on a variety of different datasets and variables.
Second, selective prediction could theoretically result in a significant portion of undetermined
data points without substantial increases in accuracy. Adjusting the cost ratios may ameliorate
this. As the cost assigned to an undetermined increases, the model will make more predictions,
but one faces the trade off of more false positives and false negatives in this case. Third, we use
predicted probabilities as proxies for model uncertainty, which may not be the optimal metric for
thresholding. In the active learning literature, alternative metrics for quantifying model
uncertainty have been proposed, including Shannon entropy and variance in
query-by-committee predictions30.

Selective prediction using cost-based probability thresholding can semi-automate unstructured
EHR data extraction by giving “easy” charts to a model and “hard” charts to human abstractors,
thus increasing efficiency while maintaining or improving accuracy. A semi-automated
abstraction workflow substantially outperforms structured proxy variables like ICD codes on a
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binary classification task, generating higher quality datasets that can be used for outcomes
research.
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Fig. 1 a Diagram depicting the modeling workflow used to extract unstructured variables. EHR data is
abstracted, then used to train and test a model that either predicts an outcome or abstains from a
prediction. Charts for which a prediction is not generated are abstracted manually. b Depiction of selective
prediction via utility-based thresholding. Two thresholds (Threshold 1 and Threshold 2) are applied to a
continuous predicted probability to yield three possible classifications: negative (predicted probability <
Threshold 1), positive (predicted probability > Threshold 2), and undetermined (Threshold 1 ≤ predicted
probability ≤ Threshold 2). Thresholds are selected based on real world utilities so as to minimize the total
cost, defined as (# of FP) × (cost of FP) + (# of FN) × (cost of FN) + (# of undetermined) × (cost of
undetermined), where # = number, FP = false positive, and FN = false negative.
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Table 1. Questions and summary of responses for the cost survey (n = 6).

Common scenario:
Suppose you have a group of patients, each with one medical chart. You need to decide whether each
of these patients should be included in a dataset containing patients with GBM. This dataset will be
used for outcomes research and quality improvement efforts.

Since no prediction model is 100% accurate, it is expected that it will make some mistakes in its
decision to include/exclude a patient from the dataset. Alternatively, you can manually review a
patient's case and make the right decision with absolute certainty, but note that manually reviewing the
chart is time consuming.

Question Average Minimum Maximum

How many patient charts would you be willing to review
manually to prevent one patient who is healthy from being
incorrectly included into the GBM dataset (i.e. false positive)?*

13.5 10 20

How many patient charts would you be willing to review
manually to prevent one patient who has GBM from being left
out of the dataset (i.e. false negative)?*

8 3 15
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Table 2: Test set performance of classification models (single threshold and double threshold) for
confirmed diagnosis of glioblastoma, resection of rectal adenocarcinoma, abdominoperineal resection of
rectal adenocarcinoma, and low anterior resection of rectal adenocarcinoma. (note: positive undetermined
rate = UP/(TP+FN+UP) and negative undetermined rate = UN/(TN+FP+UN), where UP (undetermined
positives) is the number of positive observations labeled as undetermined, TP+FN+UP represents the
total number of positive observations in the training dataset, UN (undetermined negatives) is the number
of negative observations labeled as undetermined, and TN+FP+UN represents the total number of
negative observations in the training dataset).

Confirmed
diagnosis of
glioblastoma

Resection of rectal
adenocarcinoma

Abdominoperineal
resection of rectal
adenocarcinoma

Low anterior
resection of rectal
adenocarcinoma

Double
threshold

Single
threshold

Double
threshold

Single
threshold

Double
threshold

Single
threshold

Double
threshold

Single
threshold

Sensitivity 0.96 0.94 0.93 0.87 0.91 0.82 0.91 0.71

Specificity 0.96 0.79 0.93 0.92 0.99 0.99 1.00 0.99

PPV 0.98 0.89 0.92 0.90 0.94 0.88 0.98 0.94

NPV 0.91 0.88 0.94 0.90 0.99 0.98 0.99 0.94

# FN (%) 4 10 7 14 3 8 4 19

# FP (%) 2 20 8 10 2 5 1 3

Total N 264 264 240 240 394 394 353 353

Predictions
made 150 264 218 240 375 394 318 353

Undetermined
rate 0.43 0.09 0.05 0.10

Positive
undetermined
rate 0.38 0.07 0.25 0.32

Negative
undetermined
rate 0.52 0.11 0.023 0.049

Threshold 1 0.27 0.15 0.12 0.17

Threshold 2 0.9 0.59 0.7 0.65 0.7 0.28 0.71 0.59

Misclassification
Cost 173 350 114 136 47 72 59 100

Table 3. Performance metrics of structured proxy variables (ICD codes, CPT codes, and GBM-related
medication) in predicting confirmed diagnosis of GBM.
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Metric Any GBM-related
ICD Code

Any GBM-related
CPT Code

Received GBM-related
medication at any time

Sensitivity 0.62 0.36 0.21

Specificity 0.46 0.59 0.84

PPV 0.70 0.64 0.71

NPV 0.38 0.32 0.34

# FP 46 35 14

# FN 65 108 135

Misclassification cost 1141 1337 1269
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Supplementary information
Supplementary Table 1: This table contains the top 10 features selected from each of our 4 classifiers.
Features are listed in descending order of importance with the feature at the top selected as the most
important feature for that classifier.

Top 10 Features Selected

Confirmed diagnosis
of glioblastoma

Resection of rectal
adenocarcinoma

Abdominoperineal
resection of rectal
adenocarcinoma

Low anterior
resection of rectal
adenocarcinoma

– glioblastoma – invasive
adenocarcinoma

anterior resection – adipose tissue.

– glioblastoma (who ( / / anterior resection tumor and distal

– glioblastoma, (cm) negative operation: laparoscopic anterior resection

hospital adenocarcinoma (see sigmoid colon anterior resection –

is frozen distal specimen labeled
““proximal

anterior resection tumor

mitotic line tumor regression loop

necrosis are mucosa circumferential operation: laparoscopic

tumor cells opened fragment of rectal cancer operation:

discussed possible low anterior sigmoid

grade iv rectal cancer operation: muscularis propria (cm) negative
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Supplementary Table 2. Areas under the receiver operator curve (AUC) and calibration slope and
intercept for glioblastoma (GBM), resection of rectal adenocarcinoma (RRA), abdominoperineal resection
(APR), and low anterior resection (LAR) traditional (non-selective prediction) models.

Model AUC Calibration slope Calibration intercept

GBM 0.93 1.22 -0.38

RRA 0.94 0.52 -0.32

APR 0.99 1.36 -0.01

LAR 0.98 1.48 0.31

Supplementary Table 3. Results of model failure analysis for the four NLP double threshold models.
False positives (FP) and false negatives (FN) were manually reviewed to determine whether they were
due to model error or abstractor error.

Metric

Confirmed
diagnosis of
glioblastoma

Confirmed
diagnosis of rectal
adenocarcinoma

Low anterior
resection of rectal
adenocarcinoma

Abdominoperineal
resection of rectal
adenocarcinoma

FPs due to model
error

0 4 (50% of all FPs) 1 (100% of all FPs) 2 (100% of all FPs)

FPs due to
abstractor error

0 4 (50% of all FPs) 0 0

FNs due to model
error

0 7 (100% of all FNs) 2 (50% of all FNs) 2 (67% of all FNs)

FNs due to
abstractor error

0 0 2 (50% of all FNs) 1 (33% of all FNs)
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Supplementary Figure 1. Calibration metrics for glioblastoma (GBM), resection of rectal
adenocarcinoma (RRA), abdominoperineal resection (APR), and low anterior resection (LAR) traditional
(non-selective prediction) models.
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