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Abstract— The recognition of Acute Respiratory 

Distress Syndrome (ARDS) may be delayed or missed 
entirely among critically ill patients. This study focuses on 
the development of a predictive algorithm for Hypoxic 
Respiratory Failure and associated risk of ARDS by 
utilizing routinely collected bedside monitoring.  
Specifically, the algorithm aims to predict onset over time.  
Uniquely, and favorable to robustness, the algorithm 
utilizes routinely collected, non-invasive cardiorespiratory 
waveform signals.  This is a retrospective, Institutional-
Review-Board-approved study of 2,078 patients at a 
tertiary hospital system.  A modified Berlin criteria was 
used to identify 128 of the patients to have the condition 
during their encounter.  A prediction horizon of 6 to 36 
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hours was defined for model training and evaluation. 
Xtreme Gradient Boosting algorithm was evaluated 
against signal processing and statistical features derived 
from the waveform and clinical data.   Waveform-derived 
cardiorespiratory features, namely measures relating to 
variability and multi-scale entropy were robust and reliable 
features that predicted onset up to 36 hours before the 
clinical definition is met. The inclusion of structured data 
from the medical record, namely oxygenation patterns, 
complete blood counts, and basic metabolics further 
improved model performance.  The combined model with 
6-hour prediction horizon achieved an area under the 
receiver operating characteristic of 0.79 as opposed to the 
first 24-hour Lung Injury Prediction Score of 0.72.  
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I. INTRODUCTION 

Acute Respiratory Distress Syndrome (ARDS) is a life-

threatening condition in which acute inflammation results in 

increased pulmonary vascular permeability causing diffuse 

alveolar damage [1]. ARDS affects 120,000 hospitalized 

patients annually and is an under-recognized condition, 

estimated to be prevalent in 10% of all patients admitted to the 

intensive care unit (ICU) [2]. ARDS is associated with a high 

mortality rate up to 45%, yet treatment options are limited for 

this condition, leading to a significant interest in its prediction 

and prevention. 

  

The major barrier to the development of therapeutics and 

management strategies to prevent ARDS is the timely 

identification of patients who are at-risk of developing ARDS 

[3].  It has been reported that ARDS is often delayed, with 

40% of cases entirely missed, 21% in the severe category [4].  

This delay or absence of diagnosis can lead to inadvertent, 

unnecessary harm as well as prevent improved management 

such as fluid restrictive therapy and low tidal volume.  

Quantitative indicators that predict the disease prior to 

clinician suspension would allow for not only improved 

management, but. also, development of higher risk therapies 

and prognosis.  

  

The Lung Injury Prediction Score (LIPS) has been tested for 

prediction of ARDS in a multi-center study with the 

performance measured with an area under receiver operating 

characteristic (AUROC) of 0.70 [5].  Machine learning 

algorithms have also used the Electronic Medical Record 

(EMR) for prediction of ARDS [6] and other diseases such as 

sepsis [7].  However, the EMR does have limitations due to 

its’ sparse nature as well as its’ indicator and behavioral biases 

that are involved in the ordering of labs and other clinical 

measures [8]. 

  

The derivation of ‘physiomarkers’, electrophysiological and 

hemodynamic markers, generated from continuous bedside 

monitoring data have been used in a number of applications, 

such as cardiovascular sufficiency [9], pulmonary fluid status 

[10] and hypotension [11].  The utility of these markers is 

driven by their pervasive availability, particularly those 

derived from electrocardiogram (ECG) and 

photoplethysmography [12]. However, physiomarkers have 

not been explored within the context of ARDS.  A, and may 

serve as rapid indicators of risk early in the ICU encounter. 

  

Accurate characterization of ARDS cases from a retrospective 

dataset in an automated fashion is a major unaddressed 

challenge [13]. The onset of hypoxic respiratory failure is a 

key clinical component in identifying patients at risk for the 

development of ARDS. In order to ensure accurate class labels 

of ARDS, clinical adjudication, that encompasses radiological 

images, is needed.  A prediction algorithm for Hypoxic 

Respiratory Failure could identify candidates for clinical 

screening of radiological images for ARDS. The use of EMR 

alone can determine Hypoxic Respiratory Failure, enabling an 

algorithm to be developed that is economical and can be 

widely applicable. 

 

In this study, novel physiomarkers, within a machine learning 

algorithm, were sought for prediction of the onset of Hypoxic 

Respiratory Failure among acute and critically ill patients.  

Utilizing only a single lead of the commonly available ECG 

waveform, we derive several candidate markers that are 

evaluated as predictors of ARDS at 6 and 12 hrs. prior to 

onset. We report the findings of that analysis, along with a 

data-fusion model that integrates routine clinical data 

abstracted from the EMR.  

II. MATERIALS AND METHODS 

A. Description of Datasets 

This is a retrospective study using high fidelity waveform 

measurements and the EMR from patients admitted to the 

Emory University Healthcare ICUs.  The study was approved 

by the Emory Institutional Review Board (IRB) as non-human 

subjects research. All procedures were in accordance with the 

Helsinki Declaration of 1975. 

B. Selection Criteria 

We evaluate based on a pragmatic and consensus approach 

that integrates data from the EMR, International Classification 

of Diseases (ICD) codes, lab results, and ventilator settings.  

An ICD 9th Edition (ICD9) code of 518.52 or ICD 10th 

Edition (ICD10) code of J80 was used as a candidate 

selection.  A PaO2 to FiO2 (P/F) ratio of < 300 mmHg or a 

SpO2 to FiO2 (S/F) ratio of <315, and a Positive End-

Expiratory Pressure (PEEP) > 5 cm H2O, where the lab value 

collection time and ventilator recording times occurred within 

1 hour, were used as a secondary selection. The first time in 

which these secondary selection conditions are all met, within 

1 hour, was considered the onset time of Hypoxic Respiratory 

Failure resulting in ARDS. Clinician adjudication was 

performed on a subset to determine agreement with the Berlin 

Definition of ARDS, through the evaluation of radiographic 

evidence of bilateral infiltrates, in addition to P/F < 300 and 

PEEP > 5. 

C. Data Processing  

For case patients, waveform data available in the time window 

from 60 hours before onset until 12 hours after onset was 

included in the analysis.  Due to the lack of an event within 

the controls, a random time was generated during the 

encounter, to match similar onset times within the case 

population. If a patient did not have at least 8 hours of usable 

waveform data, they were excluded from the study.  

  

Consecutive 8-hour windows, with a stride of 1 hour, were 

used for classifications within the model.  Statistics were 

reported for each feature from the 8 hourly values in the 

window of the case or control.  For continuous features, the 

statistics were mean, median, minimum, maximum, skewness, 

variance, and kurtosis.  For procedures an indicator variable 

was generated, e.g. admission of a vasopressor, etc.  

Classification of 8-hour windows was a control unless there 

was an overlap post prediction horizon for case patients as 
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done in a previous study [6] and described in Supplementary 

Figure 1.  

 

A full list of the EMR data is represented in Supplemental 

Table 1.  Waveform data was obtained by processing the raw 

ECG captured from bedside monitors in Emory ICU’s.  This 

raw ECG was sampled at 240 Hz.  Non-overlapping windows 

of 5 minutes were selected for feature generation. RR intervals 

from the ECG were generated using the PhysioNet 

Cardiovascular Toolbox [14]. 

 

To identify the optimal model for the input data, a number of 

learning algorithms were evaluated, including Logistic 

Regression, Random Forest, and Xtreme Gradient Boosting 

[15].  Hyperparameters were tuned to optimize learning 

performance and described in the Supplemental Document.  

Feature importance and interpretability were characterized 

using the SHapley Additive exPlanations (SHAP) explainer 

[16].  Model performance was characterized using a number 

of algorithmic benchmarks including AUROC, Sensitivity, 

Specificity and Positive Predictive Value (PPV).  

III. RESULTS  

A. Patient and Clinical Characteristics 

A total of 3,708 patients with matched retrospective 

waveform and EMR data from October 2016 through 

September 2018, were screened for inclusion in the study. 

After applying the inclusion criteria, a total of 2,078 patients 

were ultimately included as shown in Figure 1. 

 
Figure 1. Consort Diagram 

 

 

 

 

 

 

 

 

 
Total ARDS Control p Value 

Patients (n) 2078 128 1950 NA 

Males, n 
(%) 

1071 
(51.2%) 

72 (56.3%) 999 (51.2%) >0.05 

Age, mean 
[IQR] 

58.4 [48.0 
70.0] 

56.6 [48.8 
69.0] 

58.5 [48.0 
70.0] 

>0.05 

Mechanical 
Ventilation, 
n (%) 

874 (42.1%) 128 
(100.0%) 

746 (38.3%) <0.001 

In-hospital 
deaths 

137 (6.6%) 13 (10.2%) 124 (6.4%) >0.05 

LIPS, mean 
[IQR] 

5.67  
[4.00 7.00] 

6.92  
[5.50 8.50] 

5.03  
[4.00 6.50] 

<0.001 

PEEP, 
median 
[IQR] 

6.0  
[6.0 8.0] 

6.0  
[6.0 10.0] 

6.0  
[6.0 8.0] 

>0.05 

P/F Ratio, 
median 
[IQR] 

280.0 
[222.9 
280.0] 

192.0 
[124.7 
257.3] 

280.0  
[273.3 280.0] 

<0.001 

SF Ratio, 
median 
[IQR] 

186.0 
[133.3 
233.8] 

139.2  
[98.4 180.5] 

190.0 [140.3 
240.0] 

<0.001 

White Blood 
Cell count, 

9.0  
[6.9 12.9] 

9.9  
[7.6 16.15] 

9.0  
[6.8 12.4] 

<0.01 

Age Group, 
n (%): 

    

18 to 40 
years 

326 (15.7%) 23 (18.0%) 303 (15.5%) >0.05 

41 to 60 
years 

723 (34.8%) 45 (35.2%) 678 (34.8%) >0.05 

61 to 80 
years 

876 (42.2%) 58 (45.3%) 818 (41.9%) >0.05 

>80 years 152 (7.3%) 2 (1.6%) 150 (7.7%) >0.05 

Race: 
    

African 
American 

777 (37.4%) 43 (33.6%) 734 (37.6%) >0.05 

Caucasian 1107 
(53.3%) 

72 (56.3%) 1035 (53.1%) >0.05 

Asian 53 (2.5%) 4 (3.1%) 49 (2.5%) >0.05 

Other or 
Unknown 

141 (6.8%) 9 (7.0%) 132 (6.8%) >0.05 

Table 1: Clinical characteristics of the patient cohort 
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Among the final analytic cohort of 2078 patients, 128 (6.2%) 

were determined to have the condition based on modified 

Berlin criteria. Table 1 compares the clinical characteristics of 

the cohort stratified by the presence of ARDS compared to the 

absence of the condition. There were no significant differences 

in age and self-identified race ethnic group between those with 

and without the condition.  Compared to those without, 

patients with had a higher LIPS (Mean [IQR], 6.92 [5.50 8.50] 

vs 5.03 [4.00 6.50], p<0.001) and lower P/F ratio (192.0 

[124.7 257.3] vs 280.0 [273.3 280.0], p<0.001) consistent with 

worse oxygenation and possible lung injury. While in-hospital 

mortality was numerically higher among those with the 

condition compared to those without (13 (10.2%) vs. 124 

(6.4%), p>0.05), this difference was not significant. 

Figure 2 displays the receiver operating characteristic curve 

for the models with prediction horizon of 12 hour before onset 

as well as the curve representing no prediction skill in a 

model.  The area under the receiver operating characteristic 

curve is 0.59 for the model with waveform features alone and 

0.76 for the combined model.  The sensitivity and specificity 

at an operating point is also depicted in each non-trivial 

model, in addition to being reported in Table 2 below.  On the 

right half of Figure 2 is a plot of AUC for models versus 

prediction horizon time as it is varied from 36 hours to 6 hours 

prior to onset.  Each model was executed 30 times, the mean 

and confidence interval are depicted.  The models are grouped 

together based on included features.  The waveform only 

model results improved from the change from 36 hours to 30 

hours but remained relatively constant from 30 hours to 12 

hours.  The 6-hour prediction horizon produced the best 

results and the highest change between models.  In contrast to 

the waveform only data, the addition of EMR features resulted 

in increasingly improved results from 36 hours to 6 hours.  

The total increase of the EMR included model was higher than 

the waveform only model.  However, the increase from 12 

hours to 6 hours was comparable for the two models. 

The performance of four of the models is represented in Table 

2.  Models in which the prediction horizon is 12 and 6 hours 

prior to onset are shown. For each respective horizon, there 

are models including waveform features alone and those 

including EMR features.  Considering the 12-hour prediction 

horizon models, the AUROC improved from 0.59, with the 

addition of EMR features, to 0.76.  Specificity nearly doubled 

with the addition of EMR features, achieving better 

performance well outside the confidence intervals.  However, 

waveform features alone achieved a superior sensitivity of 

0.73 to 0.66, while the confidence intervals did overlap.  PPV, 

with EMR features, was over three times without the EMR 

features. 

Moving from the 12-hour prediction horizon to the 6 hour 

prediction horizon, every, respective, measure was improved.  

The AUC increased by 0.03 to 0.62 and 0.79 for the waveform 

features alone and waveform and EMR features together, 

respectively.  Specificity also increased by 0.3 for both 

prediction horizons.  Sensitivity increased by 0.3 to 0.76 for 

the model with waveform features alone while the PPV 

remained unchanged.  The sensitivity and PPV increased by 

0.1 more for the model that included EMR features when 

compared to without as the prediction horizon decreased. 

LIPS was evaluated at three different thresholds.  The 

AUROC and specificity performed worse for this score when 

compared to the combined models.  The LIPS did provide a 

high number of true positives resulting in comparatively large 

PPV value and competitive sensitivity values. 
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AUROC Specificity Sensitivity PPV 

6-hour Waveform 0.62 [0.604,0.630] 0.47 [0.445,0.498] 0.76 [0.727,0.797] 0.02 [0.018,0.021] 

 
Waveform Plus EMR 0.79 [0.775,0.803] 0.88 [0.873,0.894] 0.70 [0.666,0.725] 0.08 [0.069,0.088] 

12-hour Waveform 0.59 [0.573,0.602] 0.44 [0.417,0.471] 0.73 [0.690,0.772] 0.02 [0.018,0.022] 

 
Waveform Plus EMR 0.76 [0.738,0.776] 0.85 [0.840, 0.865] 0.66 [0.626,0.698] 0.07 [0.060,0.079] 

4** LIPS* 0.64 0.38 0.89 0.34 

5** LIPS* 0.65 0.55 0.75 0.38 

6** LIPS* 0.61 0.69 0.53 0.38 

Table 2. Results of 12 Hour and 6 Hour Models with LIPS Comparison
*LIPS was computed using the worst features during the first 24 hours after admission.  **Threshold. 

Figure 3.  SHAP Magnitude and Beeswarm Plot for Combined Features (A) and Waveform-only Features (B) Models

Figure 3 has two representations of the SHAP values for the 

models with a 12-hour prediction horizon.  In the waveform-

only model, 4 of the top 9 features on the model are entropy 

measures, 3 are frequency domain measures, there is a non-

linear measure and a time domain feature. The beeswarm plot 

depicts high entropy, of certain scales, in the signal having an 

impact on the model towards the negative assertion.  In the 

combined features model, the presence of mechanical 

ventilation is shown to surpass all other features. There are a 

total of 5 features, in the top 9, that are waveform derived in 

this model.  3 entropy measures were in the top 9, 2 of which 

were also top measures in the model with waveform-only 

features and affected the model with the same inverse 

relationship.  3 EMR features of the top 9 are directly affected 

by mechanical ventilation: presence of the ventilator, total 

time on ventilation, and tidal volume.  The presence of 

ventilation and high maximum tidal volume had a direct 

relationship with model output. 

Example model probabilities during the patient encounter are 

represented in Figure 4 for a patient who met ARDS and one 

who didn’t, respectively.  Along with the probabilities, the 

relative SHAP values for top features are depicted.  The 

probability reached a threshold value approximately 10-hour 

prior to when criteria was met.  PaO2 variance appears to be 

the most influential feature in the model, although the top four 

features have distinct changes in the SHAP value as the 

probability increases.  The top feature that corresponds to a 

waveform derived feature is a frequency domain feature, and 

it quantifies the power in the low frequency range of the 
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signal.  The SHAP value of this waveform derived feature is 

high before the probability threshold has been reached.  The 

probability never reaches the threshold value for the patient 

that didn’t meet ARDS criteria.  

 

Figure 4.  Case and Control Patient Model Probability Trajectories and 
Associated SHAP Values 

IV. DISCUSSION 

A. Findings 

Previous models predicting ARDS while incorporating solely 

electronic medical record data have shown promise [6]. 

However, this manuscript is the first to incorporate real-time 

continuous waveform data to predict the development of the 

disease. Continuous waveform data is not static and varies 

over time which is more consistent with the clinical course of 

patients receiving attention in acute care hospitals. The 

contrast with prior prediction models is significant as the data 

is limited in that it is captured from a single or relatively small 

series of discrete instances, limiting its clinical utility in 

predicting real-time deterioration.  Incorporating continuous 

waveform data is novel in that it is more readily applied to the 

bedside as telemetry is recorded on most acute care patients, 

which can aid the more direct, sparse data to provide a real-

time prediction.  

ECG as a measurement providing waveform data was selected 

for the first characterization of a multi-modal machine 

learning model for prediction due to the cardiorespiratory 

physiomarkers available from the routinely and non-invasively 

collected signal.  The implications of this work are important, 

namely because many predictive models which utilize 

physiological information have often relied on respiratory 

components, such as using pressure and flow waveforms 

[17,18]. The use of ECG may be more generalizable and have 

earlier utility for prediction of risk, due to their pervasive 

availability and the ease of extracting digital data.  

The results of the models of this study shown in Figure 2 

indicate that waveform data has the potential to improve 

prediction of ARDS.  In both feature grouped models, moving 

the prediction window closer to onset increased accuracy.  In 

the combined model there was increasing accuracy from 36 

hours to 6 hours prior to onset.  This might reflect the presence 

of sparse data collected more often, gradually, as the condition 

becomes imminent.  For the waveform-only models, the 

increase from 12 hours to 6 hours is similar to the combined 

models, which may stipulate that the change in waveform 

signal has approximately the same effect on the prediction 

capability as the change in electronic medical record data.  

The relatively unchanged result from 12 hour to 30 hours in 

combination with the large drop off from 30 hours to 36 hours 

would be expected if the physiomarkers from waveform data 

reflect the condition presence earlier than the sparse data of 

electronic medical record data and provide a period of 

elevated risk well before onset from which treatment can be 

delivered. 

The top two features of the combined model, shown in Figure 

3, are mechanical ventilator derived, which is consistent with 

the definition and treatment of the condition.  The large 

magnitude of mechanical ventilator presence SHAP value is 

driving the specificity and true negative rate at the expense of 

the sensitivity.  Waveform derived features compose 5 of the 

top 9 features, and these features have more of an effect on the 

model than features directly related to the criteria of the 

condition such as the PaO2 to FiO2 ratio.    

This study demonstrates the applicability of clinical waveform 

data in predicting ARDS.  Models encompassing only EEG 

derived features increase predictive ability as the onset of 

ARDS is approached.  A similar approach with waveform data 

for prediction of sepsis has been studied [19].  The sepsis 

study included the invasive arterial blood pressure waveform 

in addition to EEG, enabling the calculation of pulse travel 

time.  The use of invasive waveform data will limit the patient 

population with which the prediction algorithm could be 

applied.  However, a substitute non-invasive waveform signal 

may allow for similar pulse travel time features to be used.  

This highlights the need for future work to elucidate the best 

features for the study of the development of ARDS.  In 

addition, the physiology behind the feature will enable better 

understanding of any prediction algorithm.  

B. Limitations 

Selection of case patients in this study was chosen by 

application of a pragmatic and consensus-based definition 

utilizing a combination of clinical and ICD data.  This design 

allows the algorithm to be widely applicable across different 

hospital systems and for large sample sizes.  This study is 

aimed at predicting ARDS; however, we acknowledge that 

clinical data utilizing the PF ratio and PEEP, and conformal 

verification through ICD code may underselect for patients 

who developed mild cases of ARDS. In order to mitigate this 

concern, we evaluated clinical adjudication on a subset of the 

data and found acceptable concordance with 80% agreement. 

A fixed time frame, with a maximum of 72 hours, was chosen 

for consideration in this study due to the average population-
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level incident of ARDS being recorded within 2.5 days of ICU 

admission.  However, Hypoxic Respiratory Failure may 

develop later in an ICU visit, and future work will incorporate 

that into the probability from initial ICU admittance, when 

waveform data is typically first available, for increased 

applicability.    
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