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A B S T R A C T

Oral squamous cell carcinoma (OSCC) has become quite prevalent across many countries and poor
prognosis is one of the major reasons for the ensuing high mortality rate. It mainly occurs in sites
such as tongue, tonsil, oropharynx, gum, floor and other parts of the mouth. For early detection, the
widely used approach is biopsy, in which a small portion of the tissue is taken from the mouth and
examined under a disinfected and secure microscope. However, these observations do not effortlessly
distinguish between normal and cancerous cells. Diagnosis of OSCC is generally done by pathologists
who mostly rely on their years of empirical experience from tissue biopsy sections. The possibilities
of human errors increase while detecting the cells using microscopy biopsy images physically. With
the growth of artificial intelligence, deep learning models have gained immense importance in recent
years and have become one of the core technologies in numerous fields including the prediction of lung
cancer, breast cancer, oral cancer, and various medical diagnosis. It not only enhances accuracy, but
also fastens the image classification process, as a result, lowering human errors and workload. Here, we
have made use of a customized deep-learning model for aiding pathologists in better OSCC detection
from histopathological images. We accumulated and analyzed a complete set of 696 histopathological
oral images, amongst them 80% have been taken in the training set, 10% of the images are included in
the validation set, and the rest 10% for testing purposes. In this study, 2D empirical wavelet transform is
used to extract features from the images; later an ensemble of two pre-trained models, namely Resnet50
and Densenet201 are used for the classification of images into normal and OSCC classes. The efficacy
of the model is assessed and compared in terms of accuracy, sensitivity, specificity, and ROC AUC
scores. The simulation results show that the proposed model has achieved an accuracy of 92.00%.
Thus, this method may be utilized for assisting in the binary classification of oral histopathological
images.

1. Introduction
Oral cancer is one of the most prevalent fatal diseases

and has long been a major public health problem in coun-
tries across the globe. More than 90% of oral cancers are
oral squamous cell carcinomas (OSCC), a diverse group of
cancers that emerge from the mucosal lining of the mouth
cavity (1). According to the World cancer fund research
international (2), cancers of the lip and oral cavity are
the most prevalent, with more than 377,700 cases reported
worldwide in 2020, being the 11th and 18th most prevalent
types of cancer, respectively, in men and women (3). The
most common indication of cancer is an ulcer or sore that
does not cure and may cause pain or bleeding. Unhealing
white or red sores on the lips, tongue, gums, or cheeks,
a mass or lump in the mouth, swallowing or chewing is-
sues, jaw swelling, difficulty in speaking and chronic throat
pain are common symptoms of oral cancer. Reasonably
carcinogenic oral lesions are oral mucosal characteristics
that have a higher chance of developing in to cancer than
healthy mucosa. Risk factors include alcoholic beverages,
tobacco use, poor dental hygiene, exposure to the human
papillomavirus (HPV), as well as hereditary factors, mode
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of living, ethnicity, and location. Avoiding risk factors and
boosting protective factors are both important aspects of
cancer prevention. It is of paramount importance to detect
oral cancer early, most people are diagnosed when it is well
advanced, which leaves them with a poor prognosis. The
clinical strategy for treating cancer and the way it affects
a person’s quality of life and perception of competence for
day-to-day functioning are reflected by therapy.
Early OSCC identification is crucial for a successful course
of treatment, improved survival rate, and low morbidity and
mortality rates (4). The OSCC has a poor prognosis with an
average cure rate of 50% (5; 6). The standard technique for
diagnosing OSCC is histological examination of tissue sam-
ples under a microscope (7; 8). Typically, histopathological
images are viewed at a smaller magnification level allowing
extensive considerable inspection at the tissue level. The
distribution of cells, cell size and shape, and size and form of
the cell nucleus are the main criteria used to identify cancer
cells. Before performing surgery, histopathological analysis
is crucial to determine the tumor size as precisely as feasible.
This diagnostic pathology approach relies on the interpreta-
tion of histopathologists, which is often laborious and prone
to mistakes, limiting its clinical applicability (9). As a result,
it is significant to equip pathologists with efficient diagnostic
tools to assist in the evaluation and diagnosis of OSCC.
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Recent years have seen an increase in research on using
artificial intelligence (AI) to enhance medical diagnosis.
Scientists from all over the world are fascinated by artifi-
cial intelligence, a technological advancement that mimics
human cognitive abilities (10; 11). Artificial intelligence
lessens the pressure on doctors, simplifies their workload,
and relieves their exhaustion (12). Due to the rise in di-
agnostic imaging usage, researchers have been able to in-
vestigate AI applications in medical image processing (13).
Particularly in the diagnosis of pathological images, deep
learning (DL) has demonstrated excellent effectiveness in
resolving a number of medical image processing difficulties
(14; 15; 16). There have been a number of studies done on
the analysis of medical images through smartphones that
use artificial intelligence-based algorithms. Recently, AI has
been used in dentistry, and the results are astounding. Oral
cancer patients can now more easily be identified, treated,
and monitored due to artificial intelligence technology (17).
Artificial intelligence-identified biomarkers from numerous
studies have revealed prognostic factors for oral cancer.
Deep learning approaches have generated a lot of interest
in recent years due to their applicability and purported
advantages in the field of cancer prediction. This has helped
doctors in encouraging and enhancing better patient health
management. Deep neural networks have overtaken neural
networks as a result of technical improvements. For a diverse
range of cancer types, namely breast cancer, prostate can-
cer, and lung cancer, large-scale computer-aided diagnostic
(CAD) systems based on DL have been proposed and devel-
oped (18; 19; 20). CAD systems are becoming more effective
and sophisticated due to breakthroughs in machine learning
(21). These tools are necessary for quicker, more accurate
analysis of the histopathological images and the detection of
irregularities. In order to accurately diagnose cancer cells,
strong pre-processing techniques and learning algorithms
are needed since histopathological images provide more
information about the structural attribute of the underlying
tissues. A detailed study was conducted to examine the goal
of examining the possible applications of deep learning in
oral cancer in the context of the prevalent characteristics of
this disease, including the growth in occurrence, the need to
improve diagnostic tools, and the amount of literature on its
usage.

2. Related works
This section reviews several classification methods for

oral cancer in two categories. In the first and second cate-
gories, machine learning-based approaches and deep learning-
based approaches are discussed respectively.

2.1. Machine Learning based methods
The majority of research focuses on using machine

learning techniques to identify oral submucous fibrosis
(OSF) (22; 23; 24). As OSF grows, its chronic nature could
result in oral cancer. A technique for "Textural characteriza-
tion of histopathology images for oral sub-mucous fibrosis

diagnosis" was put forth by Muthu et al.(25). They com-
bined various wavelet family characteristics with an SVM
classifier to improve accuracy. Using run-length and texture
features, T.Belvin et al. (26) employed backpropagation-
based ANN to classify oral lesions into multiple categories.
The suggested model uses a mix of GLCM and GLRL char-
acteristics in order to achieve a more illustrative and patient-
specific approach. T. Y. Rahman et al (27; 28) conducted
studies that are centered on the binary classification of
OSCC. According to these investigations, texture, shape, and
color feature allowed for 100% classification accuracy using
Support Vector Machine (SVM) and Linear Discriminant
Classifier (LDA). Numerous patterns and behaviors can be
seen in oral cancer (29). In recent years, researchers have
utilized various machine learning techniques to detect and
overcome cancer (30). Much better than prior predictions,
machine learning can now predict oral cancer methods
(31). To combat cancer, researchers can employ a variety
of histopathological machine learning techniques (32). The
works mentioned above represent contemporary efforts to
predict and diagnose oral cancer employing machine learn-
ing methodologies.

2.2. Deep Learning based methods
Deep learning techniques, particularly convolutional

neural networks (CNNs), have become the state-of-the-
art method for many tasks involving image analysis (33).
By performing feature extraction and classification tasks
simultaneously, CNN with deep learning performs well for
image problems. Due to the advent of powerful GPUs, deep
learning methods can classify histopathological images with
greater accuracy without manually representing the features
of the input data (34). In order to classify four different
types of OSCC, Navarun et al. (35) used four pre-trained
models through transfer learning and compared them with
a suggested CNN model. For the categorization of oral
cancer tissue into seven classifications, Jonathan et al. used
Random Learning (RL) and Active Learning (AL) through
CNN (lymphocytes, stroma, adipose, tumor, keratin pearls,
mucosa, and blood). It was discovered that the AL’s accuracy
was 3.26 percent more than the RL’s (36).
The purpose of study (37) was to investigate state-of-the-
art automated methods for detecting OSCC on clear images
utilizing extensive training and CNN techniques. This CNN
focuses on finding quotes, images, training, data, and grad-
ing. Even though several machine learning-based studies on
oral cancer have been proposed, relatively little work has
been done utilizing deep learning to analyze histopatho-
logical images. The majority of earlier studies used deep
learning and machine learning models to detect oral cancer
utilizing OSCC biopsies or other datasets, however, they
were unable to achieve the highest accuracy due to its
noted limitations. As previous studies have demonstrated,
predicting oral cancer is a crucial goal to save many lives.
In this work, an efficient feature extraction strategy is pro-
posed that combines an empowered transfer learning model
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with empirical wavelet transform to extract features and train
on OSCC histopathological images to detect oral cancer.

2.3. Research gaps and motivation
1. Convolutional neural networks have made numerous

advances in the field of image classification (38; 39;
40). However, they are challenging to train for two
reasons. First, the initial layers train relatively slow
because of the gradient’s exponential decline. Second,
it takes longer to train CNN models since they include
more parameters that increase the network’s complex-
ity.

2. Although batch normalization and activation func-
tions have made significant advancements in reducing
the impact of exploding/vanishing gradients, optimiz-
ing a neural network with intricate architecture is still
difficult (41). We have proposed an ensemble method
to classify oral cancer histopathological images into
two groups in order to address this concern.

3. Machine learning-based approaches, in contrast to
deep learning approaches, demand domain knowledge
to recognize handcrafted features from histopatholog-
ical images for efficient categorization.

4. In majority of the published research works, class
imbalance has been noted in the datasets utilized for
training the deep learning models. It will be difficult
to generalize the feature patterns for all classes given
this imbalance. As a result, when training deep learn-
ing models, appropriate and efficient augmentation
approaches must be applied.

2.4. Research contributions
Listed below are the primary contributions of this work:

1. We proposed a method in which feature extraction is
carried out employing 2D empirical wavelet transform
and further histopathological images are classified
into normal and OSCC classes using a weighted en-
semble of Resnet50 and Densenet201 architectures.
This method is effective by improving accuracy and
maintaining information across layers.

2. The proposed ensemble method architecture offers
improved performance with a limited dataset by con-
verging more quickly and requiring less computing
complexity.

3. It incorporates considerable data augmentation to in-
crease the amount of training data in order to address
the issue of class imbalance. This made the proposed
network more reliable and prevented overfitting.

4. For categorization, the majority of research studies
used a single-path deep learning architecture. It was
noted that these networks had slightly higher false pos-
itive and false negative rates. By using cutting-edge
techniques like feature fusion from different tracks,
ensembling, etc., this can be resolved.

The remaining part of this work is presented as follows: sec-
tion "Proposed Method" discusses details of the 2D empiri-
cal wavelet transform, Resnet50 and Densenet201 architec-
ture, transfer learning, and ensemble learning, section "Data
and materials" includes a description of the dataset, prepro-
cessing, training criteria, data augmentation techniques, and
implementation, section "Results and Discussion" discusses
the evaluation metrics, hyperparameters used, and results
of the proposed method. Finally, the section "Conclusion"
presents the conclusion and upcoming works.

3. Proposed Method
In this work, we have proposed a two-dimensional empir-

ical wavelet transform (2D-EWT) based feature extraction
approach on the histopathological images to generate sub-
band images. We have considered the first subband image
in our training process. The augmented subband images are
then taken as input to Resnet50 and Densenet201 pre-trained
models for training. Finally, to enhance the performance
of the model, the weighted ensembling technique is used
followed by accuracy evaluation on the test dataset. Figure
1 shows the schematic diagram of the feature extraction
method employing EWT. Figure 2 shows the first three
subbands of a sample oral cancer histopathological image.
Figure 3 shows the oral cancer histopathological image
classification framework. Figure 4 layers of the convolu-
tional neural network used in the Resnet50 and Densenet201
model.

3.1. 2D Empirical wavelet transform
For the purpose of signal processing, Gilles (42) pre-

sented the empirical wavelet transform (EWT). Gilles ex-
panded it in 2014 to allow for the use of EWT with image
domain (43). It is evident from the research that EWT has
a variety of uses, including estimating power quality indices
of power signals (44; 45), estimating pitch (46), predicting
wind speed (47), and diagnosing bearing faults (48). A cross-
term decline in the Wigner-Ville distribution and automatic
coronary artery disease diagnosis have both been studied
using the EWT approach (49; 50). Different signal decompo-
sition techniques have been researched to break down phys-
iological signals including electromyograms, electrocardio-
grams, and electroencephalograms (EMG). Eigenvalue de-
composition (EVD), Multivariate EMD (MEMD), Empiri-
cal mode decomposition (EMD), EWT, and 2D EWT are
few of them (51; 42; 43).
In (42), the researcher proposed formulating an empirical
wavelet transform (EWT). The concept includes creating a
collection of M wavelet filters with (M-1) bandpass filters
and one lowpass filter related to the details and approxima-
tion components, respectively. These filters are centered on
"well-chosen" Fourier supports (meaning relevant modes are
selected in the signal spectrum). If 𝑓 (𝑡) is a 1D signal and its
fourier transform is denoted by |𝐹1,𝑡(𝑓 )|(𝜔), then we first
use |𝐹1,𝑡(𝑓 )|(𝜔) to identify the boundaries of each Fourier
support (43). We are given a set of boundaries via this oper-
ation Ω = {𝜔𝑛}𝑛=0,...𝑁 (we limit our study to the range [0,𝜋]
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Figure 1: Methodology for feature extraction using Empirical wavelet transform for oral cancer histopathology image classification

Figure 2: First three subbands of a sample oral cancer histopathology image

and use the assumption that𝜔0 = 0 and𝜔𝑁 = 𝜋). As in (43),
we can create a wavelet tight frame,𝐵={𝜓1(𝑡), {𝜙1(𝑡)}𝑀−1

𝑛=1 }
inspired by Meyer’s and Littlewood-Paley wavelets. The
transition phase is centered around 𝜔𝑛 which has width of

2𝛾𝜔𝑛 where 0<𝛾<1. Empirical scaling function is given as:

Figure 3: Proposed methodology for the classification of oral cancer histopathological images using ensemble deep learning with
empirical wavelet transform
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Figure 4: Convolutional neural network of Resnet50 and Densenet201 model

𝜁 (𝜔) =

⎧

⎪

⎨

⎪

⎩

1 , |𝜔| ≤ (1 − 𝛾)𝜔1

cos
[

𝜋
2 𝛽(𝛾, 𝜔1)

]

, (1 − 𝛾)𝜔1 ≤ |𝜔| ≤ (1 + 𝛾)𝜔1

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

and empirical wavelet function is given by:

𝛿(𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 , (1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1
cos

[

𝜋
2 𝛽(𝛾, 𝜔𝑛+1)

]

, (1 − 𝛾)𝜔𝑛+1 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛+1
sin

[

𝜋
2 𝛽(𝛾, 𝜔𝑛)

]

, (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

where 𝛽(𝛾, 𝜔1),𝛽(𝛾, 𝜔𝑛) and 𝛽(𝛾, 𝜔𝑛+1) are represented by:

𝛽(𝛾, 𝜔1) = 𝛽
( 1
2𝛾𝜔1

(|𝜔| − (1 − 𝛾)𝜔1)
)

(3)

𝛽(𝛾, 𝜔𝑛) = 𝛽
( 1
2𝛾𝜔𝑛

(|𝜔| − (1 − 𝛾)𝜔𝑛)
)

(4)

𝛽(𝛾, 𝜔𝑛+1) = 𝛽
( 1
2𝛾𝜔𝑛+1

(|𝜔| − (1 − 𝛾)𝜔𝑛+1)
)

(5)

Also 𝛽(𝑧) fulfills the conditions:

𝛽(𝑧) =

⎧

⎪

⎨

⎪

⎩

0 if𝑧 ≤ 0
1 if𝑧 ≥ 1
𝛽(𝑧) + 𝛽(1 − 𝑧) = 1 ∀𝑧 ∈ [0, 1]

(6)

The tight frame property of B is given a necessary condition
in (42), which enables us to arbitrarily choose this value.
By taking into account a tensor product technique similar
to the conventional 2D discrete wavelet transform, the re-
searcher proposed extending the 1D EWT to images (43).
It is intended to employ the 1D EWT on rows and columns
individually. It is simple to understand how distinct sets of
filters defined on certain different Fourier supports can be
obtained if we consider each row (or column) separately.
Algorithm: 2D Tensor Empirical Wavelet Transform algo-
rithm. Let the image be 𝑓 (𝑥), 𝑁𝑟𝑜𝑤 denotes the number of
rows, and 𝑁𝑐𝑜𝑙𝑢𝑚𝑛 denotes the number of columns (42).

1. Perform 1D FFT of each rows 𝑖 of 𝑓 ;𝐹 (𝑖, 𝜔); and
compute the average row spectrum magnitude.

𝐹𝑟𝑜𝑤 = 1
𝑁𝑟𝑜𝑤

𝑁𝑟𝑜𝑤
∑

𝑖=0
𝐹 (𝑖, 𝜔) (7)

2. Perform 1D FFT of each columns 𝑗 of 𝑓 ;𝐹 (𝜔, 𝑗); and
compute the average column spectrum magnitude.

𝐹𝑐𝑜𝑙𝑢𝑚𝑛 =
1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛

𝑁𝑐𝑜𝑙𝑢𝑚𝑛
∑

𝑗=0
𝐹 (𝜔, 𝑗) (8)

3. Detect the boundaries on 𝐹𝑟𝑜𝑤 and construct the cor-
responding filter bank {Ψ𝑟𝑜𝑤

1 , {Φ𝑟𝑜𝑤
𝑛 }𝑁𝑅

𝑛=1}.
4. Detect the boundaries on 𝐹𝑐𝑜𝑙𝑢𝑚𝑛 and construct the

corresponding filter bank {Ψ𝑐𝑜𝑙𝑢𝑚𝑛
1 , {Φ𝑐𝑜𝑙𝑢𝑚𝑛

𝑛 }𝑁𝐶
𝑛=1}.

5. With the filter bank {Ψ𝑟𝑜𝑤
1 , {Φ𝑟𝑜𝑤

𝑛 }𝑁𝑅
𝑛=1}, filter along

the rows which gives 𝑁𝑅 output images.
6. With the filter bank {Ψ𝑐𝑜𝑙𝑢𝑚𝑛

1 , {Φ𝑐𝑜𝑙𝑢𝑚𝑛
𝑛 }𝑁𝐶

𝑛=1}, filter
along the columns which finally gives (𝑁𝑅+1) (𝑁𝐶+
1) subband images.
where, 𝑁𝑅 and 𝑁𝐶 are average row and column
subbands respectively.
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Table 1
Number of layers and parameters in each network

CNN No.of layers Filters used in various layers No.of Parameters

ResNet50 (52) 50 (1,1),(3,3),(1,1) 25.6M
DenseNet201 (53) 201 (1,1),(3,3),(7,7) 20.2M

3.2. Resnet50 Architecture
A classic deep convolutional neural network called

ResNet integrates classification, auto-encoding, and images.
It utilised feature transmission to minimize vanishing gradi-
ent problem and went on to win the 2015 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) by enabling
the training of considerably deeper networks than those
previously employed (52). It is well known that stacking
layers on top of each other does not work in efficiently
increasing the network depth. Due to the vanishing gradient
problem, the gradient in deep networks may become very
small when gradients are repeatedly multiplied as they are
back-propagated to prior layers, As a consequence, when the
network gets deeper, its performance becomes saturable or
even begins to decline quickly.
Skip connection was first introduced by ResNet. The skip
connection is depicted in figure 5. Bypassing some interme-
diate levels, the skip connection links activations from one
layer to the next. Consequently, a block is left over. To build
resnets, these leftover blocks are piled. Instead of having
layers learn underlying mapping, the approach used by this
network is to allow the network fit the residual mapping. This
type of skip link has the advantage of allowing regularisation
to bypass any layer that impairs architecture performance. As
a result, disappearing or increasing gradients are not a prob-
lem while training an exceptionally deep neural network.

Figure 5: Structure of Resnet block showing the skip connec-
tion

Figure 6: Structure of Dense block

3.3. DenseNet201 Architecture
Each layer in DenseNets by Huang et al. (53) is made

up of the feature maps of the present layer and all former
layers. As a result, these networks are efficient in terms of
computation and memory usage, have rich feature represen-
tation for the input images, and are compact (i.e., have fewer
channels). If there are shorter connections between the layers
closest to the input and the layers closest to the output, CNN
can be trained more quickly, be significantly deeper, and be
more accurate. The dense convolutional network (DenseNet)
has a feed-forward connection between each layer and every
other layer. The feature maps of all the preceding layers
are used as input for each layer, and the feature map of the
current layer is utilized as input for all subsequent layers as
shown in figure 6. The vanishing gradient problem is avoided
and its effects are lessened due to DenseNet, which also
strengthens feature propagation, encourages feature reuse,
and drastically reduces the number of parameters.

3.4. Transfer Learning
Medical imaging, a powerful tool for diagnostics, plays

a significant role in the medical field. Computer-aided di-
agnosis has grown in popularity and potential with the ad-
vancement of computer technologies such as machine learn-
ing. Keep in mind that medical images are produced with
specialized equipment, and their labeling frequently relies
on skilled physicians. Therefore, gathering enough training
data is frequently expensive and challenging. Medical imag-
ing analysis can make use of transfer learning technology.
Transfer learning is the process of using features discovered
while solving one problem to solve another that is somewhat
related. Pretraining a neural network on the source domain
- such as ImageNet, a collection of more than 14 million
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Figure 7: Transfer learning framework

annotated images with more than 20,000 categories (54), and
then refining it using examples from the target domain is a
typical transfer learning technique. Similar to this, Shin et al.
(55) improved the pre-trained deep neural network to address
the issues with computer-aided detection. In order to assess
knee osteoarthritis, Byra et al. (56) used the transfer learning
technique. Transfer learning has some more uses in the field
of medicine besides imaging analysis. For instance, Tang
et al. study (57) integrates domain adaptation and active
learning technologies for the classification of varied medical
data. In order to automatically encode ICD-9 codes that
characterize a patient’s diagnosis, Zeng et al. (58) applied
transfer learning.
Pre-trained Resnet50 and DenseNet201 models are used
in the proposed method, and it is trained with new data
using transfer learning as shown in Figure 7. The workflow
followed in the process of transfer learning is:

1. Use layers from a model that has already been trained.
2. Freeze them to prevent losing any of the data they

contain during upcoming training rounds.
3. On top of the frozen layers, add some fresh, trainable

layers. On a new dataset, they will discover how to
forecast using the previous features.

4. Utilizing the dataset, train the new layers.

3.5. Ensemble Learning
There is a lot of evidence that an ensemble of models,

which is a combination of separate models that can be
merged to reduce variance, bias, or both, can perform better
than a single model, such as a single decision tree, in terms
of making numerous predictions (59). A single model is
unlikely to accurately capture the underlying features of the
data in order to generate the most accurate predictions. This
is where combining several models can significantly increase
prediction accuracy. Multiple deep learning models could
be combined to extract more features from the underlying
structure of the data (60; 61). The Kaggle competitions,
the Data Mining World Cup, and Netflix Prize are just a
few examples of real-world uses for ensemble modeling

Table 2
OSCC biopsy data instances

Classes Images

Normal 201
OSCC 495

(62; 63; 64).
Even though ensembling models are highly popular in data
analytics, not all ensembles are created in the same fashion.
Different ensembling techniques include boosting, bagging
and stacking/blending (65; 66; 67). Boosting creates an
ensemble by integrating weak learners in the possibility
that later models will correct mistakes made by previous
models (68). Using replacement sampling (bootstrap), bag-
ging generates an ensemble by voting or averaging across
class labels on the training dataset (65). Stacking uses a
different learning method to determine the response val-
ues in comparison to the results of the basic learners on
the training dataset (69). Each approach has advantages
and disadvantages. Bagging does not perform well with
relatively basic models and tends to lower variance more
in comparison to bias. Boosting seeks to lessen bias and
variation by merging weak learners in a sequential manner,
but it is vulnerable to noisy data, outliers, and over-fitting.
While stacking aims to reduce variance and bias by likely
fitting multiple meta-models to the predictions provided by
base learners, hence correcting the mistakes made by base
learners. We emphasize stacking with a weighted average in
this work, which involves integrating base learners with a
weighted average as shown in figure 8.

4. Data and materials
This section introduces the dataset description, prepro-

cessing, training criteria, data augmentation techniques, and
implementation details.

4.1. Dataset Description
Hematoxylin and eosin (H&E) stained microscopic im-

ages with 400x magnification level are retrieved from the
first set in (70), which is publicly accessible. There are two
categories of patients in this oral cancer dataset: those who
have oral cancer and healthy patients. This dataset is used
by the proposed model to evaluate and predict oral cancer.
Figure 9 and 10 display samples from both categories of the
dataset, while table 2 displays the complete dataset classes.

4.2. Preprocessing
The dataset includes images with 2048×1536 pixels. The

Image Data Generator library from Keras is used to reduce
the size of the images to 256 × 256 pixels prior to training.
This will have a major impact on learning generalised feature
patterns and network convergence. Each input channel is
normalized in relation to the ImageNet dataset and the pixel
values of the input image are scaled between 0 and 1.
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Figure 8: Weighted ensemble flowchart

Table 3
Training, validation and test images criteria

Images Percentage

Training 596 80%
Validation 69 10%
Test 71 10%

4.3. Training Criteria
For the Resnet50 and Densenet201 models, the percent-

age of normal and OSCC images was kept the same, 80%
of the images were chosen for training, 10% of the images
for validation, and 10% of the images for testing purposes.
In this form, the model was trained on 576 images, validated
on 69 images, and tested on 71 images. Table 3 displays this
data regarding the models’ training, validation, and testing.

4.4. Data Augmentation
Image data augmentation is a method for increasing

the dataset that involves creating altered images during the

Table 4
Parameters of Image Augmentation

Parameters Values used

Random Flip Horizontal
Random Rotation 0.2
Random Height 0.2
Random Zoom 0.2-0.3

training phase. The class imbalance can lead to overfitting
and poor convergence during training because the dataset
has more samples of OSCC (71.12%) than normal images
(28.88%). A set of augmented images must be generated in
order to solve this issue. We employ the ImageDataGenera-
tor function provided by the Keras deep learning toolbox to
generate sets of tensor image data with data augmentation
being done in real-time. Thus, we ensure that every time
our model is trained, it sees new iterations of our image.
The ImageDataGenerator receives a batch of input images
and then randomly rotates, flips, standardizes, brightens,
shifts, and alters each image in the batch. The images are
flipped horizontally by setting "Random Flip = Horizontal".
One of the often-used strategies for augmentation is image
rotation, and the ImageDataGenerator class randomly rotates
images to a certain degree. Here setting "Random rotation =
0.2" specifies the image is being rotated in the range [-20%
× 360◦, +20% × 360◦]. Additionally, we select "Random
height = 0.2," which specifies the maximum percentage of
total height by which the image may be arbitrarily shifted
upward or downward. Images are zoomed in between 20%
to 30% by setting "Random zoom=0.2 to 0.3". The calling
function is then given the batch that has undergone a random
transformation. Table 4 displays each of these variables
along with their values.

4.5. Implementation
All experiments associated with this article are imple-

mented on a normal PC with Intel(R) Iris(R) Xe graphics
by using TensorFlow 2.7.0, Python 3.7.6, and Keras 2.7.0.
Additionally, this computer contains a 2.40 GHz Intel(R)
Core(TM) i5-1135G7 processor and 16.0 GB of RAM.

5. Results and Discussion
In this section, we discussed how to interpret the evalua-

tion metrics for our proposed model, and later, we described
how to tune the hyperparameters and finally discussed the re-
sults of Resnet50, Densenet201, and the proposed ensemble
method by using EWT and without using EWT.

5.1. Evaluation Metrics
The efficacy of our proposed methodology highly de-

pends on the information included in the confusion matrix,
also known as the error matrix or contingency table. This
confusion matrix contains four keywords: True Positive
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Figure 9: Sample Images from the Normal subjects

Figure 10: Sample Images from the OSCC patients

(TP), false positive (FP), false negative (FN), and true nega-
tive (TN). In our work, the TP indicates images that were
accurately classified as OSCC, whereas the FP indicates
images that were misclassified as normal. While the TN
indicates accurately classified normal images and the FN
indicates OSCC class images that were wrongly classified
as normal. Precision, sensitivity, classification accuracy, and
F1-score were used as performance measures based on the
confusion matrix to analyze the classification efficacy of our
proposed approach on the test images. These metrics were
implemented using the Python scikit-learn module. These
evaluation metrics can be computed using the formulas
below:

1. Precision: The precision is determined as the ratio of
positively classified positive samples to all positively
classed samples (either correctly or incorrectly). The
precision measures how accurately a sample is classi-
fied as positive by the model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

2. Sensitivity: Sensitivity, also called ’recall’ determines
the degree of completeness of a model. It displays
the percentage of OSCC images that were correctly
identified out of all OSCC images.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

3. Accuracy: The fraction of correctly identified images
to all test images, which assesses prediction perfor-
mance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝐹𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(11)

4. F1-Score: The F1 score is the harmonic mean of the
model’s recall and precision. It is a technique for
enhancing the model’s recall or precision.

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(12)

5.2. Hyperparameter tuning
Neural networks possess the potent ability to autonomously

learn the relationship between their inputs and outputs
(71). However, some of these correlations could be the
result of sampling error, in which case they might be more
prevalent throughout training but not in the actual test
dataset. Such a challenge could lead to overfitting problems,
which might impair the prediction performance of a deep
learning model (71). To determine how well our proposed
methodology performs generally, we strictly adhered to the
hyperparameter tuning method. The following process was
used to choose the best hyperparameters: First, for our binary
classification problem, we chose binary cross-entropy as a
loss function. Then, during the training procedure, the Adam
(adaptive moment estimation) method (72) was utilized to
carry out the optimization over 200 epochs. We explored
three different learning rates (0.001, 0.0001, and 0.00001)
and three different batch sizes (16, 32, and 64), taking into
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Table 5
Hyperparameters in the Resnet50 and Densenet201 Model

Hyperparameters Resnet50 model Densenet201 model

Optimizer Adam Adam
Learning Rate 0.001 0.001
Loss Function Binary Cross-entropy Binary Cross-entropy
Batch Size 32 32
Epochs 200 200
Dropout 0.2 0.2
Input size 256 × 256 × 3 256 × 256 × 3

(a) Resnet50 training and validation accuracy vs epochs (Top)

(b) Resnet50 training and validation loss vs epochs (Bottom)

(c) Densenet201 training and validation accuracy vs epochs (Top)

(d) Densenet201 training and validation loss vs epochs (Bottom)

Figure 11: (a)Accuracy plot of Resnet50 model training over 200 epochs without EWT(b)Loss plot of Resnet50 model training
over 200 epochs without EWT(c)Accuracy plot of Densenet201 model training over 200 epochs without EWT(d)Loss plot of
Densenet201 model training over 200 epochs without EWT. It is evident that models trained without using EWT have a wider
generalization gap between training and validation loss compared to models trained with EWT, which results in lower classification
accuracy.

consideration the estimations used in other previously pub-
lished papers. We found that a batch size of 32 and a learning
rate of 0.001 worked well together to achieve our main model
training goal of minimizing the generalization gap between
training loss and validation loss. In addition, we used a
0.2 dropout to prevent the model from becoming overfitted
during training (73). Then, based on which model had the
lower validation loss, we saved its weights. Finally, we used
these weights of the individual models for ensembling and
performing classification on the test images. In particular, we
applied the convolutional filters, padding, pooling filters, and
strides at their default parameters from the original Resnet50
and Densenet201 networks (52; 53). The optimal values
for each of the hyperparameters utilized in this analysis are
shown in table 5.

5.3. Discussion of Resnet50 and Densenet201
model results without EWT

Learning curves are used to represent the epoch-based
assessment of a classifier’s performance over time. For both
the training and validation sets, the learning curves are the
accuracy and loss curves. Figure 11 illustrates a comparison
of the Resnet50 and Densenet201 models’ accuracy and
loss values. Each model has a varied accuracy and error
rate, however the Resnet50 model outperforms Densenet201
model by obtaining an accuracy of 78.87% as shown in table
6.
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(a) Resnet50 training and validation accuracy vs epochs (Top)

(b) Resnet50 training and validation loss vs epochs (Bottom)

(c) Densenet201 training and validation accuracy vs epochs (Top)

(d) Densenet201 training and validation loss vs epochs (Bottom)

Figure 12: (a)Accuracy plot of Resnet50 model training over 200 epochs after EWT.The gap between training and validation
accuracy is a clear indication that the model is not overfitting.(b)Loss plot of Resnet50 model training over 200 epochs after EWT.
We can observe that the difference between the training and validation loss values narrows to a point of stability(c)Accuracy plot
of Densenet201 model training over 200 epochs after EWT.The gap between the training and validation accuracy shows that
the model slightly overfits compared to Resnet50 model(d)Loss plot of Densenet201 model training over 200 epochs after EWT.
Similar to the Resnet50 model, the difference between the training and validation loss values stabilizes in this case as well.

Table 6
Evaluation metrics of Resnet50 and Densenet201 model without applying Empirical wavelet transform

Metrics Resnet50 Densenet201

Accuracy 78.87% 77.46%
Specificity 81.81% 82.69%
Sensitivity 68.75% 63.15%
ROC AUC Score 71.19% 71.57%

5.4. Discussion of Resnet50 and Densenet201
model results with EWT

Feature extraction is an important aspect of deep learn-
ing. The images are sent to EWT module which decom-
poses the images into different sub-band images out of
which the first sub-band image is fed to the Resnet50 and

Densenet201 models for training. Significant improvements
could be observed between figures 12 and 11, which depict
the accuracy and loss curves. Thus, we say that EWT is
highly effective as a feature extraction tool that helps in
improving the performance of the models. Here also we

Table 7
Evaluation metrics of the proposed model, Resnet50 and Densenet201 models by applying Empirical wavelet transform

Metrics Resnet50 Densenet201 Proposed Method

Accuracy 88.73% 87.32% 92.00%
Specificity 87.50% 88.68% 89.29%
Sensitivity 93.33% 83.33% 100%
ROC AUC Score 82.33% 82.71% 85.72%
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Table 8
Comparative analysis with previous research

Research work Classification method Dataset source Dataset ref. Classification accuracy

(74) Resnet101 Private Not available 78.30%
(75) EfficientNet-B0 Private Not available 85.00%
(37) Deep learning Private Not available 88.30%
(76) Alexnet Public (70) 90.06%
Current study Proposed method Public (70) 92.00%

observe that the Resnet50 model performs better than the
Densenet201 model by obtaining an accuracy of 88.73%.

5.5. Discussion of proposed ensemble model
results

We proposed an efficient technique for ensembling our
two customized architectures, Resnet50 and Densenet201
models by ensembling method. The weighted ensembling
approach is carried out using both custom networks to in-
crease the model’s stability and prediction accuracy. With
the ensemble model, an accuracy of 92.00% was attained on
the testing set. In table 6, 7, the model’s final observations
are deduced. It showed that empirical wavelet transform
acts as a powerful tool for feature extraction which helps in
enhancing the performance of the model. Table 8 shows a
few comparisons with previous works.

6. Conclusion
In conclusion, we have a new empirical wavelet transform-

based approach for feature extraction from oral histopath-
ological images for binary image classification in this study.
The EWT is a potential tool for performing medical image
processing analysis due to its inherent adaptability. When
the proposed method is contrasted with other approaches al-
ready in use, it becomes clear that the proposed methodology
performs better. It is interesting that, out of all possible eval-
uated combinations, the first decomposed subband image
obtained by the EWT decomposition technique yields the
best results in terms of accuracy, sensitivity, and specificity.
The same methodology can be used in future computer
vision research to detect other diseases.
In this study, using our collected dataset, we presented an
ensemble deep learning technique along with an empirical
wavelet transform as a feature extraction tool for the catego-
rization of oral cancer histopathological images. This study’s
major goal was to efficiently classify images of cancer. We
found that using the weighted average ensembling of two pre
trained model performs better in comparison to individual
models and thus a comparatively more robust model is
achieved. When it comes to the classification of extremely
complicated histopathological images of oral cancer, the
proposed ensemble technique performs effectively.
The method’s main drawback is that it may be difficult to
demonstrate the robustness and generalizability of the ap-
proach if the data are not readily available (77). The dataset

employed in this study has just 696 images, whereas the
more efficient deep learning models require larger datasets
to be trained on for maximum performance depending
on the complexity of the problem. Deep learning models
fundamentally work best with a very large database. Since
ImageNet contains 14 million images, we were required to
use transfer learning models that were fine-tuned using the
histopathological images during our study after being pre-
trained on ImageNet. The expansion of our dataset and the
incorporation of images for multi-class classification issues
are two future directions for this study. Future work also
needs to incorporate other pre-trained deep-learning models.
It will be remarkable to see how the proposed ensemble
criteria perform when applied to histopathological images
of other tumors, including breast, cervical, and lung cancer.
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