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Abstract  
 
Modeling with longitudinal electronic health record (EHR) data proves challenging given the high dimensionality, 
redundancy, and noise captured in EHR. In order to improve precision medicine strategies and identify predictors 
of disease risk in advance, evaluating meaningful patient disease trajectories is essential. In this study, we develop the 
algorithm DiseasE Trajectory fEature extraCTion (DETECT) for feature extraction and trajectory generation in high-
throughput temporal EHR data. This algorithm can 1) simulate longitudinal individual-level EHR data, specified to 
user parameters of scale, complexity, and noise and 2) use a convergent relative risk framework to test intermediate 
codes occurring between a specified index code(s) and outcome code(s) to determine if they are predictive features of 
the outcome. We benchmarked our method on simulated data and generated real-world disease trajectories using 
DETECT in a cohort of 145,575 individuals diagnosed with hypertension in Penn Medicine EHR for severe 
cardiometabolic outcomes. 
 
 
Introduction 
 
Recent studies have shown that patients sharing the same initial disease diagnosis can experience vastly different 
clinical outcomes over time (García-Olmos et al., 2012). Numerous studies have shown the potential of leveraging 
longitudinal data in disease risk modeling. Identifying which clinical events in an individual’s disease trajectory 
predict an outcome remains challenging. First, this is due to mounting EHR data, the growing scale of which makes 
it difficult to temporally aggregate different clinical variables in an interpretable manner. Second, patient disease 
trajectories are unique; a person’s health is attributable to a complex web of correlated health, genetic, and lifestyle 
variables. Extracting patterns of disease progression in EHR data for predictive modeling requires preserving 
individual-level clinical information to make population-level extrapolations. There is no gold standard approach for 
producing individual patient trajectories based on signals of disease pathology and progression rather than noisy data. 
Noise in an EHR could be driven by features such as drug side effects, external injuries, or short-term conditions 
driven by environmental changes - at different times, these are likely unrelated to chronic disease progression. 
Modeling disease trajectories for complex outcomes such as renal failure, stroke, congestive heart failure, or 
myocardial infarction is essential since chronic pathology over time can produce these sudden fatal outcomes without 
discernible patterns of symptoms beforehand. Understanding disease trajectory paths can help widen the intervention 
window and provide insights into warning signs, underlying disease etiology, and which lines of treatment are more 
promising in certain patients with predispositions or multimorbidities than others (Beaulieu-Jones et al., 2018; Oh et 
al., 2021). 
 
Medical research recognizes common disease patterns where one condition often precedes another. Still, the sequence 
of events associated with an outcome is unknown for the vast majority of complex diseases (Hanauer & Ramakrishnan, 
2012). An additional layer of complexity is introduced when we recognize the prevalence of multimorbidities, or the 
coexistence of two or more chronic diseases in an individual, in the progression of overall health. Most disease 
trajectory approaches fail to consider multiple lines of pathology that may be related and biologically interacting. This 
leads to building static disease trajectories based on the frequency of events rather than the co-occurrence of an 
outcome-precursor to an outcome of interest. To address these previous challenges and limitations, we propose a 
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feature extraction algorithm DiseasE Trajectory fEature extraCTion (DETECT), that identifies individual-level 
trajectories for specific outcomes of interest. This preserves the meaningful relationships of conditions associated with 
the outcome by removing noisy variables while maintaining the relevant clinical features that define an individual 
patient’s disease trajectory. 

Fig. 1: DETECT workflow. Input data is a matrix of first occurrence dates for each binary health variable for each 
individual. Real-world data can be pre-processed using a dimensionality reduction algorithm, or simulated data can 
be used. In step 1, we selected hypertension as our index code and outcome conditions (Fig. 6). Step 2 iteratively 
tabulates the temporal order of A (index code), Bn (intermediate codes), C (outcome) for each outcome. Step 3 
calculates a convergent relative risk model for each outcome, testing the predictiveness of B with respect to C in 
people with and without B. Step 4 produces a list of predictive features (signpost codes) for each C. The output 
contains individual-level trajectories for each C with selected signpost codes (blue) from step 4, dropped codes (red), 
C (bold black), and the codes after the outcome are not returned (black). Pairwise time deltas (T∆) are also provided. 
 
 
Methods 
 
Jensen et al. have demonstrated that relative risk (RR) can be used to measure the strength of correlation between pairs 
of conditions in trajectory-building (Jensen et al., 2014). Relative risk is a measure of a certain event occurring in one 
group compared to the risk of the same event happening in another group. DETECT uses the relative risk framework 
to assess which events present in the data are predictive of an outcome. To build more accurate individual patient 
disease trajectories, selecting clinical events that signpost an outcome of interest would reduce noisy features and data 
dimensionality. A signpost code is a diagnosis that exhibits a RR > 1 and OR p-value > 0.05 and occurs in the disease 
trajectory in between the index diagnosis and the clinical outcome.  DETECT implements a convergent RR based 
model to identify clinical features predictive of an outcome. 
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The input is 1) a matrix of individual-level, binary clinical variables with temporal information, 2) an index code or 
starting condition, and 3) a list of clinical outcomes of interest. Fig. 1 depicts a workflow of the approach. The input 
contains only the first occurrence date associated with each corresponding health condition for each person; thus,  

Fig. 2: Convergent relative risk model and simulation generation. A. For each outcome (C), a relative risk 
calculation was done evaluating each intermediate code (B) to determine if it was predictive of C given a comparison 
between individuals who had both B and C and those who only had C. All individuals assessed as cases and controls 
for B and C had A as a prerequisite. Temporal placement of A, B, and C determined which quadrant an individual fell 
into. The different temporal configurations of A, B, and C in the EHR and how they are categorized are shown. In the 
relative risk equation, “A->B->C” includes both models in quadrant 1. B. The simulation generation pipeline in 
DETECT is outlined. 
 
every individual has a single date for each unique clinical variable in their chart. DETECT evaluates whether the 
presence of an intermediate condition is predictive of an outcome. If the intermediate condition meets the specified 
relative risk threshold RR > 1 and a p-value threshold of 0.05, it is considered a “signpost” code for that outcome. Fig. 
2 provides the convergent relative risk model used. Signpost codes are extracted from an individual’s raw health 
variables (diagnosis codes) string to produce a disease trajectory, which can be used in further predictive modeling or 
patient clustering analyses. To evaluate the validity of our approach, we simulated binary EHR data variables of 
varying degrees of individual-level noise. We benchmark DETECT by generating simulations of varying complexity 
and conducting sensitivity analyses. 
 
Real-world EHR dataset pre-processing: We retrospectively obtained de-identified health records for 145,575 
patients, extracting data from all patient encounters from 5 hospitals and their affiliated outpatient clinics in the Penn 
Medicine Health System between 1998 and 2022. We included patients who had at least 2 instances of hypertension 
(HTN) (I10*) diagnosis as a primary reason for the visit. Many severe outcomes are associated with HTN, yet we 
cannot predict which future disease states are likely in an individual diagnosed with HTN. The asterisk in I10* signifies 
that whichever code in the I10 hierarchy came first was used for the date of the first occurrence. We used the ICD-10 
billing code system to represent health diagnoses. Any ICD-9 codes in patient charts were converted to ICD-10 using 
general equivalence mapping (Rhonda Butler, 2007). We excluded individuals for whom any I10* diagnosis was their 
first primary or secondary reason for visit in their chart to eliminate temporal bias introduced by patients who may 
have come to Penn as a specialty only after their HTN diagnosis elsewhere. Next, individuals with any codes for 
cardiac or respiratory congenital conditions were excluded to control for pathologies unrelated to hypertension. For 
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the remaining cohort, any codes for 
external injury/harm and pregnancy-
related conditions were also 
excluded to control for blood 
pressure related changes brought on 
by pregnancy or external factors. 
Codes were formatted to their 4-
digit form based on the ICD 
hierarchy. To keep a primary 
diagnosis code at the individual 
level: 1) rare codes with a 
prevalence of ≤ 1% were only 
required to be present at least once, 
2) common codes with >1% 
prevalence were required two or 
more occurrences in an individual to 
be kept (referred to as rule-of-two) 
(Hebbring, 2014). The secondary 
reason for visits (also known as 
“problem list” codes) were not 
evaluated for the cohort other than 
I10* as a criterion. The first 
occurrence of each unique ICD code 
for each individual was retained in 
the input data matrix where columns 
are ICD codes and rows are unique 
individuals (Fig. 1). 1385 4-digit 
ICD10 codes were included in this 
study. 
 
 
Trajectory model development: The 
DETECT user specifies a list of 
outcome diagnosis codes and the 
index code. The model is generated 
based on the classification of 
individuals into four quadrants of a 
contingency table for relative risk 
calculation (as shown in Fig. 2). All 

available codes that are not index or outcome are tested as intermediate codes. A separate model is generated for each 
clinical outcome; in other words, different features may be associated with or predictive of different outcomes within 
the same individual. Thus, the same individual could have different features extracted from their raw data to build a 
different trajectory for each outcome. The input matrix is used to categorize individuals into different quadrants of a 
contingency table (unique to each outcome): quadrant 1) individuals with the outcome code and the intermediate code, 
2) individuals without the intermediate code and with the outcome code, 3) individuals without the intermediate code 
and the outcome code, and 4) individuals with the intermediate code and without the outcome code. This schema 
becomes more complicated when accounting for 1) irregularities and limitations of the EHR and 2) biological 
complexity, such as when an individual deviates from the simplistic A -> B -> C ordering. In our study, we did not 
require quadrant 1 individuals to have intermediate codes occur after index code HTN, only that HTN and the 
intermediate code occur before the outcome (Fig. 2A). This is because there were many individuals who had a HTN 
diagnosis after their intermediate code, and cases where the HTN and intermediate code were given on the same date. 
A time parameter allows the user to specify how many years max are allowed between an intermediate code and an 
outcome for the intermediate code to be evaluated in the relative risk model. 
 
Simulating EHR data ground truth: Because there are many imperceptible noise patterns in real-world EHR data, we 
benchmarked DETECT by generating simulated EHR data, and varying data structures by adding multiple levels of 
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noise based on real-world data 
distributions. As part of 
DETECT, we have provided 
sensitivity-testing code to allow 
users to simulate ground truth 
temporal EHR data and introduce 
complexity through noise 
parameters (Fig. 2B). We 
evaluated how well the method 
could identify signpost codes 
despite added noise. Following is 
our methodology for generating 
ground truth with varying 
parameters; the subsequent 
section details our noise 
parameters. We first set the 
number of signpost codes a given 
outcome could have to between 
50-300, the broad range 
accounting for clinical variation 
in complex traits. We then 
generated a data matrix with N 
rows and M columns where N is 
the population size or number of 
people with the index code, we 
tested population size between 
50,000 and 150,000 (Fig. 3D). M is the number of codes we tested between 500 and 1,500 (Fig. 4A). We simulated 
between 10 and 60 outcomes (Fig. 3C). We sampled each outcome’s prevalence poutcome from a uniform distribution 
between 0% and 10% prevalence (Fig. 3A). We assigned people to an outcome according to the chosen prevalence. 
Second, we sampled the number of signpost codes belonging to an outcome from a uniform distribution between 50 
and 300 and assigned each signpost code a co-occurrence probability sampled from an exponential distribution with 
mean = 0.04 (Fig. 3B). Third, we determined the probability a signpost code would co-occur with its respective 
outcome code based on binomial variables generated representing each signpost code. Fourth, all instances of people 
being assigned codes were filled in with random time values preceding the time value at which the onset of the outcome 
occurred. Once this was completed for all outcomes, the ground truth trajectories were generated, with varying lengths 
for all individuals. Some individuals may have one, several, or no outcome codes; people with no outcomes also lack 
signpost codes up until this point. 
 

Category Parameter Name Parameter Description Default 
Outcome Number of Outcomes Number of outcomes tested 10 

Maximum Outcome Prevalence b of uni. dist. for sampling prevalence 0.1 
Co-Occurrence Mean 1/λ of exp. dist. for sampling code probabilities 0.04 

Noise Layer 1 Number of Noise Groups Number of noise groups simulated 20 
Maximum Noise Group Prevalence b of uni. dist. for sampling prevalence 0.01 
Noise Prevalence Mean 1/λ of exp. dist. for sampling code probabilities 0.5 

Noise Layer 2 Maximum Random Noise Fraction b of uni. dist. for sampling noise to add/subtract 0.05 
Baseline Population Size Number of individuals in the population 150,000 

Number of Codes Number of codes simulated 1500 
 

Table 1: User-defined parameters for generating simulated individual-level temporal EHR data in DETECT. 
The max of a uniform distribution is denoted as b. The mean of an exponential distribution is denoted as 1/λ. 
 
Simulating EHR data noise layers: Once we simulated the ground truth, we implemented two layers of noise variation 
to introduce realistic complexity into the data. Noise layer 1 consisted of simulated groups of codes as noise, 
representing unordered patterns of codes that may be due to aging, infections, medication side effects, etc. We 
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simulated between 0-100 noise groups (Fig. 5C) in the data. Similar to the outcomes above, each noise group occurred 
in pnoise fraction of the population, with pnoise being sampled from a uniform distribution of 0% to 50%. The number of 
codes that would comprise a noise group was sampled from a uniform distribution between 5 to 300. All noise group 
codes were assigned a probability of occurring in a person belonging to a given noise group, sampled from an 
exponential distribution with mean =  0.01 (Fig. 5B). We applied the same concept of sampling binomial variables 
and assigning time values as in the outcome/signpost code assignments mentioned previously. The second layer of 
noise generated through parameter ‘Maximum Random Noise Fraction’ (Fig. 5A) was added to mimic both sparsity, 
which can be thought of as false negatives, and outcome-agnostic noise, or false positive appearances of codes. Codes 
are randomly assigned to people or are taken away from people. This can include signpost, outcome, or noise codes. 
The number of people for whom a code is added or masked depends on the number of people already assigned the 
code in the ground truth and first layer of noise, as well as a proportion sampled from a uniform distribution between 
0% and 5%. For example, if 1000 people were assigned ICD code 1, 0-5% of those people would have code ICD code 
1 removed from their data, and 0-50 new people would have code 100 inserted into their data at a random time point. 
The second layer of noise is not applied to the index code. 
 
Sensitivity testing in simulated EHR data: The output from DETECT is a table of all pairwise tests of relative risk 
between intermediate codes and outcomes, with co-occurrence counts, relative risk scores, and confidence information 
returned. A filtered list of intermediate codes with relative risk significantly greater than 1 (odds ratio p-value ≤ 0.05) 
are returned in a list for each outcome specified; these are signpost codes. The identified signpost codes for each 

outcome are tested against the 
known signpost codes that were 
embedded in the trajectories of 
that outcome. Comparing these 
two lists, we calculated the 
balanced accuracy 

((sensitivity+specificity)/2), 
sensitivity (TP/(TP+FN)), and 
specificity (TN/(TN+FP)) to 
measure the correctness of 
feature selection. We 
benchmarked our approach 
additionally by 
parameterization. We tested a 
range of values for fixed and 
sampled variables, varying the 
noise level of the data to 
determine if the method was 
sensitive to a particular attribute. 
 
DETECT simulation parameters 
for benchmarking: Table 1 
contains parameters that the user 
can set to generate simulated 
temporal EHR data (binary 
variables) in the simulation part 
of the DETECT algorithm. To 
generate 879 simulation 
datasets for this study, 
approximately 200 single-
threaded jobs were run 
concurrently, using up to 300 

core hours and completed in 1.5hrs. 
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Additional Output from Application of the method to real-world EHR Data: A file with trajectories for all individuals 
is produced separately for each outcome, containing the extracted signpost features, index code, and outcomes. A 
JSON file with time deltas between each feature is also produced to accompany each trajectory file. Code for the 
analysis is available: https://github.com/5inghalp/DETECT. 

Fig. 6: Frequency of signpost code categories and time to outcome for select outcomes. A. The heatmap indicates 
the frequency of signpost ICD codes (grouped to ICD disease categories based on the latest international version) for 
each outcome of interest. Sample sizes are indicated for each outcome. B. Trajectory plot shows average time (in 
years) to outcome for the top 20 highest RR signpost codes detected for heart attack (left) and stroke (right). In each 
plot, the color represents self-reported ancestry and the size of the circle corresponds to sample size. 
 
 
Results 
 
In this study, we demonstrate the ability and utility of our algorithm DETECT to generate patient-level trajectories 
using simulated and real-world EHR data. Our real-world analysis uses EHR data from the Penn Medicine health 
system on 145,575 patients diagnosed with HTN. HTN was defined as our index code and we generated and evaluated 
trajectories for eight outcomes of interest (Fig. 6). 
 
Simulations and sensitivity testing 
 
We benchmarked our approach by conducting simulation studies in which the ground truth relationship between 
signpost variables and outcomes were embedded. Sensitivity, specificity, and accuracy were calculated based on 
whether DETECT could correctly identify true signpost-outcome relationships. Fig. 3 shows sensitivity analyses 
benchmarking the ability of DETECT to identify signpost codes when complexity is introduced into the ground truth. 
First, we evaluated the parameters affecting the dimensionality and quality of ground truth in the simulated EHR data. 
DETECT produces higher accuracy when max prevalence of outcome codes is greater than 1% (Fig. 3A). Rare events 
occur in few people, therefore there are few signpost codes associated with <1% conditions, and the chance of selecting 
a non-predictive (noise or neutral) code is higher. In Fig. 3B, accuracy and sensitivity follow a positive increasing 
trend as co-occurrence of signpost codes and outcomes increases. Specificity, however, shows an upward “waterfall 
effect”, suggesting an increase in selection of false positive signpost codes. This is because reduced co-occurrence 
with the outcome code may cause increased occurrence with neutral or noise codes with the outcome, leading to an 
increased RR for false relationships. In Fig. 3D, as the number of outcome codes in the dataset increases, the accuracy 
and sensitivity decreases, this is expected as increased outcomes result in increase in noise codes, as well as signpost 
codes. Because a single signpost code can be linked to multiple outcomes, a high level of crossover can reduce the 
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ability to correctly identify true signpost-outcome relationships. The specificity, however, increases as the number of 
outcomes increases. This is likely because codes in a trajectory have a greater chance of being a signpost code for an 
outcome if there are multiple outcomes, reducing false positive rates. In the simulated data, accuracy, sensitivity, and 
specificity all increase as the fixed number of codes increases (Fig. 4A). A distribution signpost and noise code counts 
is shown in Fig. 4B  as co-occurrence of signpost code and outcome is increased. Similarly, when the population size 
exceeds 50,000 people, accuracy exceeds 80% (Fig. 3D). This is most likely due to a higher degree of co-occurrence 
increasing the total frequency of the signpost codes. This leads to an increase in both signpost codes per person and 
overall codes. More codes would increase the chances of selecting nonsignpost or noise codes, resulting in a greater 
false positive rate. 
 
We evaluated DETECT performance after addition of noise parameters, introducing realistic complexity into the 
simulated EHR data. Increasing both the level of noise layer 2, which adds or masks codes to mimic noise and sparsity, 
and increasing number of noise groups, results in a decreased accuracy and sensitivity (Fig. 5A and Fig. 5C). This is 
due to the influx of nonsignpost-outcome instances in individuals with the outcome, resulting in higher RR values 
than actual signpost-outcome occurrences. This causes a higher false negative rate. Interestingly, the specificity 
increases as both noise layer 2 and number of noise groups increase. This is likely because when there are fewer noise 
groups, and therefore fewer noise codes, the frequency of the noise code may not be high in individuals with the 
outcome. This would cause RR to still be high for some of the noise codes, thus being selected as signpost codes for 
outcomes, when they are not. As prevalence of noise codes within noise groups increases, a higher false positive rate 
emerges, as is expected (Fig. 5B). 
 
Real-world data trajectory analysis 
 
We applied DETECT on a real-world dataset from Penn Medicine EHR, on a cohort of 145,575 individuals with 
hypertension diagnosis codes. We generated trajectories for the following outcomes of interest defined by ICD-10 
codes: diabetic retinopathy (E11.3), vascular dementia (F01*), myocardial infarction (I21*), congestive heart failure 
(I50*), cerebral infarction (I63*), cerebral aneurysm (I67.1), acute kidney disease (N17*), and chronic kidney disease 
(N18.4). The heatmap in Fig. 6A shows the frequency of the extracted signpost codes, mapped to ICD10 disease 
categories, for each outcome of interest. We selected outcomes that are known severe comorbidities of HTN. Expected 
relationships are identified in this analysis as positive controls. For example, a high frequency of circulatory signpost 
codes are predictive of congestive heart failure. A medium frequency of eye/adnexa signpost codes are predictive of 
diabetic retinopathy, stroke, and vascular dementia, all shown in the literature to be associated with ocular symptoms 
(Ho et al., 2009; Hwang et al., 2021; Wong et al., 2020). An application for how individual-level DETECT trajectories 
can be leveraged to ask temporal questions about order or quality of disease precursors at a population level is shown 
in Fig. 6B. For outcomes of heart attack and stroke, the average time delta (years) between the top 20 significant 
relative risk signpost codes and the outcome is shown. This analysis is stratified by self-reported ethnicity. The pattern 
of symptoms emerging over time is relative to the outcome, irrespective of personal timelines. In addition to expected 
aging related codes, both outcomes had phenotypes that would be considered “positive controls”. COPD, carotid 
occlusion, aortic valve disorder, and chest pain, among others, are all considered known comorbidities for heart attack. 
Glaucoma, transient ischemic attack, cerebrovascular disease, and atherosclerosis are known symptoms or 
comorbidities of stroke. Median age for stroke individuals was 71.6 years and median age for heart attack individuals 
was 69.9 in our dataset. 
 
 
Discussion 
 
Ground truth relationships between most clinical events or variables (including but not limited to labs, medications, 
vitals, ICD codes, CPT codes, demographics, etc.) are not known in the context of real patient data, posing a challenge 
for methods modeling with clinical information. This is in part due to artifacts of the EHR such as establishment, 
clinician, and insurance-specific coding practices that do not reflect true pathology. Absence of patient visits cannot 
be interpreted as periods of high health, however, more often than not that is the interpretation made. Medical 
knowledge can explain biological associations in well-studied pathologies, but it does not prescribe a replicable pattern 
or sequence of events observable across patients for complex diseases. DETECT uses a data-driven approach to extract 
clinical binary features that are predictive of outcomes of interest. Resulting patient trajectories can more intuitively 
be integrated with other recurring clinical data types such as labs, medications, and CPT codes. Our sensitivity 
analyses benchmarking DETECT with simulated data of varying complexity show high accuracies on average above 
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80% for predicting meaningful signpost codes. Simulated individual-level data contained trajectories of varying 
number of outcomes, noise codes, true signal/signpost codes, time deltas, and sparsity. Our comprehensive approach 
of generating realistic binary EHR diagnostic codes comprises the first part of our algorithm.  
 
We applied DETECT to real-world data in order to generate patient trajectories for eight severe outcomes. Fig. 6A 
shows the frequency distribution of signpost codes (mapped to ICD disease categories) for each outcome of interest. 
Interestingly, there is a difference in patterning between acute and chronic renal failure, with acute renal failure having 
many more diverse predictors across the disease categories. One reason for this could be that there are more prominent 
disease precursors in different pathologies that can lead to an acute renal failure state, whereas chronic renal conditions 
are slow moving over time. There are some expected results such as vascular dementia having codes across 
mental/behavioral, eye/adnexa, and circulatory categories, all affecting the head. Diabetic retinopathy exhibited a 
similar pattern, but also included genitourinary and metabolic codes. Further work can be done examining patterns 
within disease categories for additional granularity in symptoms over time. 
 
To demonstrate how trajectories from DETECT can be leveraged to evaluate temporal trends in EHR data, we ordered 
the top 20 signpost codes (with minimum 50 cases) by average time delta for two outcomes, heart attack and stroke, 
based on RR value (Fig. 6B). Over the span of 9 years prior to the outcomes, average placement of detected signpost 
predictor codes is shown. Individuals with epilepsy have been shown to have stroke in a higher proportion than 
individuals without epilepsy, however epilepsy has not been identified as a predictor of stroke (Chang et al., 2014). 
Our temporal analysis shows that not only epilepsy, but also convulsions, are predictors of stroke. As are ocular 
phenotypes including open-angle glaucoma and visual field defects, both of which can occur due to high blood 
pressure.  
 
The major strength of DETECT is to analyze longitudinal EHR data in a high-throughput approach to derive temporal 
trajectories for disease of interest. However, we acknowledge there are following limitations to the current 
methodology. First, our approach to use "date of the first occurrence" as "condition onset," works well to represent 
ICD codes as binary variables because they represent the diagnosis of a certain condition at a given time. However, a 
similar approach to represent recurring variables such as medication, CPT procedure codes, and vitals can be 
challenging, as without contextual information it can lead to underlying bias in the disease trajectories. Second, given 
the larger sample size of our study, we used p-value < 0.05 and RR > 1 to select temporality for pairs of diseases. 
However, with smaller cohorts, a p-value threshold may be too restrictive to detect important signals.  Power 
calculations and additional simulations are needed to determine this. Further work is needed to incorporate non-binary 
and recurring EHR data variables. Future directions for this work would include developing a predictive modeling 
component to DETECT to conduct clinical event prediction in disease trajectory sequences. Specifically, leveraging 
time deltas between conditions at a population scale can produce insights about time estimations for the next clinical 
event for a patient. Understanding the next likely disease an individual is at risk for can widen the clinical intervention 
window available in lines of treatment.  
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