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Abstract  44 

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene 45 

expression. Identification of genetic variants influencing the transcription of miRNAs can 46 

provide an understanding of their genetic regulation and implication in human disease. Here 47 

we present genome-wide association studies of 2,083 plasma circulating miRNAs measured 48 

by next-generation sequencing in 2,178 participants of the Rotterdam Study to identify miRNA-49 

expression quantitative trait loci (miR-eQTLs). We report 4,310 cis- and trans-miR-eQTLs for 50 

64 miRNAs that have been replicated across independent studies. Many of these miR-eQTLs 51 

overlap with gene expression, protein, and metabolite-QTLs and with disease-associated 52 

variants. The consequences of perturbation in miRNA transcription on a wide range of clinical 53 

conditions are systematically investigated in phenome-wide association studies, with their 54 

causality tested using Mendelian randomization. Integration of genomics and miRNAs enables 55 

interrogation of the genetic architecture of miRNAs, revealing their clinical importance, and 56 

providing valuable resources for future studies of miRNAs in human disease. 57 
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Introduction 59 

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides that 60 

regulate gene expression at the post-transcriptional level and play critical roles in determining 61 

whether genes are (in)active and how much a particular protein is translated (1,2). Over 2,500 62 

miRNAs have been identified in humans (3), which altogether regulate more than half of 63 

protein-coding genes through cleavage or translation repression of messenger(m)-RNAs 64 

(4,5). miRNAs have shown their potential as disease biomarkers (6) and, to a lesser extent, 65 

therapeutic targets  (7). Identification of the role of miRNAs in regulating the expression of 66 

specific genes and their effects in clinical conditions has been a subject of extensive work in 67 

recent years. However, the genetic regulation of miRNAs remains less well understood.  68 

Circulatory miRNAs are released from cells into circulation via extracellular vesicles such as 69 

exosomes (8). Genetic variants are known to regulate the level of miRNAs in the circulation 70 

(9-11) or tissues and cells (12-14), referred to as miRNA expression quantitative trait loci (miR-71 

eQTLs). Previous studies showed that each miR-eQTL contributed to a relatively small 72 

proportion of variation in miRNA levels (9,10), with a tiny proportion of miR-eQTLs replicated 73 

across studies thus far (9). The identified miR-eQTLs have been used to study the effect of 74 

perturbation of miRNA levels on disease risk (9,10,14). However, such an effect on a wide 75 

range of clinical conditions remains to be elucidated. Unravelling the genetic regulation of 76 

nearly all high confidence miRNAs can provide insights into their roles in affecting disease risk 77 

and discover candidates for therapeutic targets.  78 

This study measured plasma levels of 2,083 circulatory miRNAs in the population-based 79 

Rotterdam Study cohort using a next-generation sequencing platform (HTG EdgeSeq miRNA 80 

Whole Transcriptome Assay). This assay allows simultaneous, quantitative detection of 81 

miRNAs with a sensitivity and specificity of 97% (15,16). Subsequently, genome-wide 82 

association studies (GWAS) were conducted for 2,083 miRNAs to identify miR-eQTLs 83 

(N=2,178), followed by replication in two independent cohorts (9,10). We conducted 84 

downstream analyses to elucidate functional characteristics of the findings through cis and 85 

trans mapping of miR-eQTLs, cross-phenotype, and multi-omics QTLs look-up. A systematic 86 

investigation of the effects of genetically determined miRNA levels on a wide range of clinical 87 

conditions was conducted using phenome-wide association studies (PheWAS) in the UK 88 

Biobank (N=423,419) (17,18). We performed Mendelian randomisation (MR) to assess 89 

causality between miRNAs and clinical conditions (19). Potential downstream target genes 90 

that might be involved in the disease processes were highlighted, generating testable 91 

hypotheses for further functional studies to dissect the underlying molecular pathways.  92 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.10.22282180doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282180
http://creativecommons.org/licenses/by-nc/4.0/


Results 93 

Genome-wide identification and replication of miR-eQTLs 94 

An overview of the study workflow is presented in Fig. 1. The list of 2,083 miRNAs 95 

characterised in this study is shown in Supplementary Table 1. The miRNA expression 96 

profiling was performed for 2,754 participants from three sub-cohorts (RS-I-4, RS-II-2, and 97 

RS-IV-1) in the Rotterdam Study (20). Genotype data were available for 2,435 of 2,754 98 

participants. Participants of non-European ancestries and relatives based on kinship 99 

coefficient > 0.088 were excluded, resulting in 2,178 participants in the analysis (Extended 100 

Data Fig. 1). The clinical characteristics of participants are summarised in Supplementary 101 

Table 2. 102 

We identified 3,292 associations between 1,289 SNPs and 63 miRNAs at P<2.4×10−11 103 

(genome-wide threshold of P<5×10−08 and Bonferroni-corrected for 2,083 miRNAs) 104 

(Supplementary Table 3, Extended Data Fig. 2). After pruning with a series of linkage 105 

disequilibrium (LD) thresholds, the number of associations reduced to 75 (r2<0.1), 142 (r2<0.3), 106 

and 297 (r2<0.6). The 3,292 identified associations included 1,733 cis associations for 32 107 

miRNAs and 1,559 trans associations for 33 miRNAs. The overall proportion of variance 108 

explained by each miR-eQTL ranged from 2% to 11% (median=2.9%). Eighteen miR-eQTLs 109 

(r2<0.6) were explaining more than 5% of the variation of corresponding miRNA levels 110 

(Supplementary Table 4). The highest proportion of variance explained was observed for miR-111 

625-5p (11%) by rs2127868 (P=1.63x10-60), identified as cis-miR-eQTL. 112 

We sought to replicate our findings in a previous study using the same HTG EdgeSeq platform 113 

by Nikpay et al. (9). Bonferroni correction was applied to address multiple testing (Online 114 

Methods). There were 2,254 associations for 57 miRNAs with identical SNPs available in the 115 

replication cohort by Nikpay et al. (9). Additionally, 27 associations for six miRNAs were tested 116 

for replication using proxy SNPs (Online Methods). There were 1,462 associations for 27 117 

miRNAs replicated at Bonferroni-threshold (P<0.05/58) (Extended Data Fig. 2, Supplementary 118 

Tables 5-6). The effect estimates of replicated associations were strongly correlated (r=0.82, 119 

P<2.2x10-16) (Extended Data Fig. 3a). Additionally, 1,719 associations were nominally 120 

significant in Nikpay et al. (9), of which 1,685 (98%) were in a concordant direction 121 

(Supplementary Table 6). 122 

 123 

Replication of previously identified miR-eQTLs 124 

In an alternative approach, we also attempted to replicate miR-eQTLs identified in previous 125 

studies (9,10). Associations reaching P<2.4x10-11 in Nikpay et al. (9) were tested for replication 126 

in our study (Extended Data Fig. 2), where 2,957 associations corresponding to 1,973 SNPs 127 
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and 34 miRNAs were replicated (P<0.05/52) with a significant correlation between effect 128 

estimates (r=0.90, P<2.2x10-16) (Extended Data Fig. 3b). Additionally, we tested 8,820 cis and 129 

trans associations for 87 miRNAs that were previously reported by the Framingham Heart 130 

Study (10) in our data. Of those, 1,320 associations for 29 miRNAs were replicated 131 

(P<0.05/195) (Extended Data Fig. 3c). Collectively, 69% of associations in Nikpay et al. (20) 132 

and 15% of associations in the Framingham Heart Study (19) were replicated in our study. 133 

Altogether, our approaches successfully reported 4,310 associations pertaining to 64 miRNAs 134 

which have been replicated across studies (Extended Data Fig. 2, Supplementary Table 7). 135 

 136 

Functional annotation of miR-eQTLs 137 

Using the Functional Mapping and Annotation (FUMA) (21), the identified and replicated miR-138 

eQTLs were mapped into 22 loci (Fig. 2a). Over 70% of miR-eQTLs were located in the intronic 139 

and intergenic regions (Fig. 2b, Supplementary Table 8). Out of 22 loci, 11 loci were 140 

pleiotropic, i.e., linked to the level of multiple miRNAs. Fourteen loci regulated two miRNAs 141 

and eight loci regulated more than two miRNAs (Supplementary Table 9). Highly pleiotropic 142 

loci were identified in locus chr14:100655022-101244293, regulating 23 miRNAs (also known 143 

as 14q32 miRNA cluster), the majority of which were cis-miR-eQTLs (98%). This locus was 144 

mapped to RP11-566J3.2, RP11-638I2.4, YY1, YY1:RP11-638I2.2, SLC25A29, WDR25, 145 

BEGAIN, DLK1, CTD-2644I21.1, LINC00523, RP11-566J3.4, and MEG3 (Extended Data Fig. 146 

4). The locus in chr9:136128546-136296530 was mapped to ABO, ABO:RP11-430N14.4, 147 

Y_RNA, and LCN1P2 and regulated 18 miRNAs. This locus contained shared trans-miR-148 

eQTLs for several well-known miRNAs, including miR-10, let-7, and miR-30 families 149 

(Supplementary Table 9).  150 

Associations between 296 SNPs residing in seed, mature, or precursor genes of miRNAs and 151 

corresponding miRNAs were extracted from our GWAS results. Twelve associations were 152 

significant at Bonferroni-threshold considering the number of unique SNPs (P<0.05/296), 153 

consisting of three SNPs in the seed region of miR-4707-3p, miR-4482-5p, and miR-6891-3p, 154 

three SNPs in mature region of miR-3130-3p, miR-6891-3p, and miR-6839-5p, and six SNPs 155 

in precursor genes of six miRNAs. Additionally, 27 SNPs in 26 miRNAs were nominally 156 

significant (Supplementary Table 10).  157 

 158 

Heritability analysis 159 

SNP-based heritability estimates for the plasma levels of 2,083 circulatory miRNAs were 160 

obtained using massively expedited genome-wide heritability analysis (MEGHA) (22). The 161 

distribution of heritability estimates is shown in Fig. 2c. Two miRNAs had a narrow-sense 162 

heritability estimate greater than 0.7, namely miR-30e-5p (0.72) and miR-6511a-5p (0.70). 163 
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Twenty miRNAs had a narrow-sense heritability greater than 0.5, and 166 miRNAs had greater 164 

than 0.3. Heritability estimates for all miRNA are shown in Supplementary Table 11. Repeating 165 

the heritability analysis, including the first five principal components as covariates, resulted in 166 

SNP-based heritability estimates with a Pearson correlation of 0.99 with estimates without the 167 

principal components (Extended Data Fig. 5). 168 

Cross-phenotype and multi-omics QTLs look-up 169 

As miRNAs dictate their role in biological processes by regulating the expression of their target 170 

genes, it is interesting to know whether miR-eQTLs are linked to the expression of other 171 

genes, including their host and target genes. To explore this, we sought overlaps between 172 

replicated miR-eQTLs and gene expression (eQTLs), protein (pQTLs), and metabolite-QTLs 173 

(met-QTLs). We further checked if any of the genes or proteins that shared QTLs were target 174 

genes of miRNAs. 175 

Summary statistics for genetic variants that influence expression levels of mRNA transcripts 176 

(cis and trans-eQTLs) in whole blood (N=31,684) were used to identify miR-eQTLs that affect 177 

the expression of other genes (23). In this dataset, trans-eQTL analysis was conducted only 178 

for SNPs previously identified in GWAS (23). Cis-miR-eQTLs for 39 miRNAs overlapped with 179 

cis-eQTLs for 146 genes, 123 of which were protein-coding genes (Supplementary Table 12). 180 

Twelve intragenic miRNAs shared cis-miR-eQTLs with their host genes (Supplementary Table 181 

13). In addition, miR-136-5p resides within the intronic region of RTL1 but had overlapping 182 

cis-eQTLs with nearby genes, such as DLK1, WARS, BEGAIN, MEG3, and SLC25A29) 183 

(Supplementary Table 12). 184 

Next, predicted target genes for miRNAs from TargetScan v7.2 (5) and experimentally 185 

validated target genes with robust validation methods (such as reporter assay, western blot or 186 

qRT-PCR) from miRTarBase (4) were retrieved to check whether miR-eQTLs overlap with 187 

eQTLs of their putative target genes. Twelve miRNAs shared either cis/trans-miR-eQTLs or 188 

cis/trans-eQTLs of their putative target genes (Supplementary Table 14). We identified shared 189 

trans-regulation by rs612169, located intronic to ABO, for miR-126-3p and its validated target 190 

TCF4.  191 

Protein-QTLs (pQTLs) summary results were used to identify miR-eQTLs affecting protein 192 

levels in the blood (24,25). Cis-miR-eQTLs of 18 miRNAs overlapped with pQTLs for nine 193 

proteins. Cis-miR-eQTLs for 14q32 miRNA cluster were shared with pQTLs of DLK1 located 194 

in the nearby genomic region and SEMG2 in a distant region of chromosome 20 (Fig. 3a, 195 

Supplementary Table 15). These included shared miR-eQTLs of six intragenic miRNAs, of 196 

which four miRNAs (miR-127-3p, miR-136-5p, miR-431-5p, and miR-433-5p) reside in RTL1. 197 
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Cis-miR-eQTLs of miR-625-5p overlapped with pQTLs for Alpha-(1,6)-fucosyltransferase, an 198 

enzyme encoded by FUT8 gene where miR-625-5p resides. Cis-miR-eQTLs for miR-335-5p 199 

that resides in MEST overlapped with Carboxypeptidase A4, encoded by CBPA4 in a nearby 200 

genomic region in chromosome 7. Trans-miR-eQTLs for 11 miRNAs overlapped with pQTLs 201 

for 103 proteins (Fig. 3b, Supplementary Table 16). Of these, GNS was identified as common 202 

predicted targets of let-7b-5p and let-7c-5p. Additionally, trans-miR-eQTLs of miR-145-5p and 203 

miR-195-5p overlapped with eQTLs of their predicted target genes. For cardiovascular 204 

proteins (25), cis-miR-eQTLs for miR-130a-3p overlapped with pQTLs of Pappalysin-1 205 

(PAPPA). Overlap for trans-miR-QTLs was found with pQTLs of validated target genes of miR-206 

126-3p (TEK) and miR-145-5p (MMP1 and VEGFA) (Supplementary Table 17). The overlap 207 

of trans-miR-eQTLs between miR-143-3p and miR-145-5p with Dickkopf-related protein 1 208 

(DKK1) were identified in both pQTLs datasets (24,25).  209 

We used summary statistics from two common metabolomics platforms, Metabolon and 210 

Nightingale, to identify miR-eQTLs affecting metabolic pathways by investigating plasma 211 

levels of metabolites. Metabolon covers 529 metabolites (N=7,824) (26), while Nightingale 212 

covers 123 metabolites in Kettunen et al. (N>20,000) (27) and 249 metabolites in the UK 213 

Biobank (N=115,078) (28). Cis-miR-eQTLs for miR-1908-5p, miR-148a-3, miR-339-5p, and 214 

miR-130a-3p overlapped with met-QTLs for 218 metabolites in both platforms. For example, 215 

rs174561, located in the precursor gene of miR-1908-5p and intronic to FADS1, both known 216 

to be associated with lipid and obesity traits, was associated with metabolites in Nightingale 217 

that were also mainly lipid fractions. Trans-miR-eQTLs for nine miRNAs overlapped with four 218 

unnamed metabolites in Metabolon (M32740, M33801, M36115, M36230), and 146 219 

metabolites in the Nightingale platform (Supplementary Table 18).  220 

Finally, GWAS Catalog was used to identify miR-eQTLs associated with complex traits (29). 221 

At genome-wide significance, cis-miR-eQTLs were associated with GWAS traits, including 222 

mental health, haematological indices, cancers, anthropometric measures, lipid levels, and 223 

blood pressure (Supplementary Table 19). For example, cis-miR-eQTLs for miR-1908-5p 224 

were associated with multiple traits, mainly lipid through FADS1, FADS2, or MYRF, supporting 225 

the observed overlaps with eQTLs and pQTLs as described earlier. Trans-miR-eQTLs were 226 

associated with different traits and diseases, including haematological indices, 227 

cardiometabolic, cancer, and allergy. The pleiotropic regulatory region in chr9:136128546-228 

136296530 consisted of trans-miR-eQTLs which were associated with protein and metabolite 229 

levels and complex traits. For example, rs687289, intronic to ABO, was identified as trans-230 

miR-eQTL for six miRNAs and overlapped with pQTLs, met-QTLs, and associated with GWAS 231 

traits such as monocyte count, coagulation factor levels, and pancreatic cancer. Another 232 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.10.22282180doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282180
http://creativecommons.org/licenses/by-nc/4.0/


variant in ABO, rs644234, was associated with 40 protein biomarkers, including five 233 

cardiovascular proteins (Supplementary Table 20). This observation might suggest the 234 

relevance of miR-eQTLs in ABO to cardiovascular traits. 235 

Phenome-wide association studies (PheWAS) in the UK-Biobank 236 

We conducted phenome-wide association studies (PheWAS) in the UK Biobank (17) to 237 

investigate associations between genetically determined miRNA levels and a wide range of 238 

clinical conditions (Fig. 4a). The participants with genetic and hospital episode statistics data 239 

were used in the analysis. After excluding participants of non-European ancestries and one 240 

from each pair of related individuals, 423,419 individuals remained in the analysis (Extended 241 

Data Fig. 6). We tested the associations between genetically determined miRNA levels and 242 

905 phecodes with at least 200 cases across 16 disease groups (Fig. 4b). 243 

To extract genetic instruments for miRNAs, a threshold for cis-instruments at FDR<0.1 was 244 

calculated across all SNPs residing 500 kb of each miRNA. This threshold was chosen to 245 

enable covering a higher number of miRNAs tested in PheWAS. At FDR<0.1, cis-instruments 246 

were identified for 204 miRNAs. Weak instruments were filtered out using F-statistics>10 247 

(Online Methods). After LD clumping (r2<0.1), a single cis-instrument was available for 85 248 

miRNAs for which a single variant PheWAS were conducted (Supplementary Table 21). 249 

Multiple cis-instruments were available to compute genetic risk scores (GRS) for 119 miRNAs 250 

and test in GRS-PheWAS (Fig. 4a). Since each clinical diagnosis is not entirely independent 251 

of the other, FDR correction was applied for each miRNA to account for multiple testing. 252 

In the single variant PheWAS, 29 significant associations were identified between 9 SNPs and 253 

23 clinical diagnoses at FDR<0.05 (Fig. 4a). Among these, rs2270197 (P=6.84x10-05), 254 

rs55936521 (P=4.27x10-06), rs5623708 (P=1.40x10-05) and rs7130989 (P=7.16x10-05) were 255 

associated with hypertension. rs1254901, located 2KB upstream of VAMP5 and cis-miR-eQTL 256 

for miR-6701, was associated with ischemic heart disease-related conditions, including 257 

ischemic heart disease (P=6.51x10-06). Rs2270197, intronic to ITIH1 and cis-miR-eQTL for 258 

miR-135a-5p, was associated with a range of clinical conditions, including osteoarthritis 259 

(P=4.22x10-04), hypertension (P=6.84x10-05), and bipolar disorders (P=4.02x10-04) (Fig. 4c, 260 

Supplementary Table 22).  261 

In the genetic risk score (GRS) PheWAS, 44 associations between 17 cis-GRS and 24 262 

diagnoses were identified at FDR<0.05 (Fig. 4a). The strongest association was identified 263 

between miR-1908-5p and benign neoplasm of colon (OR=0.96, P=1.99x10-08) and 264 

cholelithiasis (OR=1.04, P=1.51x10-05). Three miRNAs were associated with lower risk of 265 

obesity, namely miR-323b-3p (OR=0.97, P=2.28x10-04), miR-329-3p (OR=0.97, P=1.12x10-266 
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04), and miR-543 (OR=0.97, P=1.20x10-04). Three miRNAs were associated higher risk of skin 267 

cancer, including miR-323b-3p (OR=1.05, P=4.79x10-06), miR-376b-3p (OR= 1.04, 268 

P=5.81x10-05), and miR-379-5p (OR=1.05, P=7.68x10-06) (Fig. 4d, Supplementary Table 22). 269 

Out of 44 associations, extended-GRS was computed for 17 associations of five miRNAs with 270 

genome-wide significant trans-miR-eQTLs, where all remained statistically significant in a 271 

concordant direction (FDR<0.05) (Supplementary Table 23). Our PheWAS identified 73 272 

associations between 45 clinical conditions and 26 miRNAs. Among those, 11 miRNAs were 273 

associated with circulatory disorders (Fig. 5a). Several miRNAs were associated with clinical 274 

diagnoses across different disease groups, indicating their pleiotropic properties, such as miR-275 

323b-3p associated with endocrine/metabolic disease, infectious disease, and neoplasms 276 

(Fig. 5b).  277 

 278 

Mendelian randomisation 279 

Mendelian randomisation (MR) was conducted for miRNAs with at least three independent 280 

instruments (Online Methods). Thirty-seven associations for 14 miRNAs with at least three 281 

instruments were tested in MR-PheWAS (Fig. 4a). The same cis or extended instruments for 282 

miRNAs were used in MR-PheWAS with effect estimates from the Rotterdam Study 283 

(N=2,178), whereas genetic associations with the outcomes were taken from the UK-Biobank 284 

(N=423,419). All 37 tested associations were significant in MR Inverse variance weighted 285 

(IVW) (FDR<0.05), had no indication of pleiotropy or heterogeneity and were in concordant 286 

direction with MR-Egger or Weighted Median (WM) (P<0.05) (Supplementary Table 24). 287 

Among those, the strongest association was observed between miR-1908-5p and the risk of 288 

benign neoplasm of the colon (MR-IVW estimate=-0.40, P=3.9×10-10). Six miRNAs were 289 

associated with a higher risk of melanoma, including miR-329-3p (MR-IVW estimate=0.37, 290 

P=5.4×10-9), miR-376b-3p (MR-IVW estimate=0.39, P=3.0×10-8), miR-323b-3p (MR-IVW 291 

estimate=0.44, P=1.4×10-7), and miR-379-5p (MR-IVW estimate=0.47, P=1.5×10-5). All 37 292 

associations were significant when the correlation matrix between instruments was added, 293 

with no outliers detected by MRPRESSO. Of 37, 13 associations had genome-wide significant 294 

trans-miR-eQTLs to conduct extended-MR as a replication. For the remaining 24 associations, 295 

concordant direction across different MR methods was observed (Fig. 5c).  296 

Extended-MR was conducted for 13 associations by adding genome-wide significant trans-297 

miR-eQTLs. Twelve associations were significant (MR-IVW FDR<0.05) with no indication of 298 

pleiotropy and supported by MR-Egger or WM (P<0.05) (Supplementary Table 25). Nine 299 

associations from MR-PheWAS had genetic association data available in large GWAS for 300 

coronary artery disease, body mass index (BMI) and waist to hip ratio (WHR) (30-32) (Fig. 301 

5a). Two associations were replicated between miR-543 and WHR (MR-IVW estimate=-0.02, 302 
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P=1.72×10-02) and between miR-329-3p and BMI (MR-IVW estimate=-0.03, P=1.89×10-02), 303 

both in the same protective effects as in MR-PheWAS (Table 1, Extended Data Fig. 7, 304 

Supplementary Table 26). Reverse MR analyses were conducted for BMI and WHR as risk 305 

factors on miR-543 and miR-329-3p as the outcomes, where no significant effects in the 306 

opposite directions were observed (Supplementary Table 27).  307 

 308 

Target genes and enrichment analysis 309 

An in-silico search of target genes using TargetScan v7.2 and miRTarBase (5,33) identified 310 

eighty-two predicted and eighteen validated target genes of miR-543 associated with BMI or 311 

WHR. Forty-three predicted and fifty-eight validated target genes for miR-329-3p were also 312 

associated with BMI or WHR. Eighteen target genes were in common between miR-543 and 313 

miR-329-3p, where eleven genes were validated targets for at least one of them, including 314 

BRCH1 and TNRC6B as validated targets of both miRNAs (Supplementary Table 28). 315 

Enrichment analysis was conducted as described in our previous work (34), resulting in a 316 

significant enrichment for BMI or WHR-related genes among validated targets of miR-543 317 

(P=9.00x10-03) and predicted targets of miR-329-3p (P=3.18x10-02). 318 

 319 

Discussion 320 

We present a genome-wide identification of miR-eQTLs using the next-generation sequencing 321 

method in 2,178 individuals in the population-based Rotterdam Study cohort. This study is 322 

currently the most extensive single-site analysis of 2,083 circulatory miRNA levels in a 323 

population of European ancestries. We discovered 3,292 genetic associations for 63 miRNAs. 324 

The highest proportion of variance explained was observed for miR-625-5p (11%) by 325 

rs2127868 (P=1.63x10-60), in perfect LD with rs2127870 associated with the level of miR-625-326 

5p in plasma (P=2.9x10-260) and whole blood (P=2.98x10-09) (9,10). Altogether, 4,310 genetic 327 

associations for 64 miRNAs were replicated across different studies, including trans-miR-328 

eQTLs, whose replication was previously minimal. Genetically proxied miRNAs were tested 329 

against a wide range of clinical conditions in the UK-Biobank, suggesting the pleiotropic 330 

properties of several miRNAs by being associated with clinical outcomes. Such observation is 331 

expected, given that miRNAs could potentially regulate many genes that are involved in 332 

different molecular pathways (4,5). Our MR analysis identified the potentially causal role of 333 

miRNAs in various complex traits and disorders.  334 

We showed that miR-eQTLs overlap with gene expression QTLs and protein QTLs of their 335 

target genes, supporting their role in translational repression. Since target genes tend to be 336 

clustered to miRNAs according to their function (34,35), these shared miR-eQTLs might have 337 
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biological relevance. Cis-miR-eQTLs that overlap with trans-mRNA-eQTLs might point to the 338 

downstream regulatory effect from miRNAs to their (direct or indirect) target genes. When cis-339 

mRNA-eQTLs overlap with trans-miR-eQTLs, the effect might be going from the genes to 340 

miRNAs, pointing to bidirectional interaction between miRNAs and target genes as a feedback 341 

mechanism (36,37). However, when trans-miR-eQTLs overlap with trans-mRNA-eQTLs, a 342 

third factor may have contributed to simultaneous changes in miRNA and gene expression. 343 

As an example, a genetic variant could affect the regulatory region shared between miRNA 344 

and a gene that are co-expressed. We also hypothesise that cis- and trans-miR-eQTLs might 345 

have different clinical relevance. The magnitude of associations between miRNAs and 346 

complex traits appeared closer to the null when trans-miR-eQTLs were added as instruments. 347 

Trans-miR-eQTLs might affect the stability of mature miRNAs, whereas cis-miR-eQTLs 348 

influence the hairpin structure and regulate the expression of primary miRNAs (9). 349 

The current analysis identified co-expression of miRNAs and host genes, which could occur 350 

through modification of promoter activity, chromatin accessibility, transcription factor binding, 351 

or DNA methylation (10). However, many miRNAs also have their own promoters (38), and 352 

the association could be independent of the host genes (10,39). This finding deepens our 353 

understanding that the relationship between miRNAs and gene expressions is more 354 

commonly driven by genetics (40). The genetic effect might be less strong for miRNAs than 355 

mRNAs (12,13), as shown by the small variation explained by miR-eQTLs, which could act as 356 

a mechanism to maintain biological function during evolution.  357 

Given that each miRNA potentially regulates multiple target genes and pathways (1,2,5), even 358 

small changes in miRNA expression could result in considerable consequences. This concept 359 

aligns with the strong evolutionary constraint on miRNAs and their binding sites in gene 3-360 

UTRs in humans and other species (5). Moreover, the seed, mature, and precursor regions of 361 

miRNA genes are known to have a lower density of genetic variation than the whole genome 362 

(41). Our study shows that the genetic variants in those regions could have functional 363 

importance, such as affecting miRNA expression. This functional consequence occurs by 364 

interfering with the processing of precursor to mature miRNA or the interaction between 365 

mature miRNA and target genes, resulting in gain and loss of function, which could deregulate 366 

biological pathways (42,43).  367 

Human miRNAs can be categorised into families with similar functions due to their conserved 368 

structures in the mature or seed sequences (44) and clusters when they are encoded from the 369 

same region in our genome (3). Here, we showed that the 14q32 miRNA cluster shares cis-370 

regulatory variants. We also showed that multiple miRNAs are regulated by shared miR-371 

eQTLs (45), such as the pleiotropic trans-miR-eQTLs in the ABO gene. Several families 372 
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sharing trans-regulatory variants in ABO, such as miR-10 family, miR-30 family, let-7 family, 373 

and miR-139-5p, were well-known in cardiometabolic traits and cancers (46-48). This finding 374 

agrees with the concept that several miRNAs can work in networks to control gene expression 375 

and pathways underlying diseases (49).  376 

Several associations with complex traits highlighted in this study were reported in the 377 

literature. For example, miR-543 was released in plasma following a high-fat diet (50), which 378 

could be a physiological response to reduce the risk of obesity. Target genes of miR-329-3p 379 

were involved in lipid and glucose metabolism in rats (51). Low miR-329 expression was 380 

observed in melanoma cells, while miR-329 mimics could suppress the progression of 381 

melanoma (52). The effect in tumour tissue for miR-329 and miR-1908-5p (14,52) was 382 

opposite compared to our MR analysis which better captures the lifetime effect of miRNAs. 383 

This suggests the changes in the level of miRNAs in tumour tissue might be the consequence 384 

of disease processes and supports the hypothesis that the dysregulation of miRNA in diseased 385 

tissue might arise from negative feedback by downstream genes (36,37). It is also possible 386 

that the genetic effects have been buffered by canalisation (19), where people with a 387 

genetically higher level of miRNAs since the intra-uterine period might be resistant to the effect 388 

of higher miRNAs throughout life.  389 

Here we would like to underline several aspects to be considered when attempting to replicate 390 

miR-eQTLs across studies. First, we found fewer trans were replicated than cis-miR-eQTLs, 391 

as observed in the large eQTL analysis (53). Trans-eQTLs are known to have weaker effects, 392 

are less replicable, and are more tissue-specific (54-56) than cis-eQTLs. Second, the 393 

concordant direction with those reported by Nikpay et al. (9) suggested that the type of 394 

biological sample and profiling method could have an effect. The lower replication rate in the 395 

Framingham Heart Study is likely due to differences in type of sample (whole blood vs 396 

plasma), as previously reported  (57). Third, one should consider any systematic difference in 397 

participants’ characteristics across studies. This study came from a population-based cohort 398 

which makes the findings more generalisable. Other studies were in obese individuals (9) or 399 

enriched for a specific disease (11), making it particularly useful for investigating the relevant 400 

disease but not for a wide range of complex traits and disorders. Finally, since the overall 401 

proportion of variation explained by each miR-eQTL is relatively small, larger GWAS for miR-402 

eQTLs identification will be a valuable resource to enrich the genetic studies on miRNAs. In 403 

particular, incorporating diverse ancestries could generate more transferrable findings for a 404 

wider population. 405 

Collectively, the integration of genomics, molecular, and clinical data in this study has provided 406 

a better understanding of the genetic regulation of miRNAs and allowed us to perform a 407 
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systematic investigation on the effect of perturbations of plasma miRNA levels on a wide range 408 

of clinical conditions. As an example, we highlight miR-543 and miR-329-3p associated with 409 

obesity-related traits with potential downstream targets. Although it is unlikely a single miRNA 410 

or its target genes will be entirely responsible for the disease mechanisms, it is plausible that 411 

the effect of identified miRNAs to be mediated at least in part through those target genes. Our 412 

approach allows generating testable hypotheses for further functional and clinical studies to 413 

dissect the underlying molecular and cellular pathways of various traits and diseases.  414 

The summary statistics for miR-eQTLs identified in our study and their link to other omics 415 

layers and their associations with various clinical outcomes will be available through a web 416 

tool called miRNomics Atlas (www.mirnomicsatlas.com). This web tool allows the use of 417 

genetic association data of miR-eQTLs, serving as valuable resources for future research to 418 

decipher the association and causal role of miRNAs in human diseases and their regulatory 419 

pathways. 420 

 421 

  422 
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Online Methods 423 

Cohort description 424 

The Rotterdam Study (RS) is a large prospective population-based cohort study among 425 

middle-aged and elderly in the suburb Ommoord in Rotterdam, the Netherlands. In 1990, 426 

7,983 inhabitants aged 55 years old and older were recruited to participate in the first cohort 427 

(RS-I). In 2000, the study was extended with a second cohort of 3,011 participants (RS-II) who 428 

became 55 years old or moved into the study district since the beginning of the study. In 2006, 429 

a further extension of the cohort (RS-III) was initiated, including 3,932 participants aged 45–430 

54 years. In 2016, the recruitment of another extension started (RS-IV), targeting participants 431 

aged 40 years and over, adding 3,005 new participants. A detailed description of the 432 

Rotterdam Study can be found elsewhere (20). 433 

Circulatory miRNA levels 434 

Plasma miRNA levels were determined using the HTG EdgeSeq miRNA Whole Transcriptome 435 

Assay (WTA) to quantitatively detect the expression of 2,083 human miRNAs transcripts (HTG 436 

Molecular Diagnostics, Tuscon, AZ, USA) and using the Illumina NextSeq 500 sequencer 437 

(Illumina, San Diego, CA, USA). This method characterises miRNA expression patterns and 438 

measures the expression of 13 housekeeping genes to allow flexibility during data 439 

normalisation and analysis. Quantification of miRNA expression was based on counts per 440 

million (CPM). Log2 transformation of CPM was used as standardisation and adjustment for 441 

total reads within each sample. MiRNAs with log2 CPM <1.0 were indicated as not expressed 442 

in the samples. 443 

Genotype data 444 

At baseline, blood was drawn for genotyping from 6,291 participants in RS-I, 2,157 in RS-II, 445 

and 2,654 in RS-IV. Genotyping in RS-I-II was performed using the HumanHap550 Duo 446 

BeadChip (Illumina, San Diego, California) for RS-I-II and the Global Screening Array 447 

(GSAMD-v3) Illumina array for RS-IV. Samples with a call rate below 97.5%, gender 448 

mismatches, excess autosomal heterozygosity, duplicates or family relations, and ethnic 449 

outliers were excluded. Variants with call rates below 95.0%, failing missingness test, Hardy‐450 

Weinberg equilibrium P<10−6, and allele frequency below 1% were removed. Genotypes were 451 

imputed using the MaCH/minimac software to the 1000 Genomes phase I version 3 reference 452 

panel or phase 3 version 5 reference panels (for RS-IV). Genetic variants with minor allele 453 

frequency < 0.05 and imputation quality < 0.7 were filtered out after genotype imputation.  454 
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Genome-wide association studies 455 

Genome-wide association studies (GWAS) were conducted for 2,083 miRNAs in 2,178 456 

participants randomly selected from three sub-cohorts of the Rotterdam Study to identify 457 

miRNA-expression quantitative trait loci (miR-eQTLs). Given the high number of miRNAs, 458 

GWAS was performed within the high-dimensional analysis framework (HASE) to reduce the 459 

computational burden and enable efficient implementation of GWAS on thousands of 460 

phenotypes (58). Multiple linear regression was used to test for association between each 461 

genetic variant and miRNA level, with miRNA level as the outcome and expected genotype 462 

count from imputation as predictors, with adjustment for age, sex, sub-cohort, and the first five 463 

principal components to account for population stratification.  464 

We used the genome-wide threshold of P<5×10−08 and Bonferroni-corrected for 2,083 miRNAs 465 

(P<2.4x10-11) to identify significant associations. Associations reaching significance in the 466 

Rotterdam Study were taken forward for replication in a published miR-eQTLs study by Nikpay 467 

et al. (9) using the SNPs or their proxy SNPs (r2>0.7 within 500kb on either side of lead SNP 468 

position) obtained using LDlinkR (59). Linkage disequilibrium (LD) pruning was used to identify 469 

the number of independent SNPs for each miRNA (r2<0.01). Similarly, associations identified 470 

in previous GWAS by Nikpay et al. (at P<2.4x10-11)  (9) and Huan et al. in the Framingham 471 

Heart Study (at FDR<0.1) (10) were also tested for replication. The Bonferroni threshold was 472 

used for replication (α<0.05/n, where n is the total number of SNP-miRNA pairs after pruning). 473 

Replication was defined when the associations between SNP and miRNA were Bonferroni-474 

significant in an independent cohort with a concordant direction of effect. 475 

Functional annotation of miR-eQTLs 476 

Genomic coordinates of miRNAs were extracted from miRBase v20 477 

(ftp://mirbase.org/pub/mirbase/20/genomes/has.gff3) (3). Both SNPs and mature miRNA 478 

positions were based on Genome Reference Consortium Human Build 37 (GRCh37). The 479 

position of each miR-eQTL was mapped as cis or trans with respect to the miRNA position. 480 

SNPs located ±500kb upstream and downstream of the start position of mature miRNAs were 481 

identified as cis, and those located more than ±500kb away were identified as trans. To identify 482 

SNPs in seed, mature, or precursor genes of miRNA, the database was downloaded from 483 

http://bioinfo.life.hust.edu.cn/miRNASNP/#!/download (60).  484 

The web-based tool Functional Mapping and Annotation (FUMA) was used to annotate 485 

identified miR-eQTLs. A detailed description of the FUMA workflow is described elsewhere 486 

(21). Independent significant miR-eQTLs were defined as those with P<5×10−08 in the 487 

discovery GWAS or those replicated in independent cohorts and moderate LD with each other 488 

at r2<0.6. LD calculation was referenced based on the 1000 Genomes phase 3 panel. These 489 
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SNPs were further clumped to lead SNPs (r2 <0.1). Genomic risk loci were then defined based 490 

on the lead SNPs when they overlap with a maximum distance of 250kb between LD blocks. 491 

The major histocompatibility complex (MHC) region was excluded using the default region 492 

between MOG and COL11A2 genes (21,61). 493 

Heritability analysis 494 

The SNP-based heritability estimates for 2,083 circulatory miRNAs were obtained using 495 

massively expedited genome-wide heritability analysis (MEGHA) (22). A genetic relationship 496 

matrix was constructed from 1000 Genome imputed genotypes filtered on imputation quality 497 

(<0.5) and allele frequency (<0.1) using GCTA (62). After applying a stringent cut-off of 0.025 498 

for genetic relatedness, 1,506 individuals were used for heritability estimation. Using MEGHA, 499 

the genetic relationship matrix, and age and sex as covariates, we computed the heritability 500 

and uncertainty (p-values based on 1000 permutations). 501 

 502 

Cross-phenotype and quantitative trait loci look-up 503 

Cross-phenotype and quantitative trait loci look-up leveraged replicated miR-eQTLs with 504 

summary statistics for gene expression (eQTLs), protein-QTLs (pQTLs), metabolite-QTLs 505 

(met-QTLs), and complex traits. Summary for cis and trans-eQTLs analysis in whole blood 506 

were downloaded from https://www.eqtlgen.org/index.html (23). Summary statistics for pQTLs 507 

were from https://www.phpc.cam.ac.uk/ceu/proteins/ (24) and the SCALLOP consortium 508 

available through https://zenodo.org/record/2615265/ (25). Summary statistics for met-QTLs 509 

were from Metabolon (http://metabolomics.helmholtz-muenchen.de/gwas/) (26) and 510 

Nightingale from a published study (http://www.computationalmedicine.fi/data/NMR_GWAS/) 511 

(27) and in the UK Biobank available through OpenGWAS project (https://gwas.mrcieu.ac.uk)  512 

(28). The database for intragenic miRNAs was from https://bmi.ana.med.uni-513 

muenchen.de/miriad/ (63). GWAS Catalog was downloaded from 514 

https://www.ebi.ac.uk/gwas/docs/file-downloads (29).  515 

Phenome-wide association studies 516 

To investigate associations between genetically determined circulatory miRNA and a wide 517 

range of clinical diagnoses, a phenome-wide association study (PheWAS) was performed 518 

using hospital episode statistics data in the UK Biobank, a large prospective cohort study with 519 

over 500,000 individuals aged 40-69 years old recruited between 2006-2010 (17). In brief, 520 

participants with genotype and phenotype data were considered in the analysis. Quality control 521 

steps taken in the UK Biobank has been described elsewhere. Our analysis was restricted to 522 

participants who identified themselves as “White”. One from each pair of relatives and 523 

withdrawn individuals as of August 2021 were excluded (Extended Data Fig. 3). ICD (ninth 524 
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and tenth editions) codes from the hospital episode statistics data were aligned into phecodes 525 

to identify clinically related phenotypes. The analysis was limited to phecodes with at least 200 526 

cases to allow sufficient power for MR analysis (64). PheWAS was conducted using the 527 

PheWAS package in R (65). 528 

For each miRNA, associations for genetic variants residing in 500kb on either side of the 529 

miRNA position (cis-SNPs) were extracted. The false discovery rate (FDR) was calculated 530 

across all cis-SNPs for each miRNA, where those with FDR<0.1 were selected as cis 531 

instruments (18). Trans-SNPs associated with circulatory miRNA at P<5x10-08 were added as 532 

trans instruments in the sensitivity analysis. Instruments were filtered for F-statistics> 10 to 533 

avoid weak instrument bias (66). Linkage disequilibrium (LD) clumping for the instruments was 534 

conducted using a threshold of r2 < 0.1 and a window of 10,000 kb. 535 

For miRNA with single cis miR-eQTL satisfying the instrument criteria, cis-SNP was used as 536 

the proxy for corresponding miRNA in single-variant PheWAS. For miRNAs with multiple 537 

independent miR-eQTLs, weighted genetic risk scores (GRS) were computed for individuals 538 

in the UK Biobank as the sum score of miRNA-increasing alleles of miR-eQTLs identified in 539 

the Rotterdam Study using effect sizes as their weights as implemented using PLINK (36). 540 

The weighted GRS was rescaled by subtracting GRS from its mean and dividing by its 541 

standard deviation to express the association per-SD of the miRNA-increasing allele.  542 

In the main analysis, GRS for each miRNA (miRNA-GRS) was computed from cis-miR-eQTLs 543 

(cis-GRS). Additionally, trans-miR-eQTLs at genome-wide significant (P<5x10-08) were added, 544 

in an extended analysis, to validate findings from cis-GRS. Multiple logistic regression was 545 

performed in the UK Biobank for each miRNA-GRS with adjustment for age, sex, genotyping 546 

array, and the first five principal components to account for population stratification. Given 547 

each phecode is not independent of the other, the false discovery rate (FDR) was calculated 548 

for each miRNA-GRS to account for multiple testing (67).  549 

Mendelian randomisation 550 

Following PheWAS, two-sample Mendelian randomisation (MR) analysis was conducted to 551 

assess the causal relationship between candidate miRNAs and outcomes of interest identified 552 

from PheWAS. MR-PheWAS considered miRNAs with three or more independent instruments 553 

to enable performing robust MR methods as sensitivity analysis. The same set of genetic 554 

instruments used in PheWAS contributed to the exposure data in MR-PheWAS. The level of 555 

each candidate miRNA was rescaled by subtracting the value from its mean and dividing by 556 

its standard deviation (SD) to express the association per-SD increase of the miRNA level. 557 

The genetic association between the instruments and the outcome was taken from the UK 558 

Biobank. Associations that were significant at FDR<0.05 from MR-PheWAS were taken 559 
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forward for validation using genetic association estimates (outcome data) from large GWAS 560 

consortia or by adding genome-wide significant trans-miR-eQTLs in an extended-MR. 561 

The multiplicative random effect inverse variance weighted method (IVW) was used in the 562 

main analysis to combine the effect estimates of the genetic instruments assuming all 563 

instruments are valid (68). FDR adjustment was calculated for each miRNA based on p-values 564 

of MR-IVW since it was considered the most powerful method when all instruments are valid 565 

(68). Robust MR methods which allow the inclusion of pleiotropic variants were used as a 566 

sensitivity analysis, including weighted median (WM) or MR-Egger (69-71). WM estimate is 567 

valid if less than half of the weight of the genetic instrument is free from horizontal pleiotropy. 568 

MR-Egger does not force the regression line through an intercept of zero, making it statistically 569 

inefficient but provides a causal estimate corrected for directional horizontal pleiotropy. A non-570 

null intercept in MR-Egger indicates evidence of pleiotropy (70). The agreement among 571 

different MR methods was examined to support a robust estimation of causal effects. 572 

Since a liberal LD threshold (r2<0.1) was used for clumping, a further sensitivity analysis was 573 

conducted by incorporating the correlation matrix between genetic instruments in the fixed 574 

effect IVW method. MRPRESSO was used to detect outliers (72) and MR analysis was 575 

repeated after excluding outliers. Results for MR analysis using different MR methods were 576 

presented as forest plots. For replicated associations, reverse MR was conducted to assess 577 

the directionality of associations. Independent genetic instruments for complex traits 578 

(r2<0.001) were identified from large GWAS consortia for the outcomes of interest. 579 

Associations between the genetic instruments for complex traits with candidate miRNA levels 580 

were extracted from the Rotterdam Study.  581 

Target genes and enrichment analysis 582 

To identify putative target genes for miRNAs, predicted and validated target genes of miRNAs 583 

were retrieved from TargetScan v7.2 and miRTarBase (4,5). For enrichment analysis, genes 584 

with predicted miRNA-target interaction (MTI) in TargetScan or validated MTI, including weak 585 

and strong validation methods in miRTaRBase, were considered. SNPs reaching genome-586 

wide significance in large consortia GWAS for significant traits were mapped into protein-587 

coding genes where they reside. Of those, predicted and validated target genes of miRNAs 588 

were identified. The enrichment analysis was conducted to test if the target genes of candidate 589 

miRNAs are enriched for the associated traits, as described in our previous work (34). 590 

Enrichment analysis was performed separately for predicted and validated target genes.  591 

 592 

  593 
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Tables 

Table 1. The results of Mendelian randomisation (MR-IVW) for replicated associations. 

exposure MR-PheWAS Replication 

outcome n beta SE P P-het Egger 

int P 

outcome n beta SE P P-het Egger 

int P 

Replication in extended-MR 

miR-30d-5p angina pectoris 5 -0.47 0.10 1.5×10-6 3.4×10-1 2.9×10-1 angina pectoris 6 -0.34 0.12 6.0×10-3 3.1×10-2 2.7×10-1 
 

coronary atherosclerosis 5 -0.39 0.09 7.6×10-6 3.6×10-1 2.5×10-1 coronary 

atherosclerosis 

6 -0.26 0.11 1.8×10-2 2.8×10-2 2.4×10-1 

 
nephrotic syndrome  5 1.91 0.41 3.9×10-6 6.1×10-1 5.7×10-1 nephrotic syndrome  6 1.32 0.50 8.9×10-3 7.0×10-2 9.9×10-1 

 
nonspecific chest pain 5 -3.07 0.56 4.9×10-8 7.9×10-1 9.2×10-1 nonspecific chest pain 6 -2.03 0.82 1.4×10-2 1.2×10-2 6.5×10-1 

miR-323b-3p melanomas of skin 6 0.45 0.08 1.4×10-7 8.8×10-1 5.7×10-1 melanomas of skin 7 0.31 0.11 4.7×10-3 4.3×10-2 8.1×10-1 
 

obesity 6 -0.16 0.03 6.6×10-6 7.7×10-1 7.1×10-1 obesity 7 -0.11 0.05 1.9×10-2 4.6×10-2 8.7×10-1 
 

overweight or obesity 6 -0.15 0.03 8.5×10-6 7.1×10-1 6.9×10-1 overweight or obesity  7 -0.11 0.04 1.7×10-2 5.6×10-2 8.6×10-1 
 

skin cancer 6 0.26 0.05 2.2×10-7 2.9×10-1 9.6×10-1 skin cancer 7 0.21 0.06 3.4×10-4 5.2×10-2 9.0×10-1 
 

viral enteritis 6 0.72 0.15 1.7×10-6 8.7×10-1 7.3×10-1 viral enteritis 7 0.61 0.13 3.2×10-6 6.7×10-1 6.6×10-1 

miR-409-3p melanomas of skin 12 0.25 0.05 7.7×10-6 1.1×10-1 5.0×10-1 melanomas of skin 13 0.24 0.05 3.3×10-6 1.4×10-1 4.7×10-1 
               

Replication using GWAS summary statistics 
 

miR-329-3p overweight or obesity  10 -0.15 0.03 1.5×10-7 3.2×10-1 2.4×10-1 BMI 6 -0.03 0.01 1.9×10-2 4.9×10-7 9.9×10-2 
 

obesity 10 -0.15 0.03 3.9×10-8 3.5×10-1 2.4×10-1 
       

miR-543 overweight or obesity  8 -0.15 0.03 9.5×10-9 4.7×10-1 8.4×10-1 WHR 7 -0.02 0.01 1.7×10-2 7.7×10-1 9.0×10-1 
 

obesity 8 -0.15 0.03 1.1×10-8 4.9×10-1 8.9×10-1 
       

BMI: body mass index. WHR: waist-to-hip ratio. n is the number of genetic instruments used in the analysis. SE: standard error. P-het denotes P-value for heterogeneity of 
MR-IVW estimates. Egger int P: P-values for MR Egger intercept. The summary statistics presented are based on MR-IVW. Full results for other MR methods are presented 
in Supplementary Tables 25 and 26.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.10.22282180doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.10.22282180
http://creativecommons.org/licenses/by-nc/4.0/


Figure Legends 
 

Figure 1. Overview of the study workflow.  

Figure 2. a. Fujiplot of identified and replicated miR-eQTLs mapped into 22 genomic loci. Each 

circular layer represents miRNA, and dots represent SNP-miRNA associations. The dots that form a radial 

pattern indicate loci associated with multiple miRNAs. The innermost histogram shows the number of miR-

eQTLs identified in each locus. ** in chromosome 5 represents one locus mapped to CTC-5298P.1. The 

top-left inset is a barplot to show the number of independent cis and trans-miR-eQTLs in pleiotropic loci, 

each regulating the level of multiple miRNAs. Highly pleiotropic loci were identified in locus 

chr14:100655022-101244293, regulating 23 miRNAs, the majority of which were cis-miR-eQTLs. The locus 

in chr9:136128546-136296530 consisted of trans-miR-eQTLs and regulated 18 miRNAs. b. Functional 

consequences of identified miR-eQTLs on nearby and far genes. c. SNP-based heritability 

estimates distribution for 2,083 miRNAs. 

Figure 3. a. Overlap between cis miR-eQTLs and proteins (pQTLs). The bottom half of the circle shows 

miRNAs in different colours, and the top half of the circle (grey coloured) shows the genes. b. Overlap 

between trans-miR-eQTLs and proteins (pQTLs). Trans-miR-eQTLs are shown to be more pleiotropic 

than cis-miR-eQTLs.  

Figure 4. a. Summary of PheWAS and MR. Cis-miR-eQTLs were used as proxies for miRNAs. When 

multiple cis-miR-eQTLs were available, cis-GRS was computed for PheWAS. Otherwise, single variant 

PheWAS was conducted. MR were conducted for miRNA with at least three instruments. When available, 

large GWAS data were used to replicate the findings. Otherwise, genome-wide trans-miR-eQTLs were 

added in the extended-MR. b. Number of cases available within each disease group. The figure 

corresponds to clinical diagnoses with at least 200 cases.c. Enhanced volcano plots for single variant 

PheWAS and d. GRS PheWAS. The X-axis denotes effect estimates for corresponding SNP or GRS. Y-

axis indicates -log10 of the association p-values between each SNP or GRS and clinical condition. Different 

colours of the dots represent different SNPs. Different shapes show different disease groups. Thresholds 

of significance are indicated by dashed blue (nominal), red (FDR), and purple (Bonferroni) lines. Plots were 

only created for SNP and GRS with at least one FDR-significant finding.  

Figure 5. a. Number of miRNAs associated with diagnoses in each disease group as identified in 

PheWAS. b. Schematic network showing miRNAs and disease groups associations. Each line 

corresponds to association between miRNA and clinical diagnosis that belong to a particular disease group. 

The colour of the circles indicates miRNA (orange) or disease groups (green). c. Forest plots for 24 

associations in MR-PheWAS with no genome-wide significant trans-miR-eQTLs. Different colours 

correspond to different MR methods, as labelled.
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Figure 3 
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Extended Data Figures 

 
 

Extended Data Fig. 1. Selection of study participants in the Rotterdam Study.
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Extended Data Fig. 2. Identification of miR-eQTLs and replication in independent cohorts. In total, 3,292 significant associations were 
discovered for 63 miRNAs. Of those 1,462 out of 2,254 associations available in Nikpay et al. (9) were replicated for 27 miRNAs 
(P<0.05/58). On the other hand, 2,957 associations identified by Nikpay et al. (9) for 34 miRNAs were replicated (P<0.05/52) and 1,320 
associations for 29 miRNAs identified in the Framingham Heart Study (10) were also replicated (P<0.05/195). Collectively, 4,310 
associations for 64 miRNAs were successfully replicated across studies.
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Extended Data Fig. 3. Correlation of effect estimates between discovery and replication of miR-
eQTLs. a. Associations in the Rotterdam Study that were replicated in Nikpay et al.(9). b. 
Associations in Nikpay et al. (9) that were replicated in the Rotterdam Study. c. Associations in 
the Framingham Study that were replicated in the Rotterdam Study. 
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Extended Data Fig. 4. Regional plot for genomic risk loci in chr 14:100655022-101244293 
harbouring cis-miR-eQTLs for 31 miRNAs that are clustered together. Plot was extracted from 
FUMA. 
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Extended Data Fig. 5. Pearson correlation of heritability estimates with and without principal 
components. 
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Extended Data Fig. 6. Selection of participants for PheWAS and MR-PheWAS in the UK 
Biobank.  
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Extended Data Fig. 7. Scatter plots for MR-PheWAS and replication MR (bottom). a. miR-543 
and obesity (left) and waist to hip ratio (right). b. miR-329-3p and obesity (left) and body mass 
index (right). 
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