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1. Patient Demographic 

Patient 
ID 

Follow-Up 
Period 

(Months) 

Genetic 
Factor 

Classification 
Age Range at 
Implantation 

Disease 
Duration 

Age Range 
at Onset 

Baseline 
Motor 
Score 

Baseline 
Disability 

Score 

1 84 DYT1 Segmental 41-45 19 11-15 10 2 

2 12 DYT1 Segmental 51-55 25 31-35 24 3 

3 48 None General 46-50 15 21-25 84 17 

4 12 DYT1 General 31-35 26 16-20 60.5 17 

5 6 None Multifocal 61-65 60 1-5 None None 

6 96 None Segmental 31-35 16 11-15 24 3 

7 12 DYT1 Multifocal 41-45 37 6-10 None None 

8 120 DYT1 General 46-50 21 6-10 31.5 18 

9 132 DYT1 Segmental 61-65 46 16-20 29 11 

10 48 DYT1 Segmental 41-45 13 26-30 12 3 

Total 57 ± 45.47 7Y/3N   
27.8 ± 
15.31 

 
34.37 ± 
25.33 

9.25 ± 
7.27 

 
Table 1 - Clinical and Demographic Information of Study Group 
The table shows the demographical and clinical information regarding GPi-DBS surgery. In total, 10 dystonic 

patients are involved in the scope of the project. 

 

2. Microelectrode Recordings Acquisition 

 
Left Hemisphere Right Hemisphere Depth 

Patient ID A C L M P A C L M P Min Max 

1 13 13 0 13 13 13 13 13 13 13 -10 +1 

2 22 22 22 22 22 20 19 17 20 20 -10 +3.5 

3 20 20 20 20 20 15 15 15 15 15 -10 +2 

4 20 4 0 0 0 20 20 0 20 20 -10 +1 

5 13 16 18 18 18 17 17 0 18 0 -10 +2 

6 14 14 14 14 14 17 17 17 0 17 -10 +2 

7 22 22 22 22 22 20 20 0 20 20 -10 +3 

8 21 21 21 21 21 28 28 28 29 28 -10 +1 

9 5 5 2 6 13 0 17 17 17 17 -9 +1 

10 22 22 22 22 22 24 24 24 24 24 -10 +2 

Population 
Level 

172 159 141 158 165 174 190 131 176 174 1640 

 

Table 2 - MER Distribution by GPi Tracks 

The distribution of MER recordings across depths of the electrode trajectories for all patients. The red cells denoted 

with 0 represent the tracks where there is no MER recording exists. 
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The number of recordings per depth Count Percentage 

One Recording 690 63,24 

Two Recordings 295 27,04 

Three Recordings 78 7,15 

Four Recordings 17 1,56 

Five Recordings 11 1,01 

 1091 100 

 

Table 3 - MER Distribution by Number of Recordings in Tracks 

The distribution of the number of MER recordings per track. In our study, 1091 different MER recordings are 

collected from 10 dystonic patients. For most of the depth, single MER recordings are available at around 63,24% 

 

For some trajectories, multiple recordings were acquired from the same depth level in a subsequent trend. For 

example, 11 depth tracks in the whole dataset have 5 electrophysiological recordings, which correspond to 1,01% of 

all recordings. The track term represents a depth level in a specific trajectory of one of the hemispheres. In this 

study, there were 1091 individual tracks exist. Detailed information can be found in Table 2. 

2.1. MER Configuration 

In both hemispheres, the MER trajectories are parallel to the GPi's dorsoventral axis, with the central trajectory 

crossing the DBS target. As is evident, DBS targets completely match the center trajectories in the mediolateral-

anteroposterior plane of GPi in both hemispheres. DBS targets are located within the GPi according to the in-out GPi 

criterion that we used for the 1D reference frame (Figure 1). For the 3D reference frame, all the trajectories for 8/10 

subjects pass through GPi (for the others, anterior and lateral tracks are situated outside) in the left hemisphere. 2/3 

of the depth levels of these penetrating trajectories are located inside the GPi based on the 3D definition of the GPi. 

In terms of the right hemisphere, 6 medial, 3 central, and 7 posterior trajectories of 10 subjects penetrate the GPi 

(again, based on the DISTAL atlas definition). Similar to the left hemisphere, again, 2/3 of the depth levels coincide 

within the GPi. 

 

Figure 1 - The configuration of MERs central trajectories and DBS targets in the 3D MNI reference frame 

The central trajectories of each patient for the right and left hemispheres are in yellow (the same colour convention 

used in Figure 1A in the manuscript). DBS target positions are represented with black dots. 
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3. Data Preprocessing 

In this section, all preprocessing methods applied to the raw data shall be described in all detail. Preprocessing 

of neural recordings is an essential part of further statistical analyses. The rationale behind preprocessing in this 

study is transforming the raw data into convenient features, which can be used for neural biomarker generation. 

3.1. The merger of Multiple MERs in the Same Track 

As mentioned above, there are multiple consecutive MER recording exists for some tracks. This type of 

segmentation on the raw MER recording splits the data into different epochs. Following this division, each epoch is 

examined for the existence of artefacts. In our dataset, each epoch represents a section of 10 seconds in the 

continuous MER recording. Different recordings in the same depth level within a trajectory are merged based on a 

widely used variance coefficient2 as the stationarity criterion. This criterion is used to decide whether the recordings 

need to be sorted individually or together. Invariance equation 𝑥𝑘+𝑖[𝑖] indicates the value of k+i spike in spike train 

and 𝑥̅𝑘+𝑖  represents the mean value. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑜𝑒𝑓 =

1
𝑁 ∑ (𝑥𝑘+𝑖[𝑖] − 𝑥̅𝑘+𝑖)

2𝑁

𝑛=0

1
𝑀

∑ (𝑥𝑘[𝑖] − 𝑥̅𝑘)2𝑀
𝑛=0

 

𝑅𝑒𝑠𝑢𝑙𝑡 = {
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑜𝑒𝑓 ≤ 2,    𝑚𝑒𝑟𝑔𝑒

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑐𝑜𝑒𝑓 > 2,    𝑠𝑝𝑙𝑖𝑡    
} 

A critical threshold value for the variance coefficient is defined as 2. If the subsequent epoch of recording in a 

depth has a variance coefficient higher than 2, these recordings are evaluated individually as two separate data. If 

the variance coefficient is lower than 2, the merged version of the two recordings shall be analyzed together in the 

following steps. 

3.2. Spike Sorting 

In principle, the spikes fired by a neuron recorded by a given electrode have a distinct shape that depends on 

the morphology of its dendritic tree and the distance and orientation relative to the recording site, among other 

factors3. Spike sorting algorithms applies wavelet transformation to extract a set of features. Then these features 

are used for clustering all observed spikes into different groups, which represent the activities of single neurons4. In 

general, spike sorting algorithms have mainly four steps: 

• application of high pass filtering (300 Hz or above) and low pass filtering (below 3000 Hz) for obtaining 

low-frequency activity to observe spikes. 

• application of single-threshold or double-threshold-based approaches to defining spike peaks. The spikes 

are selected based on the data points over a predefined threshold. In general, this threshold is indicated by 

the standard deviation of the recording. In our analysis, the data points exceed the 4th time the standard 

deviation of recording compares to baseline activity, the mean. The double threshold method is adopted 

for identifying both positive and negative spikes. 

• extraction of features from detected spiking activity. Wavelet coefficients from each spike are calculated 

using a four-level multiresolution decomposition using a specific wavelet function. Several wavelet 

coefficients are obtained for isolated single-unit activity (SUA). Each wavelet coefficient here would 

characterize the spike shapes at different scales and times. Features need to be selected in a way helping 

the discrimination of the spiking activity for individual neurons. 
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• clustering single unit activities based on a similarity metric for differentiating the activities of different 

neurons. K-means clustering approach is used for grouping the spikes of different neurons with the 

adopted spike sorting algorithm method. 

Spike detection and sorting are conducted using MATLAB ToolBox Wave_Clus5. At the end of the offline spike 

sorting process, 662 SUA (single unit activity) were detected from 1091 tracks in total. The medial trajectory has 

the lowest number of isolated neurons across depths in both hemispheres. The distributions of detected SUA per 

track are demonstrated in Table 4. 
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Depth 
Left Hemisphere Right Hemisphere 

Total A C L M P A C L M P 

+3.5 0 3 0 0 0 0 0 0 0 0 3 
+3 0 3 1 0 1 0 0 0 0 0 5 
+2 2 2 7 0 1 2 1 0 1 0 16 
+1 2 3 5 0 6 5 6 3 1 7 38 
0 6 1 4 0 5 8 9 2 3 4 42 
-1 5 18 5 0 4 8 6 5 5 6 62 
-2 10 4 6 2 3 10 9 3 1 8 51 
-3 9 10 7 3 6 10 14 5 6 6 76 
-4 7 4 5 3 3 8 11 7 3 5 56 
-5 3 5 9 1 4 2 7 2 2 4 39 
-6 6 7 10 4 7 8 8 4 9 2 65 
-7 6 5 3 1 8 10 11 9 3 7 63 
-8 6 3 2 5 1 7 7 3 2 5 46 
-9 11 4 7 3 6 9 6 2 5 7 60 

-10 6 6 2 1 4 4 3 1 4 9 40 
Total 79 78 73 23 59 91 98 46 45 70 662 

 

Table 4 - SUA Distribution per Tracks 

Isolated single-unit activities across depths of the electrode trajectories for all patients. The distribution of isolated 

neurons differentiates between hemispheres and trajectories. 

 

3.3. SUA, MUA & BUA Definitions 

SUA, BUA, and MUA components in the raw MER recording represent different physiological phenomena near 

the electrode. From this view, exploiting the physiological meaning and the relationship between these components 

can provide immense intuition about the nearby neural activity around electrodes. 

The single-unit activity represents the section of the raw data that belongs to the spiking of a single neuron. 

The [-0.5 +2.5]ms time interval around the peak values of all spikes was extracted from raw data and stored as the 

neural activity of a single neuron. In literature, single-unit activity denotes the separable single-unit spike train (SU-

ST), not the non-separable multi-unit spike train (MU-ST)6. In our recordings, we observed up to 5 different SUA in a 

single MER signal. The MU-ST activities are formed by spikes from many neurons, with shapes that cannot be 

separated because of a low signal-to-noise ratio. The neurons contributing to the multiunit activity are relatively 

close to the electrode (for their spikes to be detected), but not close enough to enable the clustering of their 

shapes7. MUA holds both distinct spiking activities from one or more separable single neurons and spikes emerging 

from multiple units that cannot be separated by spike sorting6. Background activity reflects the summation of 

activities of more distant neurons in the raw MER recording. In a way, BUA represents smaller sub-noise level spikes 

generated by the surrounding neuronal population8. Background activity generally is constructed by subtracting 
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MUA (combination of SU-ST and MU-ST) from the raw local field potential (LFP) signal. Therefore BUA is the spike-

free signal region. After the removal of MUA & SUA activity from the raw signal, several operations6 are applied to 

the remaining time series to define exact background activity: (1) filtering signal with zero-phase LFP digital filter 

(prevent from phase distortions) around 500 Hz, (2) full-wave rectification of filtered signal and (3) removing DC 

offset. 

3.4. Stability Criterion for Sorted Neurons 

The stability of detected neurons was investigated before proceeding with further analysis. This stability check 

of neurons is performed to avoid adding neurons to the dataset that do not have predicted neural activity or spike 

morphology. The adopted stability criterion9 checks four different aspects of sorted neurons. (a) More than 90% of 

the total area of the amplitude histogram had to be above the detection threshold. We suggest the temporal region 

in the raw recording, which shows distinguishable changes compare to the baseline to indicate spiking activity. For 

each spike, all the spiking peaks will be compared with the defined double-threshold. If 90% of detected spikes peak 

is above this threshold level, the next criteria are checked. (b) The mean waveform of clustered activity of a neuron 

needs to have a typical action potential shape with a prominent peak. This step is completed with visual inspection 

during spike sorting. (c) The percentage of spikes occurring within 3 ms of each other had to be less than 1%. This 

criterion makes sure we do not involve spiking activity that occurs in the refractory period of the neuron. (d) The 

number of spikes detected had to be more than 20. For meaningful statistical conclusions, this threshold is defined 

to select the neurons. This stability criterion was applied to all the isolated neurons. Only the neurons which are 

passed the requirements of the stability criterion are accepted for the next steps. 

4. Candidate Neural Biomarker Generation for Dystonia Characterization 

In our research activity, we aim to localize and differentiate the neural behaviour between different areas inside 

GPi for primary dystonia patients. So, a set of candidate neural biomarker definitions are important to explain 

different aspects of pathological functioning in GPi. In the following subsections, we will provide more information 

regarding these markers. 

4.1. Firing Rate and Regularity Related Neural Biomarkers 

We defined 8 different candidate neural biomarker definitions which are related to the firing rate and firing 

regularity of neurons. The information regarding these candidate neural biomarkers is given in Table 5. 

4.1.1. Instantaneous and Mean Firing Rate 

Instead of its usefulness, the mean firing rate does not provide a complete picture of the temporal firing 

characteristic of a neuron. Consequently, researchers generally rely on other types of schemes for a better 

understanding of neural work. An example of these schemes is the instantaneous firing rate of a neuron. In our 

study, we adopted Adaptive Kernel Smoother10 (BAKS) to estimate the instantaneous firing rate. BAKS uses a kernel 

smoothing technique with an adaptive bandwidth. The neural process dynamics are encapsulated by the adaptive 

bandwidth for the selected kernel function. In this case, if the firing rate increases in the spike train, the bandwidth 

of the kernel function will be decreased by BASK. The adaptation of the bandwidth paves the way for defining 

accurate estimation of instantaneous firing rate under slow and fast-spiking dynamics. The kernel bandwidth is 

recognized by BAKS as a random variable with a prior distribution. It uses an empirical Bayesian method to change 

the posterior bandwidth.  We set the α = 4 and β = 𝑁4/5 as two parameters of BAKS and estimated the 

instantaneous firing rate for each SUA. 
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4.1.2. Inter Spike Interval 

Since ISI provides information about the patterning of spiking activity, we defined four different neural 

biomarkers for indicating the aspects of inter-spike interval. The temporal distance between two subsequent spikes 

is called an inter-spike interval (ISI). ISI distribution of a spike train is constructed for a general understanding of 

temporal spike patterning. The different physiological phenomenon reflects themself in the ISI distribution of SUA, 

hence we want to use ISI distribution features as some of our candidate neural biomarkers. The distribution of the 

ISI is determined based on the bin size definition, and we set it as 10 ms. After ISI distribution generation we tried to 

fit each ISI distribution with gamma distribution which is a type of continuous probability distribution with two 

parameters: scale(λ) and shape(κ) parameters. For fitting the gamma distribution on ISI distribution, the native 

gamfit11 function of MATLAB (Mathworks, Natick, MA, USA) was used. The proper fitting of the gamma distribution 

is essential for our study because the fitted shape and rate parameters are used for the definition of neural 

biomarkers. The Kolmogorov-Smirnov12 (K-S Test) test was applied to the fitted distribution for measuring the 

goodness of fit. The fitted gamma distribution can be represented with two sets of parameters: shape and scale 

parameters. The following transformation is applied to get the shape and scale parameters of ISI distribution. 

𝐼𝑆𝐼𝑛 = 𝑡𝑛+1 − 𝑡𝑛 

𝑠ℎ𝑎𝑝𝑒𝑝𝑎𝑟𝑎𝑚 = 𝑒𝜅 

𝑠𝑐𝑎𝑙𝑒𝑝𝑎𝑟𝑎𝑚 =
1

𝑒log(𝜆)+𝜅   

Candidate 
Neural 

Biomarker 
Definition Formulation 

firing_rate 

It is the simplest and most widely used neural 
biomarker for neural data analysis. It is directly 
connected to the outcome of neural functioning. 
 

the rate parameter (λ) of the fitted gamma distribution for the ISI 
distribution 

regularity 

This metric quantifies the regularity of spiking of 
a neuron. This regularity metric provides intuition 
about the general firing characteristic of the 
neuron. Similar to the mean firing rate, the firing 
regularity is derived from the fitted parameters of 
ISI gamma distribution. Firing regularity13 metrics 
also can help us to classify the neurons into 
subcategories based on their firing characteristic. 
In this study, the neurons are divided into three 
main categories: busting, tonic, and irregular.   

𝑓𝑖𝑟𝑖𝑛𝑔 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑙𝑜𝑔(𝜅) 

 

𝑓𝑖𝑟𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = {

𝑙𝑜𝑔(𝜅) ≤ −0.3,    𝑏𝑢𝑟𝑠𝑡𝑖𝑛𝑔

𝑙𝑜𝑔(𝜅) ≥ 0.3,    𝑡𝑜𝑛𝑖𝑐    

−0.3 > 𝑙𝑜𝑔(𝜅) > 0.3,    𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

} 

 

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = {
70% 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 > | 𝜆 ±  0.5𝜆|, 𝑏𝑢𝑟𝑠𝑡𝑖𝑛𝑔

  70% 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 < | 𝜆 ±  0.5𝜆|, 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟
} 

cv 

The coefficient of variation in spike trains is 
evaluated to quantify the width of the ISI 
distribution14. It acts as a sort of measure for 
spike train irregularity. 

𝑐𝑣 =
√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐼𝑆𝐼)2

𝑚𝑒𝑎𝑛(𝐼𝑆𝐼)
 

lv 

It is a metric originally defined to determine the 
intrinsic temporal dynamics of neuron spike 
trains. LV compares temporal variations with their 
local rates, and it is specifically defined for 
nonstationary processes. In the equation, each 𝜏 
value indicates the timing of an observed spike 
where N parameters represent the total number of 
spikes in a spike train. Compared to the CV, it 
provides more robust results for distinguishing 
the activity of different neurons15 

𝑙𝑣 =  
3

𝑁 − 2
∑ (

(𝜏𝑛+1 − 𝜏𝑛) − (𝜏𝑛 − 𝜏𝑛−1)

(𝜏𝑛+1 − 𝜏𝑛) − (𝜏𝑛 − 𝜏𝑛−1)
)

2
𝑁−1

𝑛=0
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isi_mean 

The mean value of ISI represents the average 
temporal distance between two subsequent 
spikes of a neural structure. It is closely 
correlated with the mean firing rate biomarker. 

𝐼𝑆𝐼𝑚𝑒𝑎𝑛 =  𝑠ℎ𝑎𝑝𝑒𝑝𝑎𝑟𝑎𝑚 × 𝑠𝑐𝑎𝑙𝑒𝑝𝑎𝑟𝑎𝑚 

isi_std 

To define the dispersion around the mean of ISI 
distribution, the standard deviation was 
calculated and used as a possible biomarker. This 
biomarker indicated the uncertainty of the 
duration between two subsequent spikes in the 
spike train. Intuitively, the higher dispersion 
around the ISI means indicates a wider range of 
temporal distance between spikes in spike train. 

𝐼𝑆𝐼𝑠𝑡𝑑 =  √𝑠ℎ𝑎𝑝𝑒𝑝𝑎𝑟𝑎𝑚  × 𝑠𝑐𝑎𝑙𝑒𝑝𝑎𝑟𝑎𝑚
2 

isi_skewness 

Skewness is a measure of the asymmetry of a 
distribution function and how the fitted gamma 
function deviates from a normal distribution. 
From a neural point of view, skewness represents 
how ISI values are symmetrically distributed 
around the mean of the distribution. 

𝐼𝑆𝐼𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
2

√𝑠ℎ𝑎𝑝𝑒𝑝𝑎𝑟𝑎𝑚

 

isi_rho 

Correlations between inter-spike intervals are 
occurred due to a combination of intrinsic 
mechanisms and the temporal properties of the 
input stimulus. ISI correlation can provide indirect 
information from bursting to periodical phase-
locked firing16. ISI correlation is computed with 
the serial correlation coefficient formula. 

𝐼𝑆𝐼𝑟ℎ𝑜 =  𝑆𝐶𝐶 =  

1
𝑁

∑ (𝐼𝑆𝐼𝑖 − 𝐼𝑆𝐼𝑖
̅̅ ̅̅ ̅) × (𝐼𝑆𝐼𝑖+𝑘 − 𝐼𝑆𝐼𝑖+𝑘

̅̅ ̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

1
𝑁

∑ (𝐼𝑆𝐼𝑖 − 𝐼𝑆𝐼𝑖
̅̅ ̅̅ ̅ )2𝑁

𝑖=1

 

Table 5 – Firing Rate and Firing Regularity-Related Neural Biomarker Definitions 

The names, definitions, and formulations of firing rate and firing regularity neural biomarkers. 

 

4.2. Neural Bursting 

Bursting is a dynamic state where a neuron repeatedly fires discrete groups or bursts of spikes in a small 

temporal region. Bursting activity is thought to be involved in a variety of physiological processes, such as synapse 

formation, neural network connectivity, and long-term potentiation17,18. Bursts are also been considered as either 

physiological or pathological phenomena and potentially reflect the periodic oscillatory activity. In our case, 

dystonia-induced bursting activity is observed several studies. It was demonstrated that there was a subpopulation 

of theta-oscillatory cells with unique bursting characteristics inside GPi of cervical dystonia patients19. That is why 

we tried to characterize the bursting activity for dystonic GPi. There is a vast number of available burst detection in 

the existing literature. We used an approach called Rank Surprise20 for the detection of bursting activity. In this 

method, the ISI values are calculated and ordered with ascending trends. The ordered ISI values are given a rank. 

The minimum ISI value takes the rank value equals 1. 

𝐼𝑆𝐼𝑛 = 𝑡𝑛+1 − 𝑡𝑛 

𝑅𝑛 = 𝑟𝑎𝑛𝑘(𝐼𝑆𝐼𝑛) 𝑤ℎ𝑒𝑟𝑒 𝑚𝑖𝑛(𝑟𝑎𝑛𝑘(𝐼𝑆𝐼𝑛) ) = 1 

Rn has a uniform distribution between 1 to N. That is why the algorithm is distribution-free because of giving a 

rank value to each ISI interval. Intuitively, a burst is a sequence of Rn values with successive low values. RS value 

calculated for checking a time interval burstiness. Rank Surprise values are calculated based on the log-likelihood 

of discrete uniform sum distribution P. 

𝑅𝑆 =  −𝑙𝑜𝑔(𝑃(𝑇𝑞 < 𝑢) ) 

𝑤ℎ𝑒𝑟𝑒 𝑃(𝑇𝑞 < 𝑢) 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑢𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
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If the RS value is higher than the user-defined threshold, the temporal region will be registered as busting 

activity. These regions will be subtracted from the spike train and the new iteration for finding the bursting region 

will be initiated until there is no bursting region detected by the algorithm. The bursting activity of all selected (the 

selection criteria for application of the Rank Surprise method shall be described in the firing regularity subsection) 

neurons. The number of detected bursts by the RS method is directly related to the distribution of surprise values. 

As authors of the paper suggested that some nonstationary in the ISI time distribution may dramatically affect the 

performance of the method. The mentioned recording merge criterion for stationarity, and variance coefficient, also 

makes this algorithm work more robust. The authors also suggested that the use of the RS method for multiunit 

recordings causes inaccurate results. As expected, near coincident spikes from different units will be resulted in 

very short ISI in the multiunit recording, whereas no burst is present. Two parameters are user-defined: the largest 

ISI allowed in a burst (limit) and the minimum RS (threshold) that a burst must have to be considered valid. We 

selected 75% as the largest ISI allowed in a burst and 0.01 as the minimum significance level selected burst region. 

 

Figure 2 - Bursting Activity Detected by Rank Surprise Method 

Two plots represent the neural activity. The first plot presents the firing rate of the neurons in the temporal domain 

and highlights the bursting activity of that neuron. A raster plot of the same neuron is illustrated in the second plot. 

 

Candidate Neural 
Biomarker 

Definition Formulation 

bspike_proportion 
It represents the proportion of spikes that are 
located inside the burst intervals compared to 
all existing spikes in the spike train.  

𝑏𝑠𝑝𝑖𝑘𝑒_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  
∑ 𝑐𝑜𝑢𝑛𝑡𝑛(𝑠𝑝𝑖𝑘𝑒𝑠)

𝑁𝑏𝑢𝑟𝑠𝑡𝑠
𝑛=1

𝑐𝑜𝑢𝑛𝑡(𝑎𝑙𝑙 𝑠𝑝𝑖𝑘𝑒𝑠)
 

burst_avg_spikes 
The marker indicates the average number of 
spikes within the bursting interval. 

𝑏𝑢𝑟𝑠𝑡_𝑎𝑣𝑔_𝑠𝑝𝑖𝑘𝑒𝑠 =  
1

𝑁𝑏𝑢𝑟𝑠𝑡𝑠
∑ 𝑐𝑜𝑢𝑛𝑡𝑛(𝑠𝑝𝑖𝑘𝑒𝑠)

𝑁𝑏𝑢𝑟𝑠𝑡𝑠

𝑛=1

 

burst_index 

The burst index21 is a metric that is defined for 
the assessment of possible changes in firing 
patterns. It is a widely used feature for cortical 
neural analysis. 

𝑏𝑢𝑟𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 =  
𝑚𝑒𝑎𝑛(𝐼𝑆𝐼)

𝑚𝑜𝑑(𝐼𝑆𝐼)
 

interbi 
It indicates the average temporal distance 
between subsequent bursts. 

𝑖𝑛𝑡𝑒𝑟𝑏𝑖 =  
1

𝑁𝑏𝑢𝑟𝑠𝑡𝑠 − 1
∑ (𝜏𝑏𝑢𝑟𝑠𝑡_𝑠𝑡𝑎𝑟𝑡𝑛+1 − 𝜏𝑏𝑢𝑟𝑠𝑡_𝑓𝑖𝑛𝑖𝑠ℎ𝑛

)

𝑁𝑏𝑢𝑟𝑠𝑡𝑠

𝑛=1
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intrabf 
The mean firing rate during the bursting periods 
within bursting intervals. 

𝑖𝑛𝑡𝑟𝑎𝑏𝑓 =  
1

𝑁𝑏𝑢𝑟𝑠𝑡𝑠
∑

𝑐𝑜𝑢𝑛𝑡𝑛(𝑠𝑝𝑖𝑘𝑒𝑠)

(𝜏𝑓𝑖𝑛𝑖𝑠ℎ𝑛
− 𝜏𝑠𝑡𝑎𝑟𝑡𝑛

)

𝑁𝑏𝑢𝑟𝑠𝑡𝑠

𝑛=1

 

intrabi 
The mean interval of bursting activity within the 
spike train is set as a biomarker. 

𝑖𝑛𝑡𝑟𝑎𝑏𝑖 =  
1

𝑁𝑏𝑢𝑟𝑠𝑡𝑠
∑ (𝜏𝑏𝑢𝑟𝑠𝑡_𝑓𝑖𝑛𝑖𝑠ℎ𝑛

− 𝜏𝑏𝑢𝑟𝑠𝑡_𝑠𝑡𝑎𝑟𝑡𝑛
)   

𝑁𝑏𝑢𝑟𝑠𝑡𝑠

𝑛=1

 

 

Table 6 – Neural Bursting Related Neural Biomarker Definitions 

The names, definitions, and formulations of bursting-related neural biomarkers. 

 

4.3. Power Spectrum 

Power spectrum components of single-unit activity are also considered for the candidate neural 

biomarker generation process. Firstly, we extracted the action potentials of single-unit activity from raw 

MER recording and remove the mean to get rid of the power at f=0. In the following step, we removed the 

powerline noise (50 Hz) and its first five harmonics to prevent introducing bias to our power spectrum 

and neural oscillation estimation. We adopted the Welch PSD estimation by selecting the Hanning 

window as our tapering function with a window size equal to the data length divided by 20. The 

overlapping of the windows is selected as 0.5. In the last step of power spectrum estimation, we 

normalize the power spectrum by dividing the power values in each frequency by the total power of the 

SUA. This normalization procedure is essential for acquiring a comparable power spectrum across all 

isolated single units. It is a common approach to studying neural oscillations in delta (1-4 Hz), theta (4-8 

Hz), alpha (8-12 Hz), beta (12–30 Hz), and gamma (30-100 Hz) frequency bands. Hence, we generated 

three individual neural biomarkers per frequency band:  

• the minimum power in the frequency band 

• the mean power of the frequency band 

• the maximum power in the frequency band 

4.4. Neural Oscillations  

Neural oscillations are rhythmic patterns of neural activity in the CNS.  The generation of neural 

oscillations can be mediated by multiple factors such as intrinsic properties of the oscillating neurons or 

network-wide interactions between other neurons.  From this perspective, this rhythmic activity of 

neurons plays a major role in neural processing and behavior22. Instead of the normal functioning of 

neurons, neural oscillations can also appear in pathological conditions. Pathological synchronous activity 

within the corticothalamic-basal ganglia network has been identified as a key hallmark of Parkinson's 

disease23. The standard approach for defining the oscillatory neurons is achieved by investigating the 

power spectral density (PSD) of SUA. The neural oscillations manifest themselves with prominent peaks 

in their PSD. For each of these frequency bands, the following neural biomarkers were evaluated: 

• peak power in the frequency band 

• location of the peak in terms of corresponding frequency 

These 10 neural biomarkers are believed to reflect the complete view of the oscillatory characteristic 

of GPi neurons for primary dystonia patients on a microscopic scale. Additionally, we adopt a criterion 

that evaluates the strength of the oscillation. The baseline magnitude is selected as the median 
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magnitude of the whole spectrum. The confidence of each peak in the frequency band of interest is 

defined based on the threshold value. If the peak magnitude of the frequency band is higher than the 

three interquartile ranges compared to the baseline magnitude, the oscillation in that frequency band is 

considered significant and we involved only significant oscillations in our analysis. 

4.5. Spectral Coherence Between BUA & SUA  

The coupling between time series can be investigated with various methods, either in frequency or 

time domain. Spectral coherence is a commonly used method for exploiting functional connectivity 

between different brain regions as a function of frequency. The oscillation phase of the network has a 

significant impact on the spiking probability of neurons within a neural population24. As a result, the 

frequency of oscillation cycles is proportional to the ease of excitability. In neuroscience, estimating 

spectral coherence is frequently used to measure phase-locking strength between two neuronal 

populations25. SUA and BUA represent two distinct neural populations around MER electrodes (Figure 3). 

From this perspective, investigating the phase-locking strength between these two neuron populations 

across all tracks can provide inside into the pathological functioning of dystonic GPi. Coherence is the 

normalized version of the cross power spectrum density of two time series. Spectral coherence has 

multiple formulations. In the literature, the quadratic / magnitude squared coherence is widely used. 

Based on the definition, the square of cross power spectral density is divided by the multiplication of the 

marginal power spectral densities. 

𝐶𝑜ℎ𝐵𝑈𝐴,𝑆𝑈𝐴 (𝑓) =  
|𝑃𝐵𝑈𝐴,𝑆𝑈𝐴(𝑓)|

2

𝑃𝐵𝑈𝐴,𝐵𝑈𝐴(𝑓)𝑃𝑆𝑈𝐴,𝑆𝑈𝐴(𝑓)
      

An important aspect related to spectral coherence is the significance of calculated coherence for 

each frequency. Since the spectral coherence does not follow any distribution, there is no comparison of 

the coherence for testing the hypothesis. The solutions are provided for this issue; conducting surrogate 

data analysis to generate a reference distribution or using one of the theoretical approximation 

formulations for measuring the significance in the neuroscience literature. Due to the lower computation 

time and cost, the second option is chosen.   

 

Figure 3 - Coherence Schema for SUA & BUA 

A schema demonstrates the active stimulation sites of the DBS electrode and what kind of signal components are 

extracted from different stimulation sites. 
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In the literature, the following formulation is found to define the significance of calculated spectral 

coherence. The α (alpha) value represents the adopted significance value which we defined as 0.95. 

During the spectrum estimation by the Welch method, the PSD is estimated by defining a windowing 

function with a specific length. L parameter represents the number of windowing functions without non-

overlapping. 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑙𝑖𝑚𝑖𝑡 = 1 − (1 − 𝛼)
1

𝐿−1 

Multiple coherence-related neural biomarkers were defined for 5 different frequency bands. The 

native MATLAB functions were used to detect peaks in each band. Based on these calculations, four 

different candidate neural biomarkers are defined for each of these bands: 

• the mean coherence of the frequency band, 

• the mean of only significant coherence of the frequency band 

• the value of peak coherence value within the frequency band, 

• the frequency that has the peak coherence inside the selected frequency band. 

For investigating the functional structure of the dystonic GPi, we defined 54 distinct candidate neural 

biomarkers. 

5. Mutual Information Analysis 

The entropy of a random variable is a metric that quantifies a random variable's unpredictability. The 

scope of entropy can be extended to mutual information. Mutual information is a non-linear metric that 

tries to quantify the coupling between two variables. It evaluates how much information is transmitted 

about another variable on average in the selected variable. Briefly, it indicates how much one random 

variable can inform you about another random variable. If the two variables are independent, seeing the 

outcome of one has no bearing on the uncertainty of the other, and therefore the mutual information 

between them is zero. From this perspective, investigating the values of neural biomarkers with different 

spatial variables will help us to determine the non-linear relationship between them. In this work, mutual 

information was investigated in two different domains: 3D MNI space and 1D relative depths of 

microelectrode recordings. 

5.1. Performance Metrics 

One of the most important aspects of the success of machine learning applications is the selection of 

the right performance metric. In our study, we have two types of classification procedures: binary and 

multiclass classification.  Both the two classifications: GPi in-out and GPi dorsal-ventral in MNI space 

and GPi in-out classification in relative depths are examples of binary classification. For these binary 

classifications, we have selected the following performance metrics: balanced accuracy, weighted F1, 

and weighted AUC score. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

𝐹1 = 2 𝑥 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙
 

Accuracy is the simplest performance metric out of all metrics which can provide the wrong intuition 

about the performance of the classifier, especially in imbalanced class problems. Hence, we used the 

“balanced” version of the accuracy metric. F1 is a widely popular metric for binary classification because 

of combining two other metrics (precision and recall) to get a composite evaluation metric. Since we are 

giving the same importance to each class across all classification tasks, instead of using the F1 score, we 

used the weighted-F1 score where we calculated the F1 score for each class and then took the weighted 

average of these F1 scores based on the support of the class. The degree of separability of classes is 

represented by the AUC score. In another way, the AUC indicates how well the model predicts negative 

classes like negative and positive courses as positive. To get the AUC score, the TPR and FPR are needed 

to be defined. Similar to the weighted F1 score, we also adopted the weighted version of the AUC score. 

 

Figure 4 – Directions with Significant Mutual Information for Mean Inter-Burst Interval Biomarker 

The isotropic behaviour of mean inter-burst interval biomarker in terms of significant mutual information calculated 

for dorsoventral localization task in 3D MNI reference frame. 

 

6. Feature Selection Result 

6.1. Defining Cut-Off Points for Feature Selection Steps 

For the first step of feature selection, we computed the mutual information and conducted the bootstrap test 
with 500 iterations to draw our sampling distribution. Assuming the normality of the bootstrap distribution, we 
defined the significance value as z-score≥2 (p≤0.05) for the mutual information of each neural biomarker to accept 
them for the second step of the feature selection. 

In the second step, we used the set of biomarkers that were selected in the first step. Subsequently, we proceed 
with the following substeps to define our threshold and significant biomarker set for the localization task: 
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• SS1: Compute the information gained from each neural biomarker by constructing a Random Forest Tree. 

• SS2: Compute the decoding performance in the prediction block tasks considering a set including all 
biomarkers 

• SS3: Check if the performances of the biomarker set are robust in the prediction block (If there is 
lateralization; the performance agreement between right and left hemisphere tasks with a lower 
performance in merged hemisphere task is expected. If there is no lateralization, we expected similar 
performance across all three tasks in the prediction block.) check the robustness in the tasks of prediction 
block (If there is lateralization, cross-validation tasks are expected to have low performance and 
agreement in leave-one-trajectory-out tasks. If there is no lateralization, we expected similar performance 
across all seven tasks in the prediction block). 

• SS4: repeat SS2-SS3 restricted to the subset of biomarkers including only those with information gain 
above a cut-off value TH from the heuristically selected set [0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 
0.035, 0.040, 0.045, 0.050, 0.055,0.060, 0.065, 0.070]. 

• SS5: Find the subset of biomarkers leading to optimal robust performance. The associated TH is the 
information gain cut-off. 

Feature Selection Step 2: Information Gain Threshold Selection Procedure  

𝐢𝐧𝐩𝐮𝐭 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒇𝒓𝒂𝒎𝒆  ∈ [1𝐷, 3𝐷]  

             𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 ∈ [𝐺𝑃𝑖𝑖𝑛−𝑜𝑢𝑡, 𝐺𝑃𝑖𝑑𝑜𝑟𝑠𝑜𝑣𝑒𝑛𝑡𝑟𝑎𝑙]   
             𝒕𝒂𝒔𝒌𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏_𝒃𝒍𝒐𝒄𝒌 ∈ [ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑚𝑒𝑟𝑔𝑒𝑑 , ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑟𝑖𝑔ℎ𝑡, ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑙𝑒𝑓𝑡] 

             𝒕𝒂𝒔𝒌𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏_𝒃𝒍𝒐𝒄𝒌 ∈ [𝑐𝑟𝑜𝑠𝑠_ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑟𝑖𝑔ℎ𝑡 , 𝑐𝑟𝑜𝑠𝑠_ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑙𝑒𝑓𝑡,  

                                                       𝑙𝑒𝑎𝑣𝑒_𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑜𝑢𝑡𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑙𝑒𝑎𝑣𝑒_𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑜𝑢𝑡𝑐𝑒𝑛𝑡𝑟𝑎𝑙,𝑙𝑒𝑎𝑣𝑒𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑜𝑢𝑡𝑙𝑎𝑡𝑒𝑟𝑎𝑙
,  

                                                        𝑙𝑒𝑎𝑣𝑒_𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑜𝑢𝑡𝑚𝑒𝑑𝑖𝑎𝑙,𝑙𝑒𝑎𝑣𝑒_𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑜𝑢𝑡𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟] 

             𝑎𝑟𝑟𝑎𝑦 𝒃𝒊𝒐𝒎𝒂𝒓𝒌𝒆𝒓𝒔 𝑜𝑓 𝒏 𝑠𝑡𝑟𝑖𝑛𝑔 
             𝑎𝑟𝑟𝑎𝑦 𝒃𝒊𝒐𝒎𝒂𝒓𝒌𝒆𝒓𝒔𝑰𝑮 𝑜𝑓 𝒏 𝑑𝑜𝑢𝑏𝑙𝑒𝑠 
 
1:   𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑡 ← [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.065, 0.07] 
2:   𝑐𝑢𝑡𝑜𝑓𝑓← thresholdset[1] 

3:   𝑎𝑢𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙← 0 
4:   significant_biomarkers←[ ] 
5: 
6:   for i←1 to length(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑡) do 
7:      threshold← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑡[𝑖] 
8:      biomarker_list←[ ] 
9:      for j←1 to n do 
10:       𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝐼𝐺← 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠𝐼𝐺  [𝑖] 
11:       if 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝐼𝐺 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐭𝐡𝐞𝐧 
12:          biomarker_list[end]←biomarkers[j] 
13:     
14:    𝑎𝑢𝑐𝑚𝑒𝑟𝑔𝑒𝑑←localizationPerformance(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑚𝑒𝑟𝑔𝑒𝑑 , 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟_𝑙𝑖𝑠𝑡) 

15:    𝑎𝑢𝑐𝑟𝑖𝑔ℎ𝑡←localizationPerformance(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑟𝑖𝑔ℎ𝑡 , 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟_𝑙𝑖𝑠𝑡) 

16:    𝑎𝑢𝑐𝑙𝑒𝑓𝑡←localizationPerformance(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑙𝑒𝑓𝑡, 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟_𝑙𝑖𝑠𝑡) 

17:    𝑟𝑜𝑏𝑢𝑠𝑡𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘 , 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏𝑩𝒍𝒐𝒄𝒌𝑹𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔(𝑎𝑢𝑐𝑚𝑒𝑟𝑔𝑒𝑑 , 𝑎𝑢𝑐𝑟𝑖𝑔ℎ𝑡 , 𝑎𝑢𝑐𝑙𝑒𝑓𝑡) 

18: 
19:    if 𝑟𝑜𝑏𝑢𝑠𝑡𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘 = 𝑡𝑟𝑢𝑒 𝐭𝐡𝐞𝐧       
20:       if 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝐭𝐡𝐞𝐧               
21:          𝑟𝑜𝑏𝑢𝑠𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘← 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝑩𝒍𝒐𝒄𝒌𝑹𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔 (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑠𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘 ,   

22:                                                                                                                      𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑙𝑖𝑠𝑡, 𝑎𝑢𝑐𝑟𝑖𝑔ℎ𝑡) 

23:       else then 
24:          𝑟𝑜𝑏𝑢𝑠𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘← 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝑩𝒍𝒐𝒄𝒌𝑹𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔 (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑠𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘 ,   
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25:                                                                                                                      𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟_𝑙𝑖𝑠𝑡, 𝑎𝑢𝑐𝑚𝑒𝑟𝑔𝑒𝑑) 

26:       if 𝑟𝑜𝑏𝑢𝑠𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑙𝑜𝑐𝑘 = 𝑡𝑟𝑢𝑒 𝐭𝐡𝐞𝐧       

27:          if 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝐭𝐡𝐞𝐧               
28:             if 𝑎𝑢𝑐𝑟𝑖𝑔ℎ𝑡 ≥ 𝑎𝑢𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐭𝐡𝐞𝐧               

29:                𝑎𝑢𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  𝑎𝑢𝑐𝑟𝑖𝑔ℎ𝑡 

30:                𝑐𝑢𝑡𝑜𝑓𝑓← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
31:                significant_biomarkers← 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟_𝑙𝑖𝑠𝑡 
32:          else then 
33:             if 𝑎𝑢𝑐𝑚𝑒𝑟𝑔𝑒𝑑 ≥ 𝑎𝑢𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐭𝐡𝐞𝐧               

34:                𝑎𝑢𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  𝑎𝑢𝑐𝑚𝑒𝑟𝑔𝑒𝑑 

35:                𝑐𝑢𝑡𝑜𝑓𝑓← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
36:                significant_biomarkers← biomarker_list 
 

 
Due to the complex nature of this subsection of the pipeline, here we present the pseudocode of threshold 

defining procedure for the second step of feature selection. Since the cut-off definition is derived from the 
performance of a set of features, and not single features, there was no need to apply multiple comparison 
corrections. Hence, the definition of our cross-validation tasks helped us to determine the optimum set of neural 
biomarkers and cut-off values for each localization. For GPi in-out localization in the 1D and 3D reference frame 
and GPi dorsoventral localization in the 3D reference frame, we found the optımal cut-off value to be 0.05. The 
optimal threshold point for GPi in-out localization in the 3D reference frame we found the optımal cut-off value to 
be 0.03. 

 

6.2. Neural Biomarkers for GPi in-out Localization in 1D 

Feature 

Feature Selection 1st Step 
Feature 
Selection 
2nd Step 

Mutual 
Information 

Z-Score 
Bootstrap 
Mean 

Bootstrap 
Standard 
Deviation 

Mean Decrease 
in Total Entropy 

firing_rate 0.03924 3.53923 0.00311 0.01021 0.042093 

cv 0.03383 2.92200 0.00362 0.01034 0.062429 

isi_mean 0.03967 3.49479 0.00345 0.01036 0.042329 

isi_std 0.04272 3.87863 0.00393 0.01000 0.057545 

İntrabf 0.03354 2.61559 0.00682 0.01022 0.017214 

İnterbi 0.04765 4.00772 0.00675 0.01021 0.015370 

burst_avg_spikes 0.03178 2.22446 0.00835 0.01053 0.016160 

delta_band_mean_power 0.05476 5.03064 0.00306 0.01028 0.041697 

delta_band_max_power 0.04259 3.58223 0.00359 0.01089 0.050061 

delta_band_min_power 0.04786 4.26317 0.00363 0.01038 0.050359 

theta_band_mean_power 0.04478 3.90063 0.00414 0.01042 0.041190 

theta_band_max_power 0.05748 5.22345 0.00380 0.01028 0.043302 

theta_band_min_power 0.05551 5.01112 0.00377 0.01032 0.051437 

alpha_band_mean_power 0.05406 4.93120 0.00376 0.01020 0.037910 

alpha_band_max_power 0.04472 3.90169 0.00358 0.01055 0.038359 

alpha_band_min_power 0.07433 6.73970 0.00365 0.01049 0.050350 

beta_band_mean_power 0.06395 5.95098 0.00380 0.01011 0.042108 

beta_band_max_power 0.04703 4.27481 0.00316 0.01026 0.042381 

beta_band_min_power 0.05765 5.17704 0.00332 0.01049 0.042063 

gamma_band_mean_power 0.04945 4.42030 0.00373 0.01034 0.043737 

gamma_band_max_power 0.03778 3.25407 0.00370 0.01047 0.043269 

gamma_band_min_power 0.05880 5.03240 0.00354 0.01098 0.051960 
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delta_band_peak_coherence 0.02870 2.34981 0.00439 0.01035 0.022294 

delta_band_peak_coherence_frequency 0.02362 1.78176 0.00523 0.01032 0.027913 

theta_band_mean_significant_coherence 0.02613 1.94223 0.00608 0.01032 0.026470 
 

Table 7. Two-step neural biomarker selection results of GPi in-out neuron localization for merged 

hemispheres task in the 1D relative depth reference frame. The table presents the results of the feature 

selection process of GPi in-out localization in the 1D reference frame. Only features that show significant 

mutual information in the first step of feature selection are presented in this table. Green highlighted rows 

indicate biomarkers selected by the process for this task.  

6.3. Information Gain of Neural Biomarkers for GPi in-out Localization in 3D 

feature 

Feature Selection 2nd Step 

Mean Decrease  
in Total Entropy  
(Left Hemisphere) 

Mean Decrease  
in Total Entropy  
(Right Hemisphere) 

firing_rate                               0.018276 0.019836 

regularity                                0.024069 0.035302 

isi_rho                                   0.041931 0.024269 

cv                                        0.026351 0.029147 

lv                                        0.020962 0.030842 

isi_mean                                  0.018815 0.027377 

isi_std                                   0.020622 0.026174 

isi_skewness                              0.028430 0.035220 

intrabf                                   0.008383 0.005407 

interbi                                   0.008283 0.005364 

intrabi                                   0.005671 0.004545 

burst_index                               0.005792 0.004501 

burst_avg_spikes                          0.005315 0.005663 

bspike_proportion                         0.030388 0.005339 

delta_band_mean_power                    0.025846 0.015725 

delta_band_max_power                      0.025421 0.016664 

delta_band_min_power                     0.016707 0.015601 

theta_band_mean_power    0.016662 0.017493 

theta_band_max_power                     0.022713 0.020280 

theta_band_min_power                      0.020003 0.019015 

alpha_band_mean_power                     0.025728 0.019791 

alpha_band_max_power                      0.033527 0.015391 

alpha_band_min_power                      0.015855 0.013681 

beta_band_mean_power                      0.018312 0.014372 

beta_band_max_power                       0.024497 0.021982 

beta_band_min_power                       0.017802 0.011504 

gamma_band_mean_power                     0.023969 0.018142 

gamma_band_max_power                      0.025478 0.022859 

gamma_band_min_power                      0.021654 0.024505 

oscillation_gamma_exist                   0.003129 0.001899 

oscillation_gamma_freq                    0.014296 0.007317 

oscillation_gamma_power                   0.006531 0.005034 

delta_band_mean_coherence                 0.023263 0.039634 

delta_band_mean_significant_coherence     0.010289 0.014204 

delta_band_peak_coherence                 0.005481 0.028225 

delta_band_peak_coherence_frequency       0.007064 0.014217 

theta_band_mean_coherence                 0.022701 0.036155 
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theta_band_mean_significant_coherence     0.003403 0.008569 

theta_band_peak_coherence                 0.022572 0.017053 

theta_band_peak_coherence_frequency       0.012750 0.012727 

alpha_band_mean_coherence              0.026219 0.030651 

alpha_band_mean_significant_coherence     0.009309 0.008245 

alpha_band_peak_coherence    0.009078 0.025328 

alpha_band_peak_coherence_frequency       0.015217 0.010938 

beta_band_mean_coherence                  0.029478 0.028396 

beta_band_mean_significant_coherence      0.008561 0.032471 

beta_band_peak_coherence                  0.020195 0.026298 

beta_band_peak_coherence_frequency        0.017246 0.029106 

gamma_band_mean_coherence                 0.042760 0.021745 

gamma_band_mean_significant_coherence     0.029618 0.027162 

gamma_band_peak_coherence                 0.035536 0.025677 

gamma_band_peak_coherence_frequency       0.027842 0.022957 
 

Table 8 – The neural biomarker selection results of GPi in-out localization of dystonic GPi neurons for 

separate hemispheres tasks of prediction block in the 3D MNI reference frame. The table contains 

information regarding the results of entropy-based marker selection with 0.03 entropy criteria for GPi in-

out localization task in 3D MNI coordinates. 

6.4. Neural Biomarkers for Dorsoventral Localization in 3D 

feature 

1st Step 2nd Step 

Preferential Direction  Significant 
Dorsoventral 
Direction 
Percentage 

Mean 
Decrease  
in Total 
Entropy 

I Z-Score 
Bootstrap 
Mean 

Bootstrap 
Standard 
Deviation 

Significance 

alpha_band_max_power 0.08055 3.18442 0.00972 0.02224 True 24.3243 0.034125 

alpha_band_mean_coherence 0.07473 2.76330 0.01648 0.02108 True 4.5045 x 

alpha_band_mean_power 0.10937 4.56206 0.01381 0.02095 True 48.6486 0.034228 

alpha_band_mean_significant_coherence 0.04820 1.15995 0.02331 0.02146 False 0 x 

alpha_band_min_power 0.10977 4.60676 0.00926 0.02182 True 49.5495 0.037848 

alpha_band_peak_coherence 0.05180 1.72319 0.01781 0.01973 False 0 x 

alpha_band_peak_coherence_frequency 0.05385 1.81624 0.01578 0.02096 False 0 x 

beta_band_max_power 0.07391 2.86983 0.01014 0.02222 True 9.9099 x 

beta_band_mean_coherence 0.05544 1.97631 0.01140 0.02229 True 3.6036 x 

beta_band_mean_power 0.10404 4.22344 0.01399 0.02132 True 31.5315 0.033894 

beta_band_mean_significant_coherence 0.05624 1.78061 0.01474 0.02331 True 2.7027 x 

beta_band_min_power 0.10725 4.34196 0.00880 0.02267 True 50.4505 0.039292 

beta_band_peak_coherence 0.07546 3.04499 0.00829 0.02206 True 9.009 x 

beta_band_peak_coherence_frequency 0.06281 2.37398 0.01283 0.02106 True 6.3063 x 

bspike_proportion 0.07148 2.25402 0.02374 0.02118 True 3.6036 x 

burst_avg_spikes 0.11535 4.47433 0.02526 0.02014 True 36.036 0.012435 

burst_index 0.10407 3.80775 0.02464 0.02086 True 18.018 0.016578 

cv 0.07555 3.00620 0.00866 0.02225 True 14.4144 0.066889 

delta_band_max_power 0.10525 4.41486 0.00848 0.02192 True 26.1261 0.039661 

delta_band_mean_coherence 0.06323 2.44735 0.01209 0.02090 True 1.8018 x 

delta_band_mean_power 0.08875 3.58076 0.00965 0.02209 True 10.8108 0.035386 

delta_band_mean_significant_coherence 0.06800 2.09451 0.02190 0.02201 True 1.8018 x 

delta_band_min_power 0.10938 4.70894 0.01596 0.01984 True 34.2342 0.037654 

delta_band_peak_coherence 0.09006 3.45918 0.01662 0.02123 True 24.3243 0.050941 



Supplementary Material 

17 
 
 

delta_band_peak_coherence_frequency 0.09218 3.23446 0.01927 0.02254 True 7.2072 x 

firing_rate 0.08405 3.46534 0.00898 0.02167 True 25.2252 0.058975 

gamma_band_max_power 0.07378 2.78445 0.01659 0.02054 True 9.9099 x 

gamma_band_mean_coherence 0.06668 2.39355 0.01578 0.02127 True 9.9099 x 

gamma_band_mean_power 0.09176 3.56752 0.01457 0.02164 True 23.4234 0.030436 

gamma_band_mean_significant_coherence 0.09098 3.42329 0.01750 0.02146 True 22.5225 0.042503 

gamma_band_min_power 0.12005 4.94078 0.01206 0.02186 True 66.6667 0.047774 

gamma_band_peak_coherence 0.08104 3.09067 0.01766 0.02051 True 15.3153 0.044908 

gamma_band_peak_coherence_frequency 0.05876 2.33436 0.00795 0.02176 True 3.6036 x 

interbi 0.08112 2.67053 0.02493 0.02104 True 18.9189 0.017362 

intrabf 0.08441 2.82739 0.02498 0.02102 True 3.6036 x 

intrabi 0.11995 4.38416 0.02535 0.02158 True 25.2252 0.013591 

isi_mean 0.07618 2.97450 0.00941 0.02245 True 28.8288 0.050866 

isi_rho 0.07637 3.03889 0.01350 0.02069 True 5.4054 x 

isi_skewness 0.07315 2.61789 0.01712 0.02140 True 5.4054 x 

isi_std 0.09094 3.68031 0.00967 0.02208 True 20.7207 0.062220 

lv 0.07990 3.09426 0.01600 0.02065 True 9.009 x 

oscillation_beta_frequency 0.04924 2.25866 0.02405 0.01115 True 1.8018 x 

oscillation_beta_power 0.05329 2.96147 0.02389 0.00993 True 1.8018 x 

oscillation_delta_frequency 0.03406 1.77424 0.02148 0.00709 False 0 x 

oscillation_delta_power 0.03623 2.10891 0.02121 0.00712 True 0.9009 x 

oscillation_gamma_frequency 0.05730 1.51460 0.02691 0.02007 False 0 x 

oscillation_gamma_power 0.07652 2.60792 0.02602 0.01936 True 2.7027 x 

regularity 0.07084 2.61990 0.01723 0.02046 True 4.5045 x 

theta_band_max_power 0.10843 4.41451 0.00991 0.02232 True 37.8378 0.037619 

theta_band_mean_coherence 0.06633 2.46973 0.01196 0.02201 True 9.9099 x 

theta_band_mean_power 0.09925 4.27680 0.01086 0.02067 True 42.3423 0.036428 

theta_band_mean_significant_coherence 0.06892 2.12929 0.02141 0.02231 True 0.9009 x 

theta_band_min_power 0.08547 3.39133 0.01589 0.02052 True 43.2432 0.036732 

theta_band_peak_coherence 0.12611 4.96943 0.01002 0.02336 True 11.7117 0.041225 

theta_band_peak_coherence_frequency 0.08735 3.41939 0.01074 0.02240 True 16.2162 0.040430 

Table 9- Two-step neural biomarker selection results of dorsoventral localization for dystonic GPi 

neurons for merged hemispheres task in the 3D MNI reference frame. The table contains information 

regarding preferential directions of candidate neural biomarkers and the results of each step of the 

feature selection process for the dorsoventral localization task. 

7. Neuron Localization Results 

7.1. GPi In-Out Localization in 1D Relative Space 

Biomarker 

Merged Hemispheres Right Hemisphere Left Hemisphere 

Cramér–Von 
Mises Test 

Mann-
Whitney U 

Test 
(corrected) 

Cramér–Von 
Mises Test 

Mann-
Whitney U 

Test 
(corrected) 

Cramér–Von 
Mises Test 

Mann-
Whitney U 

Test 
(corrected) GPi-in 

GPi-
out 

GPi-in 
GPi-
out 

GPi-in 
GPi-
out 

alpha_band_min_power 
4.642 
e-09 

4.612 
e-09 

1 x x x x x x 

beta_band_max_power x x x 
3.981 
e-09 

2.863 
e-10 

0.922 x x x 

cv 
1.262 
e-10 

3.468 
e-10 

1 
6.801 
e-08 

6.814 
e-07 

0.939 
2.111 
e-07 

4.686 
e-07 

0.671 

delta_band_max_power 4.630 4.610 1 3.9629 2.864 0.939 x x x 
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e-09 e-09 e-09 e-10 

delta_band_min_power 
4.612 
e-09 

4.642 
e-09 

1 x x X x x x 

delta_band_peak_coherence x x x 
3.865 
e-09 

2.099 
e-09 

0.006 x x x 

delta_band_peak_coherence_frequency x x x 
7.065 
e-11 

7.281 
e-09 

0.039 x x x 

firing_rate x x x 
1.821 
e-09 

6.225 
e-10 

0.922 
2.528 
e-09 

2.256 
e-09 

0.0386 

gamma_band_min_power 
4.613 
e-09 

4.645 
e-09 

1 x x X x x x 

isi_mean x x x 
2.017 
e-09 

6.463 
e-10 

0.922 
1.578 
e-09 

6.374 
e-11 

0.0386 

isi_std 
1.383 
e-09 

1.395 
e-09 

0.0425 x x X 
7.825 
e-10 

2.272 
e-11 

0.0386 

theta_band_min_power 
4.612 
e-09 

4.643 
e-09 

1 
3.983 
e-09 

2.866 
e-10 

0.939 x x x 

Table 10 – Results of Cramér–Von Mises and Mann-Whitney U Tests Applied on Selected Features for 

GPi In-Out Localization in 1D Relative Space (p-values are corrected according to Holm-Bonferroni 

correction) 

 

Hemisphere 
Performance 

Metric 

Decision 
Tree 

Classifier 

Random 
Forest 
Tree 

Classifier 

K-Nearest 
Neighbors 
Classifier 

Gaussian 
Process 

Classifier 

Support 
Vector 

Machine 
Classifier 

Voting 
Classifier 
(KNN+RF) 

merged 

balanced 
accuracy 

0.537 
±0.019 

0.588 
±0.027  

0.623 
±0.033  

0.534 
±0.034 

0.566 
±0.050  

0.617 
±0.031 

weighted-AUC 
0.575 

±0.026 
0.619 

±0.051 
0.692 

±0.043 
0.580 

±0.053 
0.595 

±0.051 
0.691 

±0.044 

weighted-F1 
0.539 

±0.020 
0.589 

±0.027 
0.624 

±0.032 
0.536 

±0.034 
0.565 

±0.049 
0.618 

±0.032 

right 

balanced 
accuracy 

0.590 
±0.065 

0.598 
±0.038 

0.638 
±0.039 

0.607 
±0.053 

0.571 
±0.030 

0.633 
±0.048 

weighted-AUC 
0.627 

±0.041 
0.652 

±0.056 
0.708 

±0.030 
0.656 

±0.034 
0.619 

±0.018 
0.705 

±0.039 

weighted-F1 
0.588 

±0.066 
0.595 

±0.038 
0.635 

±0.042 
0.608 

±0.051 
0.568 

±0.027 
0.630 

±0.048 

left 

balanced 
accuracy 

0.572 
±0.042 

0.597 
±0.076 

0.608 
±0.039  

0.536 
±0.056  

0.562 
±0.057 

0.636 
±0.048  

weighted-AUC 
0.578 

±0.045 
0.619 

±0.036 
0.681 

±0.016 
0.578 

±0.058 
0.564 

±0.047 
0.664 

±0.022 

weighted-F1 
0.569 

±0.039 
0.597 

±0.078 
0.608 

±0.039 
0.460 

±0.113 
0.542 

±0.060 
0.637  

±0.048 

Table 11 – Performances of Trained Classifiers for GPi In-Out Localization in Main Analysis Modes 

The individual performances of the Decision Tree, Random Forest Tree, KNN, Gaussian Process, and SVM classifiers 

for GPi in-out localization along with the Voting classifier that was constructed based on soft-voting using the most 

successful two individual classifiers in the relative depth domain. 

 

The results of GPi in-out localization in the relative depth domain state that the KNN is the most successful 

algorithm across all three main analysis modes. The Random Forest algorithm shows the second-best 

performances for merged and left hemisphere analyses. Even though Gaussian Process Classifier has better 

performance than that of the Random Forest Trees model in the right hemisphere analysis, it generally showed the 

weakest performance in the remaining analyses. As a result, we selected trained KNN and Random Forest Tree 
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classifiers to construct Voting Classifiers with a soft voting mechanism. Nonetheless, the performances of KNN and 

Voting classifiers are quite similar but the robustness of the Voting Classifier is clearer in the cross-validation tasks. 

The results of seven cross-validation analyses in this task are given in Table 9. Cross-hemispheric cross-validation 

tasks are conducted with a hemisphere-only trained model. For example, the model of right hemisphere GPi is 

trained with 350 neurons detected in the right hemisphere. This trained model is tested with the remaining 312 left 

hemisphere neurons and the performance metrics are calculated. In terms of the leave-one-out cross-validation 

task, we used the model of merged hemisphere main analysis mode. We trained the model with the neurons of four 

trajectories. The remaining trajectory is saved for the testing procedure. 

 

Performance Metric 

Cross-Hemispheric Cross-
Validation Tasks 

Leave-One-Trajectory Out Cross-Validation Tasks 

train: right 
test: left 

train: left 
test: right 

train:  
non-anterior 
test: anterior 

train:  
non-central 
test: central 

train: 
 non-lateral 
test: lateral 

train:  
non-medial 
test: medial 

train:  
non-posterior 
test: posterior 

balanced accuracy 0.633 0.610  0.633 0.583 0.649  0.673 0.574  

weighted-AUC 0.699 0.690 0.713 0.655 0.698 0.763 0.661 

weighted-F1 0.632 0.612 0.635 0.593 0.653 0.688 0.574 

Table 12 – Performances of Trained Classifiers for GPi In-Out Localization in Cross-Validation Tasks 

Instead of evaluating the performance of the selected neural biomarkers in a combined fashion, we also want to 

understand the effect of individual markers on localization in different spatial domains. Hence, we trained Voting 

classifiers with single biomarkers individually and check the performances by comparing them with random chance 

intervals. In this and subsequent sections, we will also share these results.  

 

Hemisphere Biomarkers 

Balanced Accuracy Weighted AUC Weighted F1 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Merged 

cv 0.524 0.497 0.523 0.522 0.509 0.542 0.526 0.499 0.525 

isi_std 0.515 0.492 0.520 0.530 0.503 0.538 0.517 0.494 0.522 

delta_band_max_power 0.522 0.473 0.503 0.538 0.477 0.513 0.524 0.476 0.505 

delta_band_min_power 0.576 0.487 0.514 0.589 0.493 0.527 0.579 0.489 0.516 

theta_band_min_power 0.550 0.486 0.513 0.571 0.492 0.525 0.552 0.488 0.515 

alpha_band_min_power 0.510 0.488 0.517 0.517 0.497 0.531 0.512 0.490 0.519 

gamma_band_min_power 0.525 0.491 0.520 0.540 0.502 0.536 0.528 0.493 0.521 

combination 0.617 0.556 0.584 0.691 0.619 0.646 0.618 0.559 0.587 

Right 

firing_rate 0.488 0.489 0.528 0.475 0.501 0.548 0.489 0.490 0.530 

cv 0.562 0.494 0.540 0.597 0.514 0.566 0.563 0.496 0.541 

isi_mean 0.508 0.503 0.539 0.490 0.520 0.565 0.509 0.504 0.542 

delta_band_max_power 0.509 0.471 0.508 0.548 0.473 0.520 0.508 0.472 0.509 

theta_band_min_power 0.604 0.489 0.529 0.630 0.497 0.547 0.607 0.491 0.530 

beta_band_max_power 0.552 0.483 0.523 0.552 0.492 0.538 0.552 0.484 0.525 

delta_band_peak_coherence 0.602 0.487 0.521 0.631 0.508 0.547 0.599 0.455 0.495 

delta_band_peak_coherence_frequency 0.556 0.469 0.499 0.597 0.468 0.510 0.550 0.436 0.471 

combination 0.633 0.559 0.591 0.705 0.627 0.662 0.630 0.560 0.592 

Left 

firing_rate 0.533 0.492 0.530 0.573 0.500 0.549 0.533 0.492 0.531 

cv 0.549 0.495 0.540 0.526 0.507 0.563 0.542 0.495 0.541 

isi_mean 0.529 0.497 0.536 0.571 0.520 0.560 0.529 0.497 0.537 

isi_std 0.581 0.496 0.536 0.620 0.510 0.559 0.582 0.496 0.536 

combination 0.636 0.540 0.577 0.664 0.590 0.626 0.637 0.541 0.578 

Table 13 – Performances of Voting Classifiers Trained with Single and Combined Version of Biomarkers 

and Random Chance Confidence Intervals for GPi In-Out Localization in Relative Depth Space 
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7.2. GPi In-Out Localization in 3D MNI Space 

Biomarker 

Merged Hemispheres Right Hemisphere Left Hemisphere 

Cramér–Von 
Mises Test 

Mann-
Whitney U 

Test 

(corrected) 

Cramér–Von 
Mises Test 

Mann-
Whitney U 

Test 

(corrected) 

Cramér–Von 
Mises Test 

Mann-
Whitney U 

Test 

(corrected) GPi-in 
GPi-
out 

GPi-in 
GPi-
out 

GPi-in 
GPi-
out 

alpha_band_max_power x x x x x x 
4.340 
e-10 

0.0065 0.0011 

alpha_band_mean_coherence x x x 0.0349 
3.674 
e-06 

1.0 x x x 

beta_band_mean_coherence 
6.678 
e-10 

6.246 
e-09 

1.0 x x x x x x 

beta_band_mean_significant_coherence x x x 0.0010 
1.875 
e-06 

1.0 x x x 

bspike_proportion x x x x x x 
7.945 
e-11 

1.593 
e-10 

1.0 

cv 
2.817 
e-11 

4.994 
e-10 

1.0 x x x x x x 

delta_band_mean_coherence 
5.542 
e-11 

4.603 
e-11 

1.0 0.0101 
5.673 
e-09 

1.0 x x x 

gamma_band_mean_coherence 
6.497 
e-10 

4.981 
e-07 

0.8662 x x x 
9.950 
e-10 

0.1726 1.0 

gamma_band_peak_coherence x x x x x x 0.0484 0.1906 1.0 

isi_rho 0.035 0.0096 1.0 x x x 0.0353 0.9867 0.4913 

isi_skewness x x x 
0.6793 

 
0.0115 0.7092 x x x 

lv 0.0583 0.0122 1.0 0.0143 0.0134 0.2846 x x x 

regularity x x x 0.1233 0.0052 0.7092 x x x 

theta_band_mean_coherence 
2.206 
e-11 

4.187 
e-08 

0.8264 0.0092 
8.436 
e-09 

0.2208 x x x 

Table 14 – Results of Cramér–Von Mises and Mann-Whitney U Tests Applied on Selected Features for 

GPi In-Out Localization in 3D MNI Space (p-values are corrected according to Holm-Bonferroni 

correction) 

 

Hemisphere 
Performance 

Metric 

Decision 
Tree 

Classifier 

Random 
Forest 
Tree 

Classifier 

K-Nearest 
Neighbors 
Classifier 

Gaussian 
Process 

Classifier 

Support 
Vector 

Machine 
Classifier 

Voting 
Classifier 
(GPC+RF) 

merged 

balanced 
accuracy 

0.543 
±0.041 

0.596 
±0.038  

0.577 
±0.022 

0.557 
±0.031 

0.556 
±0.043 

0.600 
±0.033 

weighted-AUC 
0.580 

±0.046 
0.636 

±0.041 
0.590 

±0.034 
0.600 

±0.064 
0.525 

±0.070 
0.631 

±0.047 

weighted-F1 
0.540 

±0.038 
0.596 

±0.038 
0.577 

±0.023 
0.557 

±0.031 
0.555 

±0.043 
0.599 

±0.033 

right 

balanced 
accuracy 

0.616 
±0.113  

0.673 
±0.130 

0.646 
±0.060  

0.695 
±0.048 

0.650 
±0.097 

0.705 
±0.117 

weighted-AUC 
0.646 

±0.127 
0.752 

±0.124 
0.679 

±0.052 
0.759 

±0.098 
0.677 

±0.103 
0.787 

±0.125 

weighted-F1 
0.733 

±0.081 
0.784 

±0.074 
0.747 

±0.045 
0.784 

±0.025 
0.724 

±0.041 
0.803 

±0.070 

left balanced 0.698 0.669 0.706 0.671 0.701 0.698 
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accuracy ±0.087  ±0.058  ±0.061 ±0.086 ±0.036 ±0.035 

weighted-AUC 
0.745 

±0.077 
0.756 

±0.023 
0.743 

±0.076 
0.755 

±0.063 
0.770 

±0.067 
0.784 

±0.032 

weighted-F1 
0.782 

±0.046 
0.743 

±0.024 
0.742 

±0.061 
0.785 

±0.044 
0.754 

±0.052 
0.790 

±0.028 

Table 15 – Performances of Trained Classifiers for GPi In-Out Localization in Main Analysis Modes 

The individual performances of the Decision Tree, Random Forest Tree, KNN, Gaussian Process, and SVM classifiers 

for GPi in-out localization with the Voting classifier constructed based on soft-voting using the most successful two 

individual classifiers in MNI space. 

 

Performance Metric 

Cross-Hemispheric Cross-
Validation Tasks 

Leave-One-Trajectory Out Cross-Validation Tasks 

train: right 
test: left 

train: left 
test: right 

train:  
non-anterior 
test: anterior 

train:  
non-central 
test: central 

train: 
 non-lateral 
test: lateral 

train:  
non-medial 
test: medial 

train:  
non-posterior 
test: posterior 

balanced accuracy 0.574 0.598 0.567 0.553 0.571 0.590  0.579 

weighted-AUC 0.574 0.611 0.626 0.613 0.638 0.648 0.637 

weighted-F1 0.595 0.630 0.584 0.549 0.588 0.595 0.608 

Table 16 – Performances of Trained Classifiers for GPi In-Out Localization in Cross-Validation Tasks 

 

Hemisphere Biomarkers 

Balanced Accuracy Weighted AUC Weighted F1 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Merged 

isi_rho 0.512 0.467 0.512 0.545 0.517 0.554 0.530 0.478 0.530 

cv 0.531 0.488 0.534 0.547 0.502 0.552 0.521 0.510 0.541 

lv 0.534 0.498 0.543 0.549 0.493 0.551 0.529 0.492 0.534 

beta_band_mean_coherence 0.519 0.482 0.539 0.535 0.501 0.537 0.511 0.482 0.519 

theta_band_mean_coherence 0.489 0.465 0.518 0.508 0.485 0.529 0.496 0.485 0.531 

delta_band_mean_coherence 0.517 0.476 0.527 0.540 0.487 0.546 0.495 0.491 0.517 

gamma_band_mean_coherence 0.498 0.479 0.512 0.501 0.499 0.514 0.497 0.478 0.503 

combination 0.600 0.512 0.553 0.631 0.539 0.581 0.599 0.523 0.572 

Right 

regularity 0.530 0.491 0.543 0.626 0.499 0.574 0.736 0.572 0.607 

lv 0.521 0.501 0.553 0.626 0.510 0.588 0.728 0.580 0.613 

isi_skewness 0.530 0.490 0.540 0.622 0.495 0.575 0.736 0.572 0.604 

delta_band_mean_coherence 0.509 0.480 0.530 0.585 0.481 0.567 0.718 0.567 0.596 

theta_band_mean_coherence 0.493 0.484 0.533 0.631 0.490 0.566 0.705 0.568 0.599 

alpha_band_mean_coherence 0.511 0.482 0.527 0.632 0.483 0.561 0.721 0.566 0.595 

beta_band_mean_significant_coherence 0.498 0.469 0.511 0.661 0.472 0.544 0.710 0.560 0.598 

combination 0.705 0.536 0.561 0.787 0.571 0.637 0.803 0.630 0.649 

Left 

isi_rho 0.500 0.474 0.526 0.592 0.495 0.568 0.731 0.645 0.667 

bspike_proportion 0.537 0.463 0.538 0.604 0.456 0.535 0.760 0.634 0.678 

alpha_band_max_power 0.502 0.474 0.526 0.696 0.453 0.561 0.733 0.635 0.667 

gamma_band_mean_coherence 0.496 0.494 0.535 0.666 0.487 0.568 0.727 0.646 0.677 

gamma_band_peak_coherence 0.498 0.484 0.544 0.656 0.483 0.548 0.729 0.636 0.687 

combination 0.698 0.554 0.605 0.784 0.527 0.577 0.790 0.656 0.707 

 

Table 17 – Performances of Voting Classifiers Trained with Single and Combined Version of Biomarkers 

and Random Chance Confidence Intervals for GPi In-Out Localization in MNI Space 
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7.3. GPi Dorsoventral Localization in 3D MNI Space 

Biomarker 

Merged Hemispheres Right Hemisphere Left Hemisphere 

Cramér–Von 
Mises Test 

Mann-
Whitney 
U Test 

Cramér–Von 
Mises Test 

Mann-
Whitney 
U Test 

Cramér–Von 
Mises Test 

Mann-
Whitney 
U Test GPi-in GPi-out GPi-in GPi-out GPi-in GPi-out 

cv 9.338 
e-06 

1.232 
e-07 

0.3391 01004 0.0163 0.0192 
4.221 
e-05 

2.342 
e-06 

0.8422 

delta_band_min_power x x x 0.0082 0.0034 0.5722 x x x 

delta_band_peak_coherence 
0.0018 

9.089 
e-09 

0.1883 x x x x x x 

firing_rate 1.129 
e-10 

3.033 
e-11 

0.0348 
3769 
e-05 

0.0007 0.1219 
5.358 
e-06 

3.960 
e-08 

0.0825 

isi_mean 
0.0136 

1.341 
e-05 

0.0348 0.4152 0.0179 0.1219 x x x 

isi_std 
0.0163 

1.341 
e-05 

0.0118 0.3043 0.0499 0.0295 0.0248 
5.762 
e-05 

0.0825 

Table 18 – Results of Cramér–Von Mises and Mann-Whitney U Tests Applied on Selected Features for 

GPi Dorsoventral Localization in 3D MNI Space (p-values are corrected according to Holm-Bonferroni 

correction) 

 

Hemisphere 
Performance 

Metric 

Decision 
Tree 

Classifier 

Random 
Forest 
Tree 

Classifier 

K-Nearest 
Neighbors 
Classifier 

Gaussian 
Process 

Classifier 

Support 
Vector 

Machine 
Classifier 

Voting 
Classifier 
(KNN+RF) 

merged 

balanced 
accuracy 

0.506 
±0.030 

0.546 
±0.055 

0.628 
±0.056 

0.559 
±0.045 

0.568 
±0.052 

0.649 
±0.042 

weighted-AUC 
0.517 

±0.058 
0.602 

±0.054 
0.690 

±0.059 
0.603 

±0.035 
0.532 

±0.101 
0.676 

±0.057 

weighted-F1 
0.538 

±0.028 
0.563 

±0.049 
0.638 

±0.054 
0.586 

±0.039 
0.585 

±0.049 
0.661 

±0.039 

right 

balanced 
accuracy 

0.603 
±0.084 

0.689 
±0.069 

0.648 
±0.102 

0.574 
±0.075 

0.580 
±0.088 

0.722 
±0.038 

weighted-AUC 
0.708 

±0.031 
0.728 

±0.096 
0.745 

±0.094 
0.587 

±0.084 
0.511 

±0.167 
0.765 

±0.062 

weighted-F1 
0.562 

±0.086 
0.685 

±0.072 
0.637 

±0.108 
0.548 

±0.088 
0.575 

±0.075 
0.712 

±0.047 

left 

balanced 
accuracy 

0.508 
±0.018 

0.564 
±0.063 

0.673 
±0.073 

0.587 
±0.100 

0.582 
±0.082 

0.684 
±0.056 

weighted-AUC 
0.550 

±0.053 
0.615 

±0.076 
0.723 

±0.065 
0.621 

±0.129 
0.517 

±0.119 
0.717 

±0.090 

weighted-F1 
0.559 

±0.015 
0.608 

±0.055 
0.690 

±0.062 
0.623 

±0.087 
0.620 

±0.064 
0.704 

±0.053 

Table 19 – Performances of Trained Classifiers for Dorsoventral Localization in Main Analysis Modes 

The individual performances of the Decision Tree, Random Forest Tree, KNN, Gaussian Process, and SVM classifiers 

for dorsoventral localization along with the Voting classifier that constructed based on soft-voting using the most 

successful two individual classifiers in MNI space. 
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Performance Metric 

Cross-Hemispheric Cross-
Validation Tasks 

Leave-One-Trajectory Out Cross-Validation Tasks 

train: right 
test: left 

train: left 
test: right 

train:  
non-anterior 
test: anterior 

train:  
non-central 
test: central 

train: 
 non-lateral 
test: lateral 

train:  
non-medial 
test: medial 

train:  
non-posterior 
test: posterior 

balanced accuracy 0.593 0.627 0.545  0.588 0.629 0.500 0.601 

weighted-AUC 0.651 0.718 0.578 0.677 0.722 0.653 0.711  

weighted-F1 0.628 0.629 0.554 0.672 0.654 0.499 0.614 

Table 20 – Performances of Trained Classifiers for Dorsoventral Localization in Cross-Validation Tasks 

 

Hemisphere Biomarkers 

Balanced Accuracy Weighted AUC Weighted F1 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Mean 
Lower 
Edge 
of CI 

Upper 
Edge  
of CI 

Merged 

cv 0.602 0.494 0.530 0.633 0.510 0.562 0.636 0.513 0.548 

delta_band_peak_coherence 0.554 0.486 0.511 0.579 0.504 0.547 0.593 0.491 0.521 

firing_rate 0.594 0.481 0.517 0.623 0.490 0.543 0.626 0.499 0.534 

isi_mean 0.552 0.490 0.526 0.565 0.513 0.559 0.594 0.508 0.544 

isi_std 0.618 0.491 0.523 0.658 0.503 0.550 0.660 0.510 0.541 

combination 0.649 0.543 0.565 0.676 0.599 0.644 0.661 0.559 0.583 

Right 

isi_std 0.572 0.549 0.579 0.649 0.557 0.593 0.555 0.543 0.573 

cv 0.595 0.534 0.563 0.659 0.546 0.582 0.590 0.528 0.556 

firing_rate 0.711 0.519 0.547 0.760 0.535 0.568 0.713 0.512 0.539 

isi_mean 0.757 0.550 0.577 0.764 0.554 0.587 0.756 0.543 0.571 

delta_band_min_power 0.601 0.528 0.560 0.562 0.536 0.576 0.589 0.519 0.553 

combination 0.722 0.555 0.583 0.765 0.585 0.618 0.712 0.549 0.577 

Left 

isi_std 0.596 0.538 0.553 0.618 0.554 0.571 0.651 0.592 0.606 

cv 0.559 0.534 0.552 0.586 0.552 0.570 0.611 0.594 0.606 

firing_rate 0.569 0.521 0.537 0.528 0.532 0.553 0.602 0.577 0.592 

combination 0.684 0.580 0.592 0.717 0.604 0.622 0.704 0.639 0.650 

Table 21 – Performances of Voting Classifiers Trained with Single and Combined Version of Biomarkers 

and Random Chance Confidence Intervals for GPi Dorsoventral Localization in MNI Space 

 

Patient 
ID 

BFMDRS  

Arm Leg  

Baseline 
Right 
Arm 

Baseline 
Left 
Arm 

Baseline 
Right 
Leg 

Baseline 
Left Leg 

More 
Affected 

Side 

1 2 2 0 0 Equal 

2 6 0 6 0 Right 

3 6 6 12 12 Equal 

4 9 9 16 0 Right 

5 x x x x x 

6 0 0 0 0 Equal 

7 x x x x x 

8 0 0 12 4 Right 

9 4 4 12 0 Right 

10 1 0 4 0 Right 

Table 22 – The Baseline BFMDRS Scores of Arms and Legs. 
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