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Abstract 

Objective. The Globus Pallidus pars interna (GPi) is one of the main targets for Deep Brain 

Stimulation (DBS) therapies for dystonia and other movement disorders. Still, a complete 

picture of the spiking dynamics of the nucleus is far from being achieved. Microelectrode 

recordings (MER) provide a unique brain window opportunity to shed light on GPi 

organization, which might support intraoperative DBS target localization, as previously done 

for the Subthalamic nucleus (STN). Approach. Here we propose a novel procedure to analyze 

explorative MERs from DBS implants in dystonic patients. The procedure identifies the 

neural activity markers discriminating neurons in the GPi from those in the neighbouring 

structures, as well as the markers discriminating neurons located in different regions within 

the GPi. Main results. The identification of the borders of the GPi based on neural markers 

was a difficult task, due to internal inhomogeneities in GPi firing dynamics. However, the 

procedure was able to exploit these inhomogeneities to characterize the internal 

electrophysiological structure of the GPi. In particular, we found a reliable dorsolateral 

gradient in firing activity and regularity. Significance. Overall, we characterized the spatial 

distribution of neural activity markers in the dystonic GPi, paving the way for the use of these 

markers for DBS target localization. The procedure we developed to achieve this result could 

be easily extended to MER performed for other disorders and in other areas. 

Keywords: Dystonia, Globus Pallidus Pars Interna (GPI), Microelectrode Recordings, Deep Brain Stimulation (DBS), 
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Introduction  

Deep brain stimulation (DBS) of the internal segment of 

the globus pallidus (GPi) has been established as a highly 

therapeutic surgical procedure for severe idiopathic dystonia 

[1–3]. The inappropriate location of the active contacts 

explains most of the therapeutical failures in GPi DBS for 

dystonia, which increases the rate of revisions and remissions 

of previously implanted DBS leads [4,5]. Maximizing the 

overlap between the GPi optimal location and the 3D spread 
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of the current delivered by the active contact of the DBS lead 

is critical to achieving clinically significant outcomes [6,7].      

Although advances in imaging protocols have 

significantly improved preoperative GPi targeting, 

methodological limitations − such as low spatial resolution 

and possible brain shifts during the surgery − owe the 

utilization of up-to-five microelectrode recordings (MER) to 

intraoperatively validate the target location [8–10]. However, 

MERs can be time-consuming, which limits their use if an 

expert electrophysiologist is not available in the operating 

room. Scaling up the number of microelectrodes used during 

electrophysiological mapping allows for gaining more 

information, but also increases the risk of complications [11].  

Multiple human intraoperative centres showed that MERs 

yield accurate electrophysiological spatial demarcation of 

target borders and identification of neural patterns that 

highlight optimal stimulation settings as well as discriminate 

clinical states [12–20]. Most of these studies focused on the 

Subthalamic nucleus (STN) per se, which represents another 

important DBS target for dystonia and other movement 

disorders, such as Parkinson’s Disease (PD) [21,22].  

The peculiar characteristics of the transition from the 

external segment of the globus pallidus (GPe) to GPi, such as 

the sparseness of the neurons along the pallidum, the absence 

of a marked reduction in neuronal activity, and the high 

discharge rate variability, challenged the electrophysiological 

determination of GPi borders [27,28]. Occasionally, the 

identification of increasing background activity and border 

cells, characterized by low firing rates (2 – 20 Hz), may help 

identify the GPe-GPi transition. 

Multiple MERs studies compared the activity of GPi 

neurons either across different diseases or before, during, and 

after functional microstimulation [24–31], neglecting or 

restricting the topographical analysis along the pre-planned 

trajectory axis. These studies identified high-frequency cells 

whose discharge rate (up to 150 Hz) may feature movement 

disorders. It is assumed that PD GPi cells are characterized 

by a higher discharge rate than dystonia GPi cells. Low-

frequency oscillatory activity (2 – 10 Hz) and bursting 

patterns are also observed in GPi across different diseases.  

All these findings may be confounded by different 

anaesthetic protocols and the heterogeneity of neural features 

(both discharge rate and discharge pattern) in different 

Dystonic phenotypes. Strikingly, a topographic map of the 

spiking dynamics of GPi neurons has not been elucidated 

yet. Clinically-informed decisions may leverage these 

topographic maps to define relationships between neural 

activity and optimal stimulation sites. 

Interestingly, complementary approaches using 

postoperative local field potential (LFP) recordings showed 

excessive entrainment of spatially localized theta oscillations 

in the Dystonic GPi, indexing the optimal stimulation site 

[32]. 

Here, our aim is to provide an MER-based machine-

learning pipeline that retrospectively demarcates 

electrophysiologically-defined GPi borders and builds a 

topographic map of the internal GPi spiking dynamics in 

Dystonic patients. This work is in line with the growing 

interest in electrophysiological GPi physiomarkers and might 

lay the bedrock of the implementation of future computer-aid 

systems that support and hasten clinical decisions during the 

placement of the DBS lead in GPi DBS dystonic patients 

[17,32,33]. The development of algorithms that interpret 

short segments of MERs during DBS surgery is crucial to 

maximally exploit the limited time in operating room 

settings. 

Methods 

2.1 Subjects 

The research activity was conducted with seven male and 

three female patients who are diagnosed with primary 

dystonia. All the patients who took part in this study had 

severe dystonia, which significantly limited their ability to 

carry out their daily tasks. Patients were addressed to surgery 

relying on these inclusion criteria: diagnosis of primary 

generalized or multisegmental dystonia, normal behavioural, 

psychiatric, and cognitive profile, normal brain MRI and lack 

of response to medical treatment including anticholinergics, 

benzodiazepines, neuroleptics, baclofen and/or botulinum 

toxin injections. Patients underwent bilateral implantation of 

quadripolar electrodes, after giving their written informed 

consent to the procedure.  

2.2 Surgery 

The patient underwent frameless surgery. Preoperative 

images (MRI and CT with the fiducials on the skull) and 

planning were acquired the day before surgery. Non-

stereotactic MRI brain scans (T1 with gadolinium and T2; 

slice thickness: 1.5 mm; without gap or overlap) were 

performed and, after the MRI acquisition, metal screw 

fiducials were fixed to the skull of each patient under local 

anaesthesia. Thereafter, a volumetric non-contrast scan 

(axial, slice thickness from 0.75 to 1 mm) with the fiducials 

in place was performed. For all the procedures, CT data were 

matched with the previous MRI datasets in the Medtronic 

Stealth Station (Framelink®; Medtronic, Minneapolis, MN).  

To define the anatomic target, we used fixed distances 

from the midpoint of the AC-PC line on T1 MRI slices 

combined with the direct visualization of the nucleus on T2 

MRI images, to identify the brain target (GPi). In our study, 

we did not have medical imaging that belongs to GPi DBS 

surgeries of patients to inspect the boundaries of GPi. Hence 

there is no certainty in terms of relative positions of MER 

trajectories to GPi for each subject. To overcome this issue, 

the DISTAL atlas[34] which is a three-dimensional 
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subcortical brain atlas that also contains the anatomical 

position of GPi in Montreal Neurological Institute (MNI) 

space. Target coordinates derived from the stereotactic 

atlases registered to the mid-commissural point were 

manually entered into the planning program screen and 

identified onto the corresponding image slice. The atlas 

coordinates for the GPi nucleus were 21 mm lateral, 2 mm 

anterior, and 4 mm deep to the mid-AC-PC point. The 

anatomic coordinates of the preoperative target were finally 

defined by slightly adjusting the atlas coordinates and 

carefully evaluating details about the anatomic structures 

surrounding the estimated target, appreciable as a result of 

CT fusion with MRI. GPi definition was used later to 

determine whether sorted neurons are situated inside or 

outside of the GPi.  

The patient was placed on the operating table, and the 

surgeon did the first navigation and marked the frontal entry 

points on the skin using a “passive frame”: referring to the 

fiducials screwed in the skull and assessing the correct 

position of the camera in the operating room, navigation on 

Stealth Station showed “geometry error”: geometry errors of 

the Nexprobe and the reference arc were less than 0.5mm in 

all the patients of this sample.  

A drill hole of 14 mm in diameter was created 2.5 to 3.5 

cm off the midline anterior to the coronal suture, and it was 

closed by a cap of fibrin sealant to avoid deliquoration. The 

NexFrame System® (Medtronic, Minneapolis, MN) was 

used for each procedure performed.  

In the majority of the patients, surgery was performed 

while the patient was awake but, in those patients with severe 

dystonic fixed postures or those unable to tolerate an awake 

surgical procedure we performed surgery under general 

anaesthesia with a ketamine-based anaesthetic protocol. This 

anaesthetic protocol did not alter the electrophysiologic basal 

ganglia activity, allowing MER to be achievable and reliable 

during DBS surgery[35–37]. 

The choice of final electrode position was based on multi-

electrode recording qualitative evaluation by an expert 

neurophysiologist, clinical efficacy during macro-

stimulation, and the absence of significant macro-

stimulation-induced collateral side effects. MER and macro-

stimulation were performed using the Leadpoint System® 

(Medtronic, Minneapolis, MN). Finally, surgery was 

completed with the implantation of the subcutaneous 

extensions and the IPG in the sub-clavicle area.  

2.4 Electrode Localization 

The day after the surgical procedure, the patient 

underwent postoperative volumetric non-contrast scans 

(axial, slice thickness 0.75-1 mm) CT scans, to evaluate the 

final lead position and assess postoperative 

pneumoencephalus and rule out asymptomatic haemorrhage. 

The postoperative CT scan was merged with the preoperative 

CT and MRI images using Medtronic Stealth Station 

(Framelink®; Medtronic, Minneapolis, MN) to blend the 

AC-PC coordinates and angles of the trajectory of the final 

DBS leads. Each final lead location was identified as the 

centre of the beam-hardening artefact representing the 

deepest of the electrodes. This mapping of MER electrode 

trajectories to MNI space was a rigid transformation. 

Figure 1. Isolated single unit representations on GPi in MNI reference frame. (A) Locations of the single-unit activities are displayed 

in two dystonic GPi based on their MNI coordinate definitions. Color-coded perpendicular lines along the dorsoventral axis of GPi 

represent electrode trajectories (anterior, central, lateral, medial, and posterior) GPi is depicted as defined by the DISTAL atlas. (B) In 

addition, a raw MER recording and its single-unit activity from -7mm (lateral trajectory) in the right hemisphere of patient 6 are presented. 
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2.5 Electrophysiological recordings 

Electrophysiological explorative microelectrode 

recordings were simultaneously recorded along five different 

trajectories: anterior, lateral, medial, central, and posterior 

trajectories. The recordings were collected bilaterally and 

simultaneously from the right and left hemispheres with 

varying depths from -10 mm to +3.5 mm (0 mm is the 

planned target point) by using FHC semi-micro-electrode 

(impedance=1 MOhm (FC2002, Medtronic R, Minneapolis, 

MN)). During the recording procedure, an analogue 500 Hz 

high pass filter was applied. MERs were sampled at 24000 

Hz for 10 seconds. In both hemispheres, the MER 

trajectories are parallel to the GPi's dorsoventral axis, with 

the central trajectory crossing the DBS target (see 

Supplementary Material Section 2.1).   

We examined 1640 raw microelectrode recordings of 10 

patients (min. 99, max. 246, 164±50.19 recordings per 

subject) (see Supplementary Material Section 2). Putative 

single unit activities (SUAs) are successfully isolated from 

raw MERs (Figure 1A). SUA represents the section of the 

raw data that belongs to the spiking of a single neuron. The [-

0.5 +2.5] ms time interval around the peak values of all 

spikes extracted from raw data and stored as the neural 

activity of a single neuron[38].  

2.6 Computational pipeline 

To analyse MERs, we implemented a computational 

pipeline where each module is specialized for a particular 

task. In total, we implemented four modules: (1) Offline 

Spike Sorting Module, (2) Candidate Biomarker Generation 

Module, (3) Mutual Information Analysis Module, and (4) 

Machine Learning Module (see Figure 2). 

2.6.1 Spikes detection and sorting 

In the offline spike sorting module (Figure 2, top, left 

box), spike detection and sorting operations were conducted 

(see Supplementary Material Section 3.2). For spike 

identification and sorting, we used Wave Clus MATLAB 

ToolBox[39]. Double-thresholding (4 standard deviations 

from the baseline signal) was used to designate spike peaks, 

and 64-wavelet coefficients were computed for each 

potential spike. Then, using a superparamagnetic clustering 

method, the spikes are clustered to specific neurons based on 

their wavelet coefficients. We decomposed raw recordings 

into three main components: single-unit activity (SUA), 

multi-unit activity (MUA), and background activity 

(BUA)[38](see Supplementary Material Section 3.3)[14,15]. 

Each of these components carries different types of 

information about surrounding neural activity[38]. 

Noteworthy, we applied additional stability criteria that 

helped us prevent the inclusion of candidate neurons that do 

not reliably resemble SUA signatures for further analysis 

(see Supplementary Material Section 3.4). 

2.6.2 Reference frames 

We carried out all of our analyses in two different 

reference frames: 1D relative depth and 3D MNI reference 

frames. The definition of two distinct reference frames 

allowed us to utilize our localization tasks both for clinical 

aspects and for understanding the electrophysiological 

structures of GPi. The 1D reference frame denotes the 

direction that is primarily parallel to GPi's dorsoventral axis. 

During the GPi DBS surgeries, neurosurgeon teams penetrate 

the electrodes perpendicularly to GPi. Localization and real-

time feedback in the 1D reference frame offer clinical utility 

from this standpoint.  

Although the 1D reference frame has clinical relevancy, it 

falls short of accurately reflecting neural dynamics in terms 

of the actual anatomical structure of GPi. To address this 

problem, we used the MNI coordinates of SUAs to 

characterize the pathological dynamics of dystonic GPi and 

tried to localize neurons in the 3D space. 

2.6.3 Candidate neural biomarkers 

Even if recent advances have been made in GPi 

bordering[40,41] and functional segregation of GPi [37], 

these approaches are not adequate to provide real-time 

feedback to neurosurgeon teams during DBS procedures for 

target localization. We used the definition of candidate 

neural biomarkers to locate and characterize neural 

behaviour inside different areas of GPi and to distinguish 

GPi borders for patients with primary dystonia. Operatively, 

we categorized neural dynamics into five different groups: 

(a) firing rate and regularity, (b) neural oscillations, (c) 

neural bursts, (d) spectral coherence between SUA and BUA, 

and the power spectrum of single-unit activity in different 

frequency bands. Then in each group, we defined multiple 

candidate neural biomarkers that represent a particular aspect 

of the related neural phenomena (see Supplementary 

Material Section 4). 

2.6.4 Power Spectrum Estimation 

Firstly, we extracted the action potentials of single-unit 

activity from raw MER recording and remove the mean to 

get rid of the power at f=0 Hz. In the following step, we 

removed the power line noise (50 Hz) and its first five 

harmonics based on spectrum interpolation technique to 

prevent introducing bias to our power spectrum and neural 

oscillation estimation[42]. We adopted the Welch PSD 

estimation by selecting the Hanning window as our tapering 

function with a window size equal to the data length divided 

by 20. The overlapping of the windows is selected as 0.5. In 

the last step of power spectrum estimation, we normalize the 
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power spectrum by dividing the power values in each 

frequency by the total power of the SUA. This normalization 

procedure is essential for acquiring a comparable power 

spectrum across all isolated single units. 

2.6.5 Information analysis 

Mutual information is a metric that endeavours to quantify 

the non-linear relationship between two variables. Briefly, it 

measures the decrease in entropy of one random variable by 

observing another random variable[43]. In this module 

(Figure 2, top, right box), we want to measure the 

relationship between candidate neural biomarkers and their 

position along with the two aforementioned reference frames 

(Section 2.6.2. and Figure 3). This entails computing the 

mutual information I(B,S) between the value of the 

biomarker and the position of the recording (1).  

𝐼(𝐵, 𝑆) =  ∑ 𝑃(𝑠). 𝑃(𝑏|𝑠) log2

𝑃(𝑏|𝑠)

𝑃(𝑏)
           (1)

𝑠∈𝑆,𝑏∈𝐵

 

Where B is the set of values of the biomarker and S is the 

set of recording positions (in terms of relative depth level for 

the 1D reference frame and MNI coordinates in 3D MNI 

reference frame localization scenarios). P(b) is the 

probability over all recording sites of the biomarker having 

value b. The continuous values of the neural biomarker(b) 

were binned into four levels and represented with their 

corresponding bin values.  P(s) is the probability of having a 

recording from position s over all biomarker values (which, 

by design, is the inverse of the number of recording 

positions). P(b|s) is the conditional probability of observing 

the biomarker value of a neuron at spatial component s. 

Probability estimates during mutual information 

calculation can be impacted in the case of a limited amount 

of data. Since information is computed as the difference 

between two entropies, entropy bias is a significant issue 

here. The difference between the two entropy values is 

generally quite smaller in both entropies. Hence, even a tiny 

proportionate bias error in the entropy can have a significant 

impact on the information. As a result, a bias correction 

procedure should be applied to the calculation of mutual 

information. We chose the Panzeri–Treves[44] strategy out 

of all the bias correction approaches to tackle the sampling 

bias difficulties, and we computed the mutual information for 

each candidate neural biomarker. The significance of 

computed mutual information was assessed by generating a 

null distribution with the bootstrap test with 500 iterations. 

Based on the z-score of the computed mutual information, 

we defined the significance value (z≥2 for p≤0.05). We used 

the Information Breakdown Toolbox[45] in MATLAB to 

compute all the aforementioned information values.  

For the 1D reference frame, mutual information is defined 

along electrode trajectories, and we only selected biomarkers 

that exhibit significant mutual information along these 

trajectories. Initially, we considered the depth level of 

neurons as the spatial location and the corresponding value 

of candidate neural biomarkers as the response for 

information analysis. Then we sorted and discretized the 

values of candidate biomarkers based on four equally 

populated bins. We had fifteen depth levels for the 1D 

reference frame. 

In the 3D MNI reference frame, we determined the neuron 

locations based on matching the MER recording sites with 

their corresponding MNI coordinates (see Section 2.2.).  

For utilizing the mutual information in 3D MNI space as a 

way of a feature reduction for our neural decoders, similar to 

the 1D reference frame, we adopted the approach of Mosher 

et al[19]. As opposed to their work, we did not employ 

principal component analysis (PCA) for feature reduction. 

We translated their optimal axis description to our 

preferential directions of candidate neural biomarkers 

definition. Instead of correlating the values of candidate 

biomarkers on rotated axes with anatomical positions of 

neurons, we used the mutual information to also grasp more 

complex non-linear relationships between the value 

distributions of candidate biomarkers and the MNI 

coordinates of neurons.  

To define the preferential direction, i.e., the direction with 

the highest significant mutual information, of candidate 

neural biomarkers, we scanned the whole GPi. We defined 

two initial reference lines for the GPi scanning process. For 

the right hemisphere, we determined a line passing through 

the average target point of GPi DBS for the right hemisphere 

and the most lateral & anterior tip of GPi. Along this line, we 

define two tip points 𝑃𝐴 and 𝑃𝐵 that has a length three times 

the distance between 𝐺𝑃𝑖𝑡𝑖𝑝 and 𝐺𝑃𝑖𝑡𝑎𝑟𝑔𝑒𝑡  points (Figure 

3A). Similarly, for the left hemisphere, we defined another 

line passing through the target point of GPi DBS and the 

most medial & posterior tip of the left hemisphere GPi. 

Again, we defined two tip points 𝑃𝐴 and 𝑃𝐵 (Figure 3B). We 

rotated these initial lines with Euler angles from 0 to 180 

degrees by 30-degree steps in the x, y, and z axes. Hence, 

this scanning procedure resulted in 343 rotated directions 

inside GPi (Figure 3C). On each of these 343 lines, we 

projected the neurons according to their MNI locations. 

Following the projection procedure, we split each line into 

15 equally sized sections due to having a similar number of 

divisions with depth levels of electrode trajectories in the 1D 

reference frame. Therefore, the section on the selected 

direction that coincides with the projection of neuron 

location is used for mutual information calculation with the 

biomarker values of neurons in the 3D MNI reference frame.  

To be more rigorous for the localization tasks that occur in 

a specific anatomical axis of GPi (i.e., dorsoventral 

localization of neurons within GPi), we did not consider 

mutual information results in all defined directions. Instead, 
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we grouped these predefined 343 directions into three 

subsets. To achieve this division, we calculated the angle 

between each direction and all three anatomical axes that 

have the origin at the 𝐺𝑃𝑖𝑡𝑎𝑟𝑔𝑒𝑡 point. Then we assigned each 

direction to the anatomical axis that has the smallest angle 

with it. With this approach, we defined subsets of directions 

that are aligned mostly with a specific anatomical axis of 

GPi. The red(N=112), green(N=111), and blue(N=120) 

coloured directions in Figure 3C indicate the subsets of 

direction that belong to the anteroposterior, dorsoventral, and 

mediolateral axes of GPi respectively. We utilized these 

three groups as follows: for the dorsoventral localization 

task, we only considered candidate neural biomarkers that 

show significant mutual information in at least 10% of 

dorsoventral directions. Thus, we evaluated the mutual 

information only in the relevant anatomical axis for each 

localization task and ignored the remaining directions. 

We exploited the results of mutual information analysis as 

the first step of the feature selection mechanism for the 

machine learning module. The detailed information 

regarding the mutual information computation for different 

tasks can be found in the supplementary material. 

2.6.6 Machine learning decoding algorithm 

The last module of the computational pipeline (Figure 2, 

Figure 2. Modular structure of neural decoder pipeline for neuron localization. The computational pipeline of the single-unit activity 

localization is based on the use of candidate neural biomarker definitions in machine learning algorithms. The pipeline is made up of four 

different modules: Spike Sorting Module, Candidate Neural Biomarker Generation Module, Mutual Information Analysis Module, and 

Machine Learning Module. Abbreviations: AP, anteroposterior; DV, dorsoventral; IG, information gain; ML, mediolateral. 
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bottom) is the machine learning module that contains the 

implementation of multiple neural decoders and cross-

validation approaches to localize neurons in two different 

reference frames (1D and 3D). Apart from different reference 

frame definitions, we specified two analysis blocks: 

prediction and validation blocks. In terms of the prediction 

block, we conducted merged-hemispheres, right-hemisphere-

only, and left-hemisphere-only classification tasks. To cross-

validate the performances of trained models in the prediction 

block, we developed seven cross-validation classification 

tasks in the validation block. Firstly, we implemented five  

leave-one-trajectory-out validation tasks to check the 

performance of the merged-hemispheres model for each 

trajectory separately. We trained the merged-hemisphere 

model with neurons of four trajectories and completed the 

testing phase with the neurons of the remaining trajectory. 

For cross-hemispheric validation tasks, we tested the 

performances of trained right-hemisphere and left-

hemisphere models using neurons of the opposite 

hemisphere.  

We have started our machine learning procedure with the 

classical preprocessing steps: filling the missing values, 

feature scaling, and standardization[46]. Following these 

preliminary steps, we defined additional feature selection 

criteria to our initial mutual information-based approach. As 

mentioned previously, the work of Mosher et al. exploited 

the principal component definitions for feature reduction. 

Following the mutual information-based first feature 

selection, we needed to conduct an additional step in some 

cases to further remove candidate neural biomarkers. For 

example, some candidate neural biomarkers showed isotropic 

behaviour in terms of mutual information in 3D MNI space 

(see Supplementary Material Figure 4). Isotropic candidate 

biomarkers are not particularly suitable to investigate the 

electrophysiological structure of dystonic GPi. Thus, some of 

the candidate biomarkers passed the mutual information-

based feature reduction but decreased the overall 

performance of 3D localization tasks. To pursue the use of 

information theory as our main feature selection mechanism, 

we adopted an entropy-based approach. We constructed a 

Random Forest[47] model with the information gain[48] 

metric which is an index that measures the entropy of the 

candidate neural biomarker for the classification task to 

define its importance. Using the same model, we calculated 

the capability of each candidate neural biomarker concerning 

the amount of entropy it can describe. We defined then a set 

of subsets of candidate biomarkers including only those with 

information gain above iteratively increasing threshold 

values, and for each of these subsets, we computed the 

localization performance and its robustness (see 

Supplementary Materials 6.1. for details). We finally selected 

the subset with the optimal and robust performance. This 

final step is hence based on the biomarker set performance, 

rather than on the individual performance of each biomarker. 

We repeated this two-level feature selection approach for 

all tasks in the prediction block to select for each task the 

optimal set of biomarkers. For the classification process, we 

have selected Decision Tree[49], Random Forest[47,49], K-

Nearest Neighbors[49], Gaussian Process Classifier[49], and 

Support Vector Machine[49] as our main classifiers. Because 

of the class imbalance, we assessed classification 

performance by computing balanced accuracy, weighted 

AUC (area under the curve) score, and weighted F1 score. In 

the training and testing phases of our machine learning 

models, we adopted the Stratified K-Fold Cross 

Validation[49] procedure to prevent possible biases of 

classical training and test split approach. In each split of five-

folds[50], we applied SMOTE[49] oversampling with 

additive white gaussian noise (AWGN) (standard deviation = 

0.005) for overcoming imbalanced data problems in the 

training set. In each fold, we calculated our performance 

metrics with the test set and averaged scores across all five 

folds to acquire the mean performance. As a final step in this 

module, we compared the performances of all five neural 

decoders across all tasks in the prediction block and selected 

the best two classifiers for the Voting classifier with a soft 

voting approach. With the Voting classifier, we tried to 

further improve the localization performances by generating 

our unique ensemble model. Instead of using all five trained 

models, we only selected the best performing two models 

because, for some classification tasks, we experienced 

degraded performances in some of the trained classifiers. 

Hence, including these classifiers in Voting Classifiers 

reduced the overall performance.  

Results 

3.1 Feature Selection 

Before presenting the results of our two-step feature 

selection procedure, we wanted to emphasize an important 

fact. The fraction of neurons displaying oscillatory behaviour 

is quite low (see Table 1). Since neural oscillations are not 

significantly evident for dystonic GPi neurons in MERs at 

the single unit activity level, we did not come across any 

oscillation-related candidate neural biomarkers to pass the 

feature selection steps and to be included in the neural 

decoder in any type of localization. 

We employed the information theory paradigm to generate 

significant neural biomarker sets from all candidate neural 

biomarkers, as indicated in the Methods section. Hence, we 

were able to achieve a cohesive two feature selection steps 

with exploding two different metrics: mutual information and 

information gain in the first and second steps respectively to 

boost neural decoder performances. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.08.22281989doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.08.22281989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Kaymak et al  

 8  
 

Following our feature selection process in the GPi in-out 

localization task in the 1D reference frame, we ended up with 

seven significant neural biomarkers: two firing regularity-

related and five power spectral density-related neural 

biomarkers (green rows in Table 2).  

Contrary to other localization tasks, the mutual 

information-based feature selection step did not eliminate 

any candidate neural biomarkers for GPi in-out localization 

in the 3D MNI reference frame. The other analysis scenarios 

occurred mainly in one direction independently from the 

Neural Dynamic Total Frequency 
Frequency in 

Left Hemisphere 

Frequency in 

Right hemisphere 

delta band oscillation 0.453% 0.571% 0.321% 

theta band oscillation 1.057% 0.857% 1.282% 

alpha band oscillation 0.453% 0.571% 0.321% 

beta band oscillation 3.172% 2% 4.487% 

gamma band oscillation 16.616% 12.857% 20.833% 

Figure 3. The initial direction definitions in both hemispheres and the lines scanning right hemisphere GPi for mutual information 

calculation in MNI space. (A) The initial line in the right hemisphere GPi that pass through 𝐺𝑃𝑖𝑡𝑖𝑝 and 𝐺𝑃𝑖𝑡𝑎𝑟𝑔𝑒𝑡 and lies between 𝑃𝐴 and 

𝑃𝐵 tips. (B) The initial line in the left hemisphere GPi that pass through 𝐺𝑃𝑖𝑡𝑖𝑝 and 𝐺𝑃𝑖𝑡𝑎𝑟𝑔𝑒𝑡 and lies between 𝑃𝐴 and 𝑃𝐵 tips. (C) 

Directions that are generated based on the rotation of the initial line by Euler angles with 30-degrees steps in x, y and z axes to scan the 

whole GPi. The colour of directions represents the directions that belong to a specific anatomical axis. (D) The significant neural 

biomarkers for GPi in-out classification in 3D MNI reference frame for right and left hemisphere localization tasks in prediction block 

(mean explained entropy threshold ≥ 0.03). (E) The preferential directions of significant five neural biomarkers for dorsoventral 

localization in 3D MNI reference frame for merged hemispheres task of prediction block. The numeric values denote the angle between the 

preferential direction of the neural biomarkers and the dorsoventral anatomical axis of GPi. The red column represents the main direction 

of electrode trajectories that was used during GPi DBS surgeries. 

Table 1. The oscillatory behaviour of single unit activities. The existence of significant neural oscillations in dystonic GPi neurons 

are quite low. Only the gamma band oscillations are comparably more common with slightly higher than 15%. 
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reference frames. But for the GPi in-out task in the MNI 

reference frame, we were considering the 3D structure of the 

GPi in all directions. Since we were only interested in 

whether the neuron is located inside GPi, determining mutual 

information in a specific axis loses relevancy. The other main 

difference is that we decreased our mean entropy threshold 

from 0.05 to 0.03 (again a heuristic threshold) (see 

Supplementary Material Section 6.1.) considering the higher 

number (no elimination of features previously) of markers 

evaluated for mean explained entropy. Hence, it got harder 

for a biomarker to explain the fraction of total entropy by 

0.05 individually. We defined two final sets of significant 

neural biomarkers. The correlation coefficient of ISI 

distribution, the proportion of spike lies in bursting intervals, 

the maximum power in the alpha band, the mean and peak 

coherence in the gamma band was selected for the GPi in-out 

localization in the left hemisphere. For the right hemisphere, 

firing regularity, local variation, ISI distribution skewness, 

the significant portion of mean coherence in the delta band, 

and mean coherences delta, theta, and alpha frequency bands 

provided entropy decrease that surpasses the predefined 

threshold value (see Figure 3D, Supplementary Material 

Table 8). 

In terms of dorsoventral localization in the 3D MNI 

reference frame, we identified significant neural markers 

carrying information about the spatial structure of dystonic 

GPi (see Method, Figure 3E and Figure 4A) for all three 

tasks in the prediction block. Oscillation-related neural 

biomarkers were not informative at all in the dorsoventral 

direction with no biomarker passing the 10% threshold in the 

first step of our feature selection. In terms of bursting-related 

markers, 4 out of 6 of them carried some level of information 

in the dorsoventral axis, but they failed to decrease the 

entropy of the dorsoventral localization problem adequately 

(see Supplementary Material Table 9). Some firing rate and 

regularity-related biomarkers (mean firing rate, the standard 

deviation of ISI, and coefficient of variation) were generally 

essential for dorsoventral localization tasks in the prediction 

block (see Methods and Figure 7B). ISI mean was also 

labelled as a descriptive marker for the dorsoventral 

Feature 

Feature Selection 1st Step 
Feature Selection 

2nd Step 

Mutual 

Information 
Z-Score 

Bootstrap 

Mean 

Bootstrap 

Standard 

Deviation 

Entropy Described 

by Neural Biomarker 

firing_rate 0.03924 3.53923 0.00311 0.01021 0.042093 

cv 0.03383 2.92200 0.00362 0.01034 0.062429 

isi_mean 0.03967 3.49479 0.00345 0.01036 0.042329 

isi_std 0.04272 3.87863 0.00393 0.01000 0.057545 

intrabf 0.03354 2.61559 0.00682 0.01022 0.017214 

interbi 0.04765 4.00772 0.00675 0.01021 0.015370 

burst_avg_spikes 0.03178 2.22446 0.00835 0.01053 0.016160 

delta_band_mean_power 0.05476 5.03064 0.00306 0.01028 0.041697 

delta_band_max_power 0.04259 3.58223 0.00359 0.01089 0.050061 

delta_band_min_power 0.04786 4.26317 0.00363 0.01038 0.050359 

theta_band_mean_power 0.04478 3.90063 0.00414 0.01042 0.041190 

theta_band_max_power 0.05748 5.22345 0.00380 0.01028 0.043302 

theta_band_min_power 0.05551 5.01112 0.00377 0.01032 0.051437 

alpha_band_mean_power 0.05406 4.93120 0.00376 0.01020 0.037910 

alpha_band_max_power 0.04472 3.90169 0.00358 0.01055 0.038359 

alpha_band_min_power 0.07433 6.73970 0.00365 0.01049 0.050350 

beta_band_mean_power 0.06395 5.95098 0.00380 0.01011 0.042108 

beta_band_max_power 0.04703 4.27481 0.00316 0.01026 0.042381 

beta_band_min_power 0.05765 5.17704 0.00332 0.01049 0.042063 

gamma_band_mean_power 0.04945 4.42030 0.00373 0.01034 0.043737 

gamma_band_max_power 0.03778 3.25407 0.00370 0.01047 0.043269 

gamma_band_min_power 0.05880 5.03240 0.00354 0.01098 0.051960 

delta_band_peak_coherence 0.02870 2.34981 0.00439 0.01035 0.022294 

delta_band_peak_coherence_frequency 0.02362 1.78176 0.00523 0.01032 0.027913 

theta_band_mean_significant_coherence 0.02613 1.94223 0.00608 0.01032 0.026470 

Table 2. Two-step neural biomarker selection results of GPi in-out neuron localization for merged hemispheres task in the 1D 

relative depth reference frame. The table presents the results of the feature selection process of GPi in-out localization in 1D 

reference frame. Only features that show significant mutual information in the first step of feature selection are presented in this table. 

Green highlighted rows indicate biomarkers selected by the process for this task.  
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localization tasks in merged and right hemispheres cases. 

Moreover, we found firing rate, ISI mean and ISI standard 

deviation for merged hemispheres, cv and ISI standard 

deviation for left hemisphere GPi were significantly different 

between dorsal and ventral neurons (the median split: -3.880 

on the Z-axis of GPi definition in DISTAL Atlas, p<0.05 

Holm-Bonferroni correction applied for Mann-Whitney U 

test after Cramer-Von Mises test, see Supplementary 

Material Table 18 and Figure 7A).  

3.2 GPi in-out Localization in 1D Reference Frame 

 In the first classification task, we aimed to localize 

neurons in terms of their positioning whether inside or 

outside of GPi in the 1D reference frame across trajectories 

(see Methods). Based on the intraoperative notes of a 

neurophysiological expert, we labelled the neurons on 

trajectories in terms of their location. GPi-in neurons are 

defined as neurons that are positioned between -4mm and -

10mm from the target location. The remaining neurons were 

considered to be outside of the GPi.  

MERs are performed during DBS implant to support the 

localization of the target area after the initial guess on its 

position is performed with pre-surgical imaging. Hence, 

before moving to use MER data to analyse the difference in 

the activity over the volume of the GPi, we assessed which 

of the neural markers (see Methods) could carry more 

information about the position of a given recording site 

within or outside the GPi.  

Following our feature selection process, we ended up with 

seven significant neural biomarkers: two firing regularity and 

five power spectral density-related neural biomarkers (green 

rows in Table 2). The standard deviation of the ISI 

distribution was the only neural biomarker significantly 

differentiated inside and outside the GPi (p<0.05, Mann-

Whitney U test, with Holm-Bonferroni correction) (see 

Figure 4A, Supplementary Material Table 10). However, in 

terms of the amount of entropy they can explain, neural 

biomarkers are relatively similar (see Figure 4B). Individual 

performances of trained machine learning models were 

evaluated with the Stratified 5-Fold cross-validation with 

training set upsampling (see Methods). The best performance 

was achieved with the KNN classifier with 0.623 mean 

balanced accuracy, 0.692 mean weighted AUC score, and 

0.624 mean weighted F1 scores across all five folds. Random 

Forest Tree algorithm, the second-best performing model, 

provided a slightly worse performance with a 0.619 mean 

weighted AUC score. We used both KNN and Random 

Forest models in an ensemble model to generate a Voting 

Classifier with the soft voting mechanism (Supplementary 

Material Table 11). To measure the robustness of the Voting 

Classifier, we applied a bootstrap test with 200 iterations 

(each iteration has also Stratified 5-Fold cross-validation). 

We acquired the ROC curves across all iterations and 

generated the mean ROC curve with the 95% percentile 

confidence interval around it which is given in Figure 4C. 

This classification was performed for each hemisphere 

separately and then for the merged hemispheres. Based on 

the mean ROC curve, the Voting classifier trained for left 

hemisphere GPi has the best performance followed by 

merged hemisphere and right-hemisphere classifiers. Apart 

from the ROC curves, we also illustrated the mean AUC 

scores and their corresponding confidence interval with 95% 

percentiles in the right panel of Figure 4C, and the 

performance differences are also evident in terms of AUC 

scores, although with similar ranges for confidence intervals 

of mean AUC score. Note that the class imbalance is not a 

big problem for GPi in-out classification in the 1D reference 

frame since we have almost 47% of neurons situated inside 

of the GPi and 53% remaining located outside of the GPi 

(see Figure 4D). The performance similarities across all tasks 

in prediction and validation blocks are also notable in this 

type of localization. The mean precision, recall, and accuracy 

scores range in a limited region from 0.59 to 0.65 across all 

prediction block tasks. Mean balanced accuracy, mean 

weighted AUC score, and mean weighted F1 scores of all 

tasks in prediction and two cross-hemispheric validation 

tasks are given in Figure 4E. In all tasks in the prediction 

block, we observed approximately 0.7 mean weighted AUC 

scores. The remaining two performance metrics were also 

quite similar. It is notable that, even though we trained 

Voting classifiers with the neurons of one hemisphere and 

test them with the neurons of the opposite hemisphere, the 

performance is again similar. Hence, the hemispheric effect 

for dystonic GPi to decide whether the neuron is inside or 

outside of the GPi is not crucial for the 1D reference frame.  

Further, we assessed the localization capabilities of 

selected neural biomarkers individually by comparing them 

to the combined version, the ideal neural decoder. To achieve 

this final analysis, we trained the previously generated 

Voting Classifiers with only a single neural biomarker and 

computed the mean of performance metrics across five 

stratified folds, with the same bootstrap (N=200) estimation 

of the performance described above. Individual performances 

of the coefficient of variation, the standard deviation of ISI 

distribution, and the minimum power in alpha and beta bands 

occurred within the random chance intervals (Figure 4F). 

The minimum power in the delta band showed the best 

individual performances across all seven selected neural 

biomarkers. No neural biomarkers delivered a higher or 

comparable result similar to the combined version of the 

biomarkers. Overall, the results were robust and significant, 

but the performance was far from satisfying and required the 

combination of multiple markers. We concluded that the 

ability of MER in identifying GPi boundaries by performing 

the analysis in the 1D space given by penetration tracks is 

limited in our dataset. 
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3.3 GPi in-out Localization in 3D MNI Reference Frame 

To localize the neurons based on the 3D boundaries of 

GPi, we resorted to the 3D distribution of firing properties in 

MNI space (see Methods). Briefly, we designed a similar 

neuron localization analysis in MNI space considering the 

anatomical structure of GPi using the DISTAL Atlas. To 

establish the borders of GPI in the MNI reference frame, we 

used a 0.5 probabilistic value as our heuristic threshold for 

the DISTAL atlas. This section will provide the complete 

results of the individual hemispheric tasks in the prediction 

block of this localization task. Indeed, the performance of 

GPi in-out localization is significantly decreased by merging 

the hemispheres (see Supplementary Material Table 15).  

Initially, we labelled all neurons as GPi-in or GPi-out in 

both hemispheres. As previously indicated, we leverage the 

same computational pipeline for all localization tasks to have 

comparable results. We initiated our second localization task 

with feature selection again.  

Only, the maximum power in the alpha band significantly 

differentiated in left hemisphere GPi (p-value = 0.0011 after 

the Mann-Whitney U test with Holm-Bonferroni correction) 

(see Supplementary Material Table 14, Figure 5A, the top 

panel). Contrary to the previous localization task, we did not 

have a uniform entropy behaviour across all markers. The 

entropy behaviour of seven markers in the right hemisphere 

was considerably uniform with a value of 0.15. 

Contradictorily, we had a more uneven explained entropy 

distribution for the left hemisphere (see Figure 5B). As 

mentioned above, we had huge performance differences 

between merged and split hemisphere tasks in the prediction 

block. The mean weighted AUC scores reached 0.78 for both 

the right and left hemisphere GPi, meanwhile, it stayed at 

0.631 in the merged hemisphere case. The performance of 

the trained neural decoder further decreased in the cross-

hemispheric cross-validation tasks reaching below 0.62 mean 

weighted AUC score (see Figure 6B). Similar to selected 

performance metrics, the behaviour of acquired ROC curves 

in the bootstrap test with 200 iterations shows parallelism. 

We acquired mean AUC scores of 0.773 and 0.792 for the 

right and left hemispheres respectively (see Figure 5C, the 

right panel). Even the upper limit of the 95% confidence 

interval of the merged hemisphere neural decoder was not 

able to surpass 0.70 AUC scores. This situation can be 

explained for multiple reasons. Initially, when we tried to 

measure population-wise median differences, since none of 

the neural biomarkers follows the normal distribution, no 

marker showed a statistically significant difference between 

the two neural populations in the merged-hemisphere task. 

We further investigated to reveal the root cause of 

performance degradation as follows: we compared 

biomarkers for GPi-in and GPi-out populations of opposite 

hemispheres to see if we had any significant differences. 

Surprisingly, power spectral density-related fifteen 

biomarkers differed significantly between GPi-in and GPi-

out populations of both hemispheres (alpha=0.05). 

Additionally, minimum power in the gamma band, peak 

coherence in the alpha band, and peak coherence in the 

gamma band were the three markers that showed significant 

population median differences for both GPi-in and GPi-out 

populations between the two hemispheres (see 

Supplementary Material). The third possible reason could be 

related to the drastically different class distribution in both 

hemispheres: 70(20%) GPi-in, 280(80%) GPi-out in the right 

hemisphere, 254(81%) GPi-in, and 54(19%) GPi-out 

neurons. Notably, the class distribution was exactly the 

opposite in both hemispheres. Even though the merger of 

hemispheres for complete analysis had an almost balanced 

class distribution (49% GPi-in, %51 GPi-out), it did not 

provide better localization performance. The performance 

superiority of split hemisphere scenarios also was supported 

by the capabilities of classifiers to label majority class 

neurons correctly with moderate success in the minority 

neuron classes (see Figure 6A). 

In terms of individual capabilities of biomarkers in both 

hemispheres, they were not able to provide a better mean 

balanced accuracy performance than the 95% confidence 

interval of random chance (see Figure 6C). The high F1 

scores of individual markers and confidence interval of 

random chances that were constructed with F1 are mostly 

the side effect of keeping the class distribution during the 

random chance bootstrap test. In the worst-case scenario, 

60% of majority class neurons will be labelled the same since 

the minority neural population is only made up of 20% of all 

Figure 4. The results of GPi in-out neuron localization in the 1D relative depth reference frame. (A) The value distribution of 

significant neural biomarkers for GPi-in and GPi-out neural populations and their corresponding probability values (corrected with 

Holm-Bonferroni Method) of Mann-Whitney U tests. (B) Significance of neural biomarkers in terms of their abilities to explain mean 

entropy during the generation of Random Forest Trees classifier (The values are computed again after the completion of the feature 

selection process with only significant neural biomarkers). (C) The ROC curves of the Voting Classifiers (constructed with trained 

Random Forest Trees and KNN classifiers) for different tasks of prediction block with their corresponding percentile-based confidence 

intervals (95%) of AUC scores. (D) The confusion matrices of GPi in-out classification tasks in right-hemisphere-only, left-

hemisphere-only, and merged-hemispheres tasks and their classification performances (precision, recall, and F1 scores).  (E) The 

performances of the Voting Classifier models in respect of balanced accuracy, weighted AUC, and weighted F1 scores in tasks of 

prediction and validation blocks. (F) The performance of the Voting Classifier model for single and combined versions of the 

significant neural biomarkers in merged hemisphere tasks. The percentile-based confidence interval of the random chance scenario for 

each performance metric is indicated with two horizontal lines (left whisker: lower bound, right whisker: upper bound of confidence 

interval). 
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neurons in both hemispheres. The power of the combined 

version of neural biomarkers for both hemispheres was 

especially more evident in this neural localization task.  

3.4 Dorsoventral Localization of Spike Dynamics in GPi  

We next investigated whether the neural dynamics 

identified so far differ across the spatial structure of the 

dystonic GPi (in particular, along the vertical dorsoventral 

axis). Akin to GPi in-out localization in the 1D reference 

frame, we will present the complete analysis results of the 

merged hemisphere task of the prediction block.  

Figure 5- The results of GPi in-out neuron localization in the 3D MNI reference frame. (A) The value distribution of significant 

neural biomarkers for GPi-in and GPi-out neural populations and the corresponding probability values (corrected with Holm-

Bonferroni Method) of Mann-Whitney U tests (top: right hemisphere neurons, bottom: left hemisphere neurons). (B) Significance of 

neural biomarkers in terms of their abilities to explain mean entropy during the generation of Random Forest Trees classifier for right 

hemisphere and left hemisphere neurons individually. (C) The ROC curves of the Voting Classifiers (constructed with trained Random 

Forest Trees and Gaussian Process classifiers) for different analysis scenarios with their corresponding percentile-based confidence 

intervals of AUC scores. 
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The discrimination capabilities of some of the individual 

markers (the standard deviation of ISI distribution and 

coefficient of variation) were close to the combined version 

of biomarkers and way higher than the chance within the 

95% confidence range (see Figure 7F). However, the 

combined version of neural biomarkers for Voting Classifier 

(KNN with 0.628 mean balanced accuracy, 0.690 mean 

weighted AUC score, 0.638 mean weighted F1 score, and RF  

Figure 6- The results of GPi in-out neuron localization in the 3D MNI space domain. (A) The confusion matrices of GPi in-out 

classification tasks in right-hemisphere-only, left-hemisphere-only, and merged-hemispheres analysis modes and their classification 

performances (precision, recall, and F1 scores) in MNI space. (B) Performance of the Voting Classifier models using the balanced 

accuracy, weighted AUC, and weighted F1 scores in tasks of prediction and validation blocks. (trajectories: and(anterior), cent(central), 

lat(lateral), med(medial), pos(posterior), nant(non-anterior), ncent(non-central), nlat(non-lateral), nmed(non-medial), npos(non-

posterior). (C) The performance of the Voting Classifier model for single and combined versions of the significant neural biomarkers in 

merged hemisphere analysis scenario. The percentile-based confidence interval of the random chance scenario for each performance 

metric is indicated with two horizontal lines (left whisker: lower bound, right whisker: upper bound of confidence interval). 
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with 0.574 mean balanced accuracy, 0.602 mean weighted 

AUC score, 0.608 mean weighted F1 score) helped us to 

define the most robust neural decoder (see Supplementary 

Material Table 19). Our neural decoder has reached 0.649 

mean balanced accuracy, 0.676 mean weighted AUC, and 

0.661 mean weighted F1 scores and it performed 

significantly higher than 95% random chance confidence 

intervals (0.543, 0.565), (0.599, 0.644), (0.559, 0.583) 

respectively (see Figure 7F). The ROC curves of the main 

analysis tasks had a mean AUC score of 0.7. The only 

difference was the merged hemisphere task had the narrowest 

confidence interval with 95% confidence lying between 

0.649 to 0.738 after 200 bootstrap iterations. (See Figure 7C, 

the right panel). Meanwhile, the right hemisphere decoder 

had a broader confidence interval since the right hemisphere 

drastically lowers the number of neurons located within GPi 

compared to the left hemispheres (70 and 254 respectively). 

The class imbalance was more visible in the confusion 

matrices of prediction block tasks (see Figure 7D). We had 

class support for machine learning models 65% and 35% for 

ventrally and dorsally located neurons in merged 

hemispheres, and left hemisphere cases. Even though we had 

a more balanced neuron distribution in the right hemisphere, 

the low number of neurons created the main challenge in this 

task. The performance of neural decoders was relatively 

better when we conducted dorsoventral localization in right 

and left hemisphere GPi separately by a really small margin. 

The results of cross-hemispheric cross-validation tasks were 

comparatively lower than their prediction block counterparts. 

Especially performance decreased in the cross-validation task 

when the Voting Classifier is trained with 70 right 

hemisphere model and tested with 254 left hemisphere GPi 

neurons over stratified 5-fold cross-validation. The mean 

balanced accuracy dropped to 0.593 which is the lowest 

across all tasks in this localization procedure (see Figure 7E). 

Discussion 

Our statistical analyses prove that some neural biomarkers 

related to specific spiking phenomena vary both in 1D 

relative depths and 3D MNI space. This is in striking contrast 

with the fact that GPi is considered a homogeneous 

subcortical structure. The results of this study imply that the 

variety of neural dynamics inside dystonic GPi is high 

because we were able to define directions that showed 

statistically significant changes in terms of some neural 

biomarker values based on mutual information metrics. We 

used these results to locate neurons in three different 

localization tasks where we have comparable high 

classification performances for locating neurons based on 

different criteria with selected neural biomarkers. In our 

study, we try to collaborate on different neural biomarkers 

that are related to different spiking phenomena of dystonic 

GPi neurons. We can group these neural biomarkers into the 

following main categories: firing rate, firing irregularity, 

bursting, oscillation, spectral coherence, and power 

spectrum-related neural biomarkers. Even though we have 

found neural oscillations on MERs at the single neuron level, 

especially in the gamma band, frequency domain-associated 

neural biomarkers fail to describe the position of neurons in 

the dorsoventral localization task where we only consider 

neurons that are located inside the dystonic GPi. This result 

can be also interpreted from a neurological point of view. It 

may imply that the neural behaviour in terms of bursting, 

oscillation, and other spectral components of neural activity 

stay homogenous across the GPi at the single neuron level. 

Thus they are not reliable neural phenomena to locate the 

neurons inside the GPi. The other important fact, we have 

some significant frequency domain (oscillation, bursting, or 

coherence-based) neural biomarker that shows significance 

in terms of mutual information in the 1D relative depth 

frame. First and second-order statistics such as firing rate and 

firing regularity-related neural biomarkers vary significantly 

inside dystonic GPi. 

It is important to note that our approach did not assume 

any a priori knowledge of the neurophysiological properties 

of the candidate neural biomarkers, as we only measured 

each biomarker's capacity to carry enough information to 

locate the DBS electrodes algorithmically within GPi. In 

future studies,  we will address the underlying mechanism 

leading to spatial inhomogeneity of specific features of 

dystonic GPi activity. 

4.1 Limitations 

Figure 7- The results of dorsoventral neuron localization within GPi in the 3D MNI space domain. (A) The value distribution of 

significant neural biomarkers for dorsally and ventrally located neural populations and the corresponding probability values (corrected 

with Holm-Bonferroni Method) of Mann-Whitney U tests in merged hemispheres analysis task. (B) Significance of neural biomarkers 

in terms of their abilities to explain mean entropy during the generation of Random Forest Trees classifier for dorsoventral localization 

task in all tasks in prediction block. (C) The ROC curves of the Voting Classifiers (constructed with trained Random Forest Trees and 

KNN classifiers) for different analysis scenarios with their corresponding percentile-based confidence intervals of AUC scores. (D) The 

confusion matrices of GPi dorsoventral classification tasks in prediction block tasks and their classification performances (precision, 

recall, and F1 scores) in MNI space. (E) The performances of the Voting Classifier models in respect of balanced accuracy, weighted 

AUC, and weighted F1 scores in tasks of prediction and validation blocks. (F) The performance of the Voting Classifier model for 

single and combined versions of the significant neural biomarkers in a merged hemisphere analysis scenario. The percentile-based 

confidence interval of the random chance scenario for each performance metric is indicated with two horizontal lines (left whisker: 

lower bound, right whisker: upper bound of confidence interval). 
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As cited earlier, we were not able to corroborate the 

anatomical position of the MERs electrodes with 

preoperative or postoperative medical images. Hence, the use 

of normalized probability-based anatomical atlas for the 

confirmation does not affirm the inter-subject anatomical 

variabilities of our subject group. The possibility of brain 

tissue displacements during GPi DBS surgery further added 

uncertainty to our findings. Furthermore, we believe that the 

GPi bounds were set conservatively by setting the heuristic 

threshold for the DISTAL atlas as 0.5. The number of 

neurons in the right GPi hemisphere is roughly 20%, and the 

majority of the electrode trajectories are outside of the right 

GPi. We know that before craniotomy, patients' heads are 

tilted at a precise angle. The tilt could potentially cause these 

types of misalignment between the real position of neurons 

and their DISTAL atlas-based location. Even though the use 

of a normalized atlas introduced some level of limitations, 

the DISTAL atlas is a widely adopted and validated atlas for 

DBS studies. In a recent study, MERs and DISTAL atlas 

were found to be consistent in determining the subthalamic 

nucleus (STN) entry for Parkinson's disease patients who 

underwent STN DBS surgery[18]. 

The expert definition was used for defining GPi borders in 

the 1D reference frame, as previously described. The concept 

introduces a level of uncertainty because we did not have 

relative locations of electrode trajectories to GPi. 

We repeated the neuron localization procedure also 

relative to the mediolateral and anteroposterior axes. The 

main issue was we only had neurons located in the anterior 

and lateral sections of dystonic GPi in both hemispheres due 

to the location of trajectories of DBS electrodes. Hence, we 

were not able to discriminate neurons in all anatomical axes 

to get the complete functional structure of the dystonic GPi.  

We are aware that working with SUAs that are isolated 

from the MER recordings poses methodological difficulties 

in terms of oscillatory behaviour detection, especially in 

single-trial experiments. Consequently, we do not assert that 

neural oscillations are not part of the pathophysiology of 

dystonia within the GPi. In our analysis, we only concluded 

that neuronal oscillations are not the optimal feature for lead 

localization based on MERs in GPi DBS surgeries for 

dystonia.  

Finally, the acquired dataset was sufficient to lead to 

statistically robust results, mainly due to the high number of 

tracks per patient and the high quality of the recordings, but 

the set of patients was however limited to ten. Before 

translating to clinical application, larger datasets should be 

analysed to ensure that the proposed methods can overcome 

inter-subject differences. 

4.2 Algorithms performance 

As we suggested in our introduction, the peculiar 

characteristics of the transition from the external segment of 

the globus pallidus (GPe) to GPi, such as the sparseness of 

the neurons along the pallidum, the absence of a marked 

reduction in neuronal activity, and the high discharge rate 

variability, challenged the electrophysiological determination 

of GPi borders and led to AUC values of 0.67. Additionally, 

there was no well-established anatomical delineation 

between the dorsal and ventral regions of GPi for the 

dorsoventral location. As a result, we divided the GPi using 

the median split: -3.880 on the GPi Z-axis, which could also 

contribute to the performance of our pipeline. Hence, 

moderate values of AUC are less an indication of the efficacy 

of the method than a measure of the structural inhomogeneity 

of GPi. Apart from the neuroanatomical aspect of the GPi 

and the surrounding tissue, several factors (the issue 

regarding postoperative imaging, and conservatively defined 

GPi boundaries based on the Distal Atlas that we mentioned 

in our Limitation Section) introduced this uncertainty for the 

neuron location localization procedure, again leading to an 

AUC in the order of 0.67. However, cross-validation 

analyses and confidence interval estimation confirmed the 

robustness of the classification procedures.  

We experimented with different classification approaches 

that exploit several mathematical concepts to distinguish 

particular neuron populations. Initially, we employed two 

tree-based classification algorithms: Decision Tree Classifier 

and Random Forest Classifiers. Both algorithms construct 

tree structures based on the capability of neural biomarkers 

to reduce impurity during the classification. The main 

advantage of the Random Forest Classifier is generating 

several random Decision Trees and conducting training 

instantaneously. The outcome of the classification process 

will be determined based on major votes between different 

trees. Being an ensemble approach, it generally provides 

robust results. For the K-Neighbour Classifier, the spatial 

structure of the dataset plays a primary role; definition of the 

distance metric, we used Euclidean distance, and the 

neighbour radius criteria can affect the classification results 

drastically. Considering that neural dynamics are entirely 

complex, the definition of apparent borders between neuron 

populations is not achievable for all localization procedures. 

Correspondingly, the spatial structure is vital for the 

classification of Support Vector Machines. Since SVM 

utilizes the definition of hyperplanes that separates the 

regions that belong to different classes, not all problems have 

a suitable structure for SVM. In the Gaussian Classifier case, 

the algorithm attempts to exploit the Gaussian probability 

distribution function similarly to Gaussian mixture problems. 

It tries to estimate the Gaussian distribution of each neural 

biomarker for each class in terms of mean and variance 

properties. Additional to these parameters, gaussian 

processes require specifying a kernel that manages how 

neurons relate to each other; specifically, it defines the 

covariance function of the data. The main problem might 
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occur when the distributions of two classes for a specific 

neural biomarker are noticeably similar. In this case, the 

algorithm cannot be able to discriminate neuron populations. 

4.3 Lateralization 

Our results posit that dystonic GPi may have a potential 

lateralization effect in terms of the in-out localization task 

conducted in the MNI reference frame. As stated in the result 

section, no neural biomarkers were selected for the neural 

decoders that were constructed for the right and left 

hemispheres individually. Furthermore, merging the neurons 

of two hemispheres onto the right GPi resulted in significant 

performance degradation.  

The lateralization effect could be originated from two 

different sources. Firstly, the craniotomy for GPi DBS 

surgeries is initiated from the right side of the cranium of 

dystonic patients. Besides, when we examined the baseline 

motor indexes of the Burke-Fahn-Marsden Dystonia Rating 

Scale (BFMDRS) for the right arm, left arm, right leg, and 

left leg of patients, we discovered that the right sides of half 

of the patients are more affected by primary dystonia 

compared to their left sides (remaining 30% equally affected 

and 20% no baseline scores) (see Supplementary Material 

Table 22).  

On the contrary, electrophysiological dynamics within 

GPi are consistent for two hemispheres, and the primary 

dystonia mostly modulates the mean firing rate and firing 

regularity of neurons. 

4.4 Perspectives 

We developed a method able to describe the functional 

structure of the GPi based on intraoperative multichannel 

high-density MERs. This approach can be fruitfully applied 

to find disease-specific and patient-specific partitioning on 

the GPi and hence support the localization of optimal DBS 

targets. Crucially, this method could also be applied to other 

neurological conditions to be treated by GPi implant, i.e., 

Tourette’s syndrome and Parkinson’s disease.    

The proposed computational pipeline has the feasibility to 

operate in an online manner during DBS surgeries for lead 

localization. With a few straightforward changes to the 

pipeline, offline-to-online translation may be achieved. As an 

initial step, one of the recently proposed high-performance 

online spike sorting algorithms[51–53] can replace the 

offline counterpart that we utilized in our pipeline. Since 

each spike sorting algorithm adopts different computational 

and statistical approaches, the SUA generation time will 

differ. We approximated the computational running time of 

these online algorithms for 10-second recordings based on 

their reported benchmark tests. Mostly, they can extract 

single units in less than 1.5 seconds (starting from 0.64 to 

1.49 seconds). Approximately 1.25±0.24 (follows the 

Gaussian distribution for 100 neurons) seconds are needed to 

produce all the neural biomarkers we presented in the study 

for each neuron. Considering that the voting classifier was 

previously trained before the surgery, the localization of the 

neuron by the trained neural decoder takes around 0.98 

seconds. With the aforementioned modifications, we thus 

think that an online implementation of our computational 

pipeline can predict the location of DBS leads in around 3.68 

seconds (including the online spike sorting procedure) for 

each 10-second MER recording. In our dataset, we had an 

average of 10 depth levels per trajectory across 10 patients. 

Considering this fact, the total running time of the online 

version of the proposed pipeline takes around 37 seconds 

during the whole MER collection procedure for each 

trajectory. Additionally, the value distribution of significant 

neural biomarkers may also be illustrated, and the lead 

localization can be displayed on an anatomical atlas in real 

time. As a result, the pipeline we demonstrate here may serve 

as the basis for software that takes advantage of all the 

features and low computational time for providing feedback 

to neurosurgical teams in real-time. 
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