- 1 Title: Epidemiology of RSV-A and RSV-B in Adults and Children with Medically-Attended
- 2 Acute Respiratory Illness over Three Seasons
- 3
- 4 **Authors & Affiliations:** Katherine M. Begley¹, Aleda M. Leis¹, Joshua G. Petrie^{1*}, Rachel
- 5 Truscon¹, Emileigh Johnson¹, Erin McSpadden¹, Lois E Lamerato², Melissa Wei³, Arnold S.
- 6 Monto¹, Emily T. Martin¹
- ⁷ ¹Department of Epidemiology, University of Michigan School of Public Health
- 8 ²Department of Public Health Sciences, Henry Ford Health
- ⁹ ³Department of Medicine, University of California Los Angeles
- 10 *Current affiliation: Center for Clinical Epidemiology & Population Health, Marshfield Clinic
- 11 Research Institute, Marshfield, WI
- 12

13 Corresponding Author:

- 14 Emily T. Martin, PhD MPH
- 15 University of Michigan School of Public Health
- 16 1415 Washington Heights
- 17 Ann Arbor, Michigan 48109
- 18 Phone: 734-647-4723
- 19 Email: <u>etmartin@umich.edu</u>
- 20
- 21 Word Count: 2,956
- 22 Abstract Length: 222
- 23

- 24 Footnotes: Conflicts of Interest: ETM has received research funding from Merck related to the
- 25 submitted work. LL has received consulting fees from Janssen paid to institution.
- 26 **Funding Statement:** Supported in part by a research grant from the Investigator-Initiated
- 27 Studies Program of Merck Sharp & Dohme Corp. The opinions expressed in this paper are those
- 28 of the authors and do not necessarily represent those of Merck Sharp & Dohme Corp.
- 29 The data was previously presented at ReSViNET 2021.

30 Abstract

31	Background: RSV is a frequent cause of respiratory illness less often diagnosed outside hospital
32	settings; thus, overall prevalence of RSV-associated illness is under-recognized. Information
33	about presence of RSV among those with chronic conditions is especially needed with recent
34	advances in vaccine development.
35	Methods: Participants prospectively enrolled in an ambulatory surveillance study of respiratory
36	illness (MFIVE) were tested by RT-PCR for RSV and influenza. Participant and illness
37	characteristics were collected by in-person survey and EMR review. Chronic conditions were
38	characterized by the Multimorbidity-weighted index (MWI). Viral factors, including subtype and
39	viral load, were compared between RSV-A and RSV-B. Multivariate logistic regression models
40	were used to compare participant and illness characteristics between those with RSV and those
41	with influenza. Comparisons were also made across RSV subtypes.
42	Results: Among 4,442 individuals enrolled in MFIVE from fall 2017 to spring 2020, 9.9%
43	(n=441) had RSV detected. RSV+ participants with increased viral load had increased odds of
44	illness lasting \geq 7 days [OR _{adj} =2.39 (95% CI: 1.03-5.51) p-value=0.04]. Adults with RSV had
45	higher median MWI scores compared to influenza and RSV/influenza-negative (1.62, 0.40, 0.64,
46	respectively).
47	Conclusions: Our findings support the need for ongoing RSV surveillance, particularly in older
48	adults and those with multimorbidity. Our findings support a recognition of multimorbidity as a
49	significant contributor to RSV-associated MAARI among outpatient adults, with particularly

50 notable impacts among adults under 65.

51 Keywords: respiratory syncytial virus; child; adult; viral load; multimorbidity

52

53 Introduction

54	Respiratory Syncytial Virus (RSV) is one of the leading global causes of acute
55	respiratory illness (ARI) among children and is known to be a significant cause of ARI among
56	high-risk adults, particularly those with underlying cardiopulmonary conditions [1–5].
57	Assessments of multi-year patterns of RSV-A and RSV-B epidemiology in both children and
58	adults with medically attended acute respiratory illness (MAARI) are needed for the outpatient
59	setting to inform the need for and use of future RSV vaccines.
60	Older adults experience a higher incidence of RSV-associated MAARI as well as severe
61	RSV-associated illness outcomes, including hospitalization, when compared to younger adults
62	[6–9]. An individual's health history – such as age and underlying chronic conditions, especially
63	among adults - and characteristics of the virus - including subtype and viral load - may
64	contribute to increased RSV severity. The prevalence of multimorbidity – the coexistence of
65	multiple underlying chronic conditions – increases significantly with age. As individuals with
66	multimorbidity are more likely to experience adverse health outcomes [10–14], multimorbidity
67	may also increase the risk of respiratory virus infection or the outcomes of medically-attended
68	acute respiratory illness.
60	The mimory chiestive of this study was to describe characteristics and illness sutcomes

The primary objective of this study was to describe characteristics and illness outcomes among adults and children with MAARI at outpatient clinics located in southeast Michigan between 2017 and 2020. To do so, we evaluated the relationship between quantitative viral load and illness outcomes and whether viral subtype modified these associations and described the impact of multimorbidity on RSV illness in adults.

74 Methods

75 Source Population

76	Data and specimens for this study were available from three respiratory virus seasons–2017/18,
77	2018/19, and 2019/20-of the Michigan Henry Ford Influenza Vaccine Effectiveness (MFIVE)
78	study. Data collection was ended on March 13, 2020 due to COVID-19 mitigation. MFIVE is an
79	ongoing, prospective, ambulatory-care study in southeast Michigan with coverage across 19
80	(2017/18), 23 (2018/19), and 22 (2019/20) outpatient clinics. MFIVE enrolls over 1,000 people
81	annually with MAARI for analysis of influenza vaccine effectiveness [15-18]. Patients six
82	months of age and older presenting with medically attended acute respiratory illness (MAARI)
83	meeting a standard case definition (lasting \leq seven days with a cough) and who have not taken
84	influenza antiviral treatment for their current illness were eligible for participation.
85	
86	Data collection
87	Following informed consent, MFIVE research staff conducted an enrollment interview to collect
88	demographic and household characteristic data, information on their current illness and overall
89	health status, and vaccination status. Staff collected throat and nasal swab specimens and
90	delivered them to the Michigan Center for Respiratory Virus Research and Response for
91	processing and storage. Seven days post-enrollment, participants received an online follow-up
92	questionnaire to complete at home. Through this survey, participants self-reported illness
93	duration and recovery metrics, including subsequent care-seeking behavior. The University of
94	Michigan and Henry Ford Health Institutional Review Boards provided ethical approval for this
95	work.
96	

97 Illness Characteristics

98	The number of symptoms reported-fever, sore throat, congestion-were operationalized
99	dichotomously for assessing symptom burden (low 0-1 symptoms vs. high 2-3 symptoms), using
100	any combination of symptoms reported. Length of illness was determined using self-reported
101	illness onset date recorded at enrollment and recovery date from the follow-up survey and then
102	dichotomized as extended illness (\geq 7 days) or not (< 7 days). Variables for subsequent seeking
103	of medical care or treatment were combined and dichotomized (sought subsequent treatment,
104	yes/no) and included visiting a doctor's office, urgent care clinic, retail pharmacy clinic, or
105	emergency department/hospital.
106	
107	Clinical Data
108	Electronic Health Record (EHR) data were abstracted to obtain ICD-10 diagnosis codes
109	indicating high-risk conditions up to one year prior to enrollment, and all ICD-10 codes recorded
110	by the healthcare provider seen at enrollment. Participant date of birth, sex and height
111	(centimeters) and weight (kilograms) closest to enrollment for calculating BMI (kg/m^2) were also
112	abstracted.
113	
114	Viral Characteristics
115	Viral RNA was extracted with QiaAmp Viral RNA mini kits (Qiagen, Germany). RSV,
116	influenza, and other viral respiratory pathogens (Rhinovirus, Parainfluenza, Human
117	metapneumovirus, Seasonal coronaviruses, Bocavirus, Adenovirus, and Enterovirus) were
118	detected by RT-PCR using Fast Track Diagnostics real-time multiplex PCR respiratory panel
119	(Siemens Healthineer Company, Luxembourg). Sample viral subtype and quantitative viral load
120	were determined by Real-Time PCR (RT-PCR) on an ABI 7500 instrument (Thermo Fisher

121	Scientific), protocol described elsewhere [19,20]. All test plates included nuclease-free water as
122	a negative control as well as six RNA transcript standards, ranging from $1 \times 10^4 - 1 \times 10^9$ copies
123	of viral RNA. Viral load was determined through comparing unknown samples to transcript
124	standards using curves generated by qPCR.
125	
126	Multimorbidity-weighted index (MWI)
127	To determine adult multimorbidity status, the main exposure, we applied the
128	Multimorbidity Weighted Index (MWI), a validated, patient-centric measure of multimorbidity
129	adapted for ICD-10 compatibility [21,22]. The MWI measures the impact of underlying
130	conditions on patient physical functioning. Ninety-five conditions were represented in the MWI
131	across the following categories: cardiovascular, endocrine, gastrointestinal, hematologic,
132	immunologic, integumentary, musculoskeletal, nervous, oncologic, ophthalmologic, oral,
133	psychiatric, pulmonary, renal, and reproductive [21].
134	All ICD-10 diagnosis codes extracted from participant EHR were included to construct
135	individual MWI scores using available macros on SAS software version 9.4 (SAS Institute, Cary
136	NC). For the primary analysis we evaluated multimorbidity continuously and dichotomously (>0
137	versus 0 MWI), where indicated.
138	
139	Statistical Analysis
140	Participants with RSV were compared to two groups: participants positive for influenza
141	and participants negative for both RSV and influenza. Overall descriptive statistics were

142 calculated for all eligible study participants.

143	For statistical analyses, data from all seasons were pooled to increase power, and study
144	year was included in regression models for pooled data. Age was categorized using
145	epidemiologically meaningful cut points: 0-4 years, 5-17 years, 18-49 years, 50-64 years, and \geq
146	65 years, respectively). Race (White, Black, and Other), education status (Less than High
147	School, Graduated High School/GED, Some College, Bachelor's Degree, and Advanced Degree)
148	and obesity (BMI \ge 30). Time between illness onset and specimen collection was categorized (0-
149	2 days and 3+ days). Viral load was log10-transformed for analysis as a continuous variable as
150	well as dichotomized using median viral load as the cut point. Using median sample viral load as
151	a threshold, samples with a quantitative viral load $\geq 2.2 \times 10^4$ copies/mL (log10-transformed \geq
152	4.3) were compared to samples with a quantitative viral load $< 2.2 \times 10^4$ copies/mL (log10-
153	transformed < 4.3).
154	For viral characteristic analyses, all RSV-positive participants with subtype and viral load
154 155	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's r correlation coefficient was used to assess the
154 155 156	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to
154 155 156 157	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples.
154 155 156 157 158	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples. To test the association between quantitated viral load and RSV-associated illness
154 155 156 157 158 159	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples. To test the association between quantitated viral load and RSV-associated illness outcomes, both univariate and multivariable Firth logistic regression models were constructed,
154 155 156 157 158 159 160	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples. To test the association between quantitated viral load and RSV-associated illness outcomes, both univariate and multivariable Firth logistic regression models were constructed, and odds ratios reported. Multivariable models were adjusted for age, sex, race, season, and time
154 155 156 157 158 159 160 161	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples. To test the association between quantitated viral load and RSV-associated illness outcomes, both univariate and multivariable Firth logistic regression models were constructed, and odds ratios reported. Multivariable models were adjusted for age, sex, race, season, and time between illness onset and specimen collection. Firth-adjusted regression models were used to
154 155 156 157 158 159 160 161 162	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples. To test the association between quantitated viral load and RSV-associated illness outcomes, both univariate and multivariable Firth logistic regression models were constructed, and odds ratios reported. Multivariable models were adjusted for age, sex, race, season, and time between illness onset and specimen collection. Firth-adjusted regression models were used to account for potential bias from smaller outcome counts in stratified analyses [23]. We provide
154 155 156 157 158 159 160 161 162 163	For viral characteristic analyses, all RSV-positive participants with subtype and viral load data available were included. Pearson's <i>r</i> correlation coefficient was used to assess the association between log viral load and viral subtype. The Mann-Whitney U Test was used to detect differences in viral load (copies/mL) between RSV-A and RSV-B samples. To test the association between quantitated viral load and RSV-associated illness outcomes, both univariate and multivariable Firth logistic regression models were constructed, and odds ratios reported. Multivariable models were adjusted for age, sex, race, season, and time between illness onset and specimen collection. Firth-adjusted regression models were used to account for potential bias from smaller outcome counts in stratified analyses [23]. We provide overall and age-stratified estimates, where indicated, as well as estimates stratified by viral

interaction term between viral load and viral subtype was included in all overall illness outcomemodels.

167	For multimorbidity analyses, only adults ICD codes were included. Participants under the
168	age of 18 were excluded from multimorbidity analyses as the MWI is not validated for use in
169	children. Descriptive statistics were calculated separately for adults included in multimorbidity
170	analyses. Firth-adjusted multivariate logistic regression models were used to assess the
171	association between multimorbidity and ARI outcomes, adjusting for age, sex, race, and season.
172	All statistical analyses were conducted on SAS software version 9.4 (SAS Institute, Cary NC).
173	
174	Results
175	Epidemiology
176	From 2017-2020, 4,490 people were enrolled in MFIVE; 16 participants were excluded from this
177	analysis due to inconclusive RSV testing and 32 participants were excluded due to RSV-
178	influenza co-detection (Figure 1). Overall (n=4,442), 441 study-eligible cases of RSV, 1,341
179	cases of influenza, and 2,660 participants negative for both RSV and influenza were included
180	(Figure 2).
181	The annual proportion of RSV detection among participants under 18 years of age with
182	MAARI across 2017/18, 2018/19, and 2019/20 was 17.0%, 11.8%, and 10.4%, respectively.
183	Among children aged 0-4 years old across all study years (n=719), 23.8% (n=171) had RSV
184	detected, which was slightly higher than the proportion of children in that age group with
185	influenza detected (20.0%, n=144). The annual prevalence of symptomatic RSV among adults

186 with MAARI across included study years was 9.4%, 6.8%, and 6.9%, respectively. These

187 estimates were comparatively lower than the annual prevalence of symptomatic influenza among

adults (36.3%, 18.5%, and 31.4%, respectively) and children (32.6%, 34.7%, and 40.0%,

189 respectively) with MAARI in our study.

190 The median age of those with RSV detected was younger than those with influenza 191 detected as well as those who were negative for both RSV and influenza (Table 1). Over two-192 thirds of adults with RSV detected had an MWI score above zero (68.6%, n=142). In contrast, 193 58% of adults with influenza detected or neither RSV nor influenza detected had an MWI score 194 above zero. Even with a significant presence of multimorbidity across all study participants, 195 92.6% (n=4,114) reported being in 'Good Health'. Among adult participants (n=2,701), those 196 with RSV (1.2%, n=33) or influenza (7.2%, n=194) detected had children under the age of 197 twelve residing in their household, compared to 16% (n=433) of adults negative for RSV and 198 influenza.

199

200 Illness Outcomes

201 Over three-quarters of patients with influenza detected (78.5%, n=1.053) reported 202 experiencing a fever at their enrollment visit, compared to roughly half for participants with RSV 203 (54.2%, n=239) or neither (46.3%, n=1,231) detected. A sore throat was more often reported by 204 those with influenza (67.3%, n=902) or neither (68.0%, n=1,808) detected compared to those with RSV detected (55.1%, n=243) (X^2 , p-value < 0.0001), and an overwhelming majority of all 205 206 participants reported congestion as a symptom (87.3%, n=3,878). Nearly half of participants with 207 influenza detected reported having all three symptoms (49.1%, n=658), and a majority of those 208 with RSV (51.2%, n=226) or neither (46.5%, n=1,236) detected reported the presence of two symptoms (X^2 , p-value < 0.0001). Overall, 63.9% of participants completed the follow-up survey 209 210 after their illness visit (n=2,838). Nearly 40% of these participants with RSV detected reported a

211 length of illness equal to seven days or longer (Table 2). Of those who responded to the follow-

up survey, 11.6% of participants with RSV, 7.7% with influenza, and 8.8% with neither detected

213 reported seeking subsequent care (X^2 , p-value = 0.03).

- 214 RSV Viral Characteristics
- Among RSV-positive samples with subtyping data available (86.4%, n=381), 62.2%

216 (n=237) were RSV-B and 37.8% (n=144) were RSV-A (Figure 1). Viral subtype was

217 undetermined for 13.6% (n=60) of RSV specimens, and quantitative viral load was undetermined

218 for 7.5% (n=28) of specimens and these were excluded from respective analyses. RSV-B was the

219 most common subtype detected across these three respiratory illness seasons (Figure 2). Among

samples with viral load determined (n=353), quantitated viral load ranged from 2.09×10^{1} to

 1.10×10^9 copies/mL and median viral load was 2.20×10^4 copies/mL (log10-transformed = 4.3).

222 Log10-transformed viral load was weakly but significantly correlated with viral subtype (r =

223 0.23, p-value < 0.0001), and RSV-B samples had significantly higher viral loads (copies/mL)

when compared to RSV-A samples (Mann-Whitney test, p-value <0.0001).

After adjusting for age, gender, season, race, and time between illness onset and specimen collection, the odds were 1.88 times higher that RSV-B samples had a high viral load (defined as $\ge 2.20 \times 10^4$ copies/mL) when compared to RSV-A samples [OR_{adj} = 1.88 (95% CI: 1.14-3.11), p-value = 0.01] (Table 3). When stratified by adults and children, the effect size became stronger in children (n=193) [OR_{adj} = 2.44 (95% CI: 1.25-4.77), p-value < 0.01], whereas it was attenuated and no longer significant in adults (n=160) [OR_{adj} = 1.22 (95% CI: 0.56-2.65), p-value = 0.61].

After adjusting for age, sex, race, season, viral subtype, and time between illness onset
and specimen collection, those with high viral load had significantly higher odds of experiencing

234	an extended length of illness when compared to those with a lower viral load (n=166) $[OR_{adj} =$
235	3.14 (95% CI: 1.25-7.93), p-value = 0.02] (Supplementary Table 2). After stratification by RSV
236	subtype and adjusting for age, sex, race, season, and time between illness onset and specimen
237	collection, participants with RSV-A detected (n=54) had a larger effect estimate $[OR_{adj} = 4.88]$
238	(95% CI: $0.82-29.1$), p-value = 0.08] compared to participants with RSV-B detected (n=112)
239	$[OR_{adj} = 2.30 (95\% \text{ CI: } 0.75-7.06), \text{ p-value} = 0.15].$ However, an interaction term for viral load
240	and RSV subtype in the overall statistical model was not significant (p-value=0.61).
241	
242	Multimorbidity Analysis
243	The relationship between ARI and multimorbidity was examined for adult enrollees
244	(n=2,681; Supplementary Table 1). For all three years, the most common condition categories
245	among adults were pulmonary (20.7%), endocrine (38.4%), and cardiovascular (15.9%). The top
246	three prevalent conditions detected across all study years were elevated cholesterol
247	hyperlipidemia, diabetes, and asthma. Calculated non-zero MWI scores for individual RSV-
248	positive adults ranged from 0.15-25.9, whereas scores ranged from 0.15-54.54 in influenza-
249	positive adults and 0.15-36.57 in the negative control group. The median MWI score of RSV-
250	positive adults in this sample higher than that in influenza-positive adults and RSV-negative $/$
251	influenza-negative adults (1.62, 0.40, 0.64, respectively) (Figure 3, Supplementary Table 3).
252	Across all groups, median MWI scores were similar for those who sought subsequent care and
253	those who did not. Adults with RSV had higher overall median MWI scores across various
254	illness outcomes, including reporting congestion or sore throat, two symptoms total, and
255	experiencing a length of illness more than seven days (Supplementary Table 3). After adjusting

256	for age, sex, season, and race, there were no statistically significant associations between
257	multimorbidity and illness outcomes for any infection group (Table 4).

258

259 **Discussion**

260 In this population presenting for outpatient care for symptomatic respiratory illness, we

identified a substantial prevalence of RSV among both children (13.4%) and adult (7.7%)

262 populations, respectively, with both RSV-A and RSV-B co-circulating through all three years of

the study. Nearly one-quarter of children aged 0-4 years old (23.8%) with MAARI during the

study had RSV detected. Similarly, Jackson et al. found the highest mean annual incidence of

265 medically attended RSV among children between the ages of one and four years old [7]. We

found viral load differed by subtype, and there was no difference in sample timing between

267 RSV-A and RSV-B specimens. Viral load was also associated with reported length of illness.

268 Studies of hospitalized infants predating the introduction of molecular methods, have 269 suggested that RSV-A was more likely to cause severe illness or necessitate intensive care when 270 compared to RSV-B [24–26]. In contrast, and in line with multiple early studies, Monto and 271 Ohmit found no differences in illness characteristics between the two subtypes in a community 272 setting [27–31]. More recent studies describing the relationship between RSV subtype, viral 273 load, and illness severity have focused primarily on hospitalized infant populations and report 274 varied results. In contrast to our findings, a study of hospitalized infants by Rodriguez-Fernandez 275 et al. found that RSV-A samples had significantly higher quantitative viral loads when compared 276 to RSV-B samples [32]. Walsh et al. assessed RSV illness severity in infants – measured via 277 hospitalization, ICU admission, and the need for ventilation – and concluded viral load did not 278 differ by illness severity [33].

279 As age increases so does the presence of chronic conditions, putting individuals at greater 280 risk of hospitalization or death due to RSV-associated illness. Specifically, diabetes and chronic 281 obstructive pulmonary disease have long been recognized as risk factors for severe respiratory 282 viral disease. The presence of these conditions has frequently been used to prioritize vaccination, 283 particularly in adults under 65. As vaccine development for RSV progresses, it is increasingly 284 important to recognize the presence of RSV in individuals with chronic disease, the total burden 285 of which is represented by multimorbidity. We have previously found that adults hospitalized 286 with RSV had significantly higher median Charlson Comorbidity Index scores (3 vs. 2, p-value <287 0.001) when compared to those with influenza detected [3]. Although adults with RSV were 288 younger than adults with influenza in our ambulatory study population, we found that adults 289 seeking medical care for symptomatic RSV-associated illness had significantly higher median 290 multimorbidity scores when compared to adults seeking medical care for symptomatic ARI with 291 influenza or neither RSV nor influenza detected. This indicates that underlying multimorbidity, 292 and the functional impact of the multimorbidity, is important to consider when identifying adults 293 at risk for RSV-associated MAARI, and this population may benefit from priority vaccination 294 against RSV in the future.

The inclusion of influenza-positive and RSV-negative, influenza-negative participants allowed us to make meaningful interpretations of RSV risk factors and severity. The MWI – as opposed to Charlson Comorbidity Index or Elixhauser Method – provides a more meaningful metric for assessing the impact of multimorbidity for this analysis because it accounts for the cooccurrence of multiple conditions and is validated against outcomes other than mortality, including physical functioning and cognitive status, which are more relevant to this ambulatory care population. Additional strengths of this study include prospective screening and enrollment

of participants who met a pre-established MAARI case definition as well as the use of highly
 sensitive and specific molecular testing for virus detection and RSV subtype and viral load
 determination.

305	Our analysis underscores RSV as a substantial cause of MAARI among adults and
306	children in an ambulatory care setting and provides additional insight into the complex
307	relationships between viral characteristics and illness characteristics. Our findings reinforce that,
308	similarly to influenza, consistent differentiation of RSV subtype is warranted to improve RSV
309	surveillance and inform future vaccine development and implementation. Further, we provide
310	data supporting multimorbidity as a significant contributor to RSV-associated MAARI among
311	outpatient adults, with particularly notable impacts among adults under 65. Increasing efforts to
312	regularly include older adults and those with multimorbidity in the identification and
313	management of RSV-associated MAARI in the outpatient setting may reduce disease burden as
314	well as subsequent care utilization.
315	
316	References

Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory Syncytial Virus
 Infection in Elderly and High-Risk Adults. New England Journal of Medicine. 2005;
 352(17):1749–1759.

320 2. Falsey AR, Formica MA, Hennessey PA, Criddle MM, Sullender WM, Walsh EE.

- 321 Detection of respiratory syncytial virus in adults with chronic obstructive pulmonary
 322 disease. Am J Respir Crit Care Med. 2006; 173(6):639–643.
- 323 3. Malosh RE, Martin ET, Callear AP, et al. Respiratory syncytial virus hospitalization in
 middle-aged and older adults. J Clin Virol. 2017; 96:37–43.

325	4.	Sundaram ME, Meece JK, Sifakis F, Gasser RA Jr, Belongia EA. Medically Attended
326		Respiratory Syncytial Virus Infections in Adults Aged ≥50 Years: Clinical Characteristics
327		and Outcomes. Clinical Infectious Diseases. 2014; 58(3):342–349.
328	5.	Walsh EE, Peterson DR, Falsey AR. Risk factors for severe respiratory syncytial virus
329		infection in elderly persons. J Infect Dis. 2004; 189(2):233–238.
330	6.	Belongia EA, King JP, Kieke BA, et al. Clinical Features, Severity, and Incidence of RSV
331		Illness During 12 Consecutive Seasons in a Community Cohort of Adults ≥60 Years Old.
332		Open Forum Infect Dis. 2018; 5(12):ofy316.
333	7.	Jackson ML, Scott E, Kuypers J, Nalla AK, Roychoudury P, Chu HY. Epidemiology of
334		Respiratory Syncytial Virus Across Five Influenza Seasons Among Adults and Children
335		One Year of Age and Older—Washington State, 2011/2012–2015/2016. The Journal of
336		Infectious Diseases. 2021 ; 223(1):147–156.
337	8.	McClure DL, Kieke BA, Sundaram ME, et al. Seasonal Incidence of Medically Attended
338		Respiratory Syncytial Virus Infection in a Community Cohort of Adults ≥50 Years Old.
339		PLoS One. 2014; 9(7):e102586.
340	9.	Zhou H, Thompson WW, Viboud CG, et al. Hospitalizations Associated With Influenza
341		and Respiratory Syncytial Virus in the United States, 1993–2008. Clin Infect Dis. 2012;
342		54(10):1427–1436.
343	10.	Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of
344		multimorbidity and implications for health care, research, and medical education: a cross-
345		sectional study. The Lancet. Elsevier; 2012; 380(9836):37-43.

346	11.	Koroukian SM. Multimorbidity Redefined: Prospective Health Outcomes and the
347		Cumulative Effect of Co-Occurring Conditions. Prev Chronic Dis [Internet]. 2015 [cited
348		2021 Dec 9]; 12. Available from: https://www.cdc.gov/pcd/issues/2015/14_0478.htm
349	12.	Lai FTT, Wong SYS, Yip BHK, et al. Multimorbidity in middle age predicts more
350		subsequent hospital admissions than in older age: A nine-year retrospective cohort study of
351		121,188 discharged in-patients. European Journal of Internal Medicine. Elsevier; 2019;
352		61:103–111.
353	13.	Salisbury C, Johnson L, Purdy S, Valderas JM, Montgomery AA. Epidemiology and impact
354		of multimorbidity in primary care: a retrospective cohort study. Br J Gen Pract. British
355		Journal of General Practice; 2011; 61(582):e12–e21.
356	14.	Wei MY, Kabeto MU, Galecki AT, Langa KM. Physical Functioning Decline and Mortality
357		in Older Adults With Multimorbidity: Joint Modeling of Longitudinal and Survival Data. J
358		Gerontol A Biol Sci Med Sci. 2019; 74(2):226–232.
359	15.	Chung JR, Rolfes MA, Flannery B, et al. Effects of Influenza Vaccination in the United
360		States During the 2018–2019 Influenza Season. Clinical Infectious Diseases. 2020;
361		71(8):e368–e376.
362	16.	Dawood FS. Interim Estimates of 2019–20 Seasonal Influenza Vaccine Effectiveness —
363		United States, February 2020. MMWR Morb Mortal Wkly Rep [Internet]. 2020 [cited 2021
364		Dec 29]; 69. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6907a1.htm

365	17.	Flannery B, Chung JR, Belongia EA, et al. Interim Estimates of 2017–18 Seasonal
366		Influenza Vaccine Effectiveness — United States, February 2018. MMWR Morb Mortal
367		Wkly Rep. 2018 ; 67(6):180–185.
368	18.	Jackson ML, Chung JR, Jackson LA, et al. Influenza Vaccine Effectiveness in the United
369		States during the 2015-2016 Season. N Engl J Med. 2017; 377(6):534–543.
370	19.	Kuypers J, Wright N, Morrow R. Evaluation of quantitative and type-specific real-time RT-
371		PCR assays for detection of respiratory syncytial virus in respiratory specimens from
372		children. Journal of Clinical Virology. 2004; 31(2):123–129.
373	20.	Martin ET, Kuypers J, Heugel J, Englund JA. Clinical disease and viral load in children
374		infected with respiratory syncytial virus or human metapneumovirus. Diagnostic
375		Microbiology and Infectious Disease. 2008; 62(4):382–388.
376	21.	Wei MY, Kabeto MU, Langa KM, Mukamal KJ. Multimorbidity and Physical and
377		Cognitive Function: Performance of a New Multimorbidity-Weighted Index. The Journals
378		of Gerontology: Series A. 2018; 73(2):225–232.
379	22.	Wei MY, Mukamal KJ. Multimorbidity, Mortality, and Long-Term Physical Functioning in
380		3 Prospective Cohorts of Community-Dwelling Adults. American Journal of Epidemiology.
381		2018 ; 187(1):103–112.
382	23.	Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993 ; 80(1):27–38.

383	24.	Hall CB, Walsh EE, Schnabel KC, et al. Occurrence of groups A and B of respiratory
384		syncytial virus over 15 years: associated epidemiologic and clinical characteristics in
385		hospitalized and ambulatory children. J Infect Dis. 1990; 162(6):1283–1290.
386	25.	McConnochie KM, Hall CB, Walsh EE, Roghmann KJ. Variation in severity of respiratory
387		syncytial virus infections with subtype. J Pediatr. 1990; 117(1 Pt 1):52-62.
388	26.	Walsh EE, McConnochie KM, Long CE, Hall CB. Severity of respiratory syncytial virus
389		infection is related to virus strain. J Infect Dis. 1997; 175(4):814-820.
390	27.	Hendry RM, Talis AL, Godfrey E, Anderson LJ, Fernie BF, McIntosh K. Concurrent
391		circulation of antigenically distinct strains of respiratory syncytial virus during community
392		outbreaks. J Infect Dis. 1986 ; 153(2):291–297.
393	28.	McIntosh ED, De Silva LM, Oates RK. Clinical severity of respiratory syncytial virus
394		group A and B infection in Sydney, Australia. Pediatr Infect Dis J. 1993; 12(10):815–819.
395	29.	Monto AS, Ohmit S. Respiratory Syncytial Virus in a Community Population: Circulation
396		of Subgroups A and B since 1965. The Journal of Infectious Diseases. Oxford University
397		Press; 1990 ; 161(4):781–783.
398	30.	Wang EE, Law BJ, Stephens D. Pediatric Investigators Collaborative Network on
399		Infections in Canada (PICNIC) prospective study of risk factors and outcomes in patients
400		hospitalized with respiratory syncytial viral lower respiratory tract infection. J Pediatr.
401		1995 ; 126(2):212–219.

402	31	Wilson E	Orvell C	Morrison B	Thomas E	Pediatric	RSV	Infection	During	Two	Winter
404	51.	winson E,		, MIOIIISOII D.	Thomas L.	I Culatifu	TO V	muccuon	During	1 W U	VV IIIU

- 403 Seasons in British Columbia: A Role for Subgroup Analysis in Young Children? Canadian
- 404 Journal of Infectious Diseases. Hindawi; **1990**; 1(4):112–116.
- 405 32. Rodriguez-Fernandez R, Tapia LI, Yang C-F, et al. Respiratory Syncytial Virus Genotypes,
- 406 Host Immune Profiles, and Disease Severity in Young Children Hospitalized With
- 407 Bronchiolitis. J Infect Dis. **2018**; 217(1):24–34.
- 408 33. Walsh EE, Wang L, Falsey AR, et al. Virus-Specific Antibody, Viral Load, and Disease
- 409 Severity in Respiratory Syncytial Virus Infection. The Journal of Infectious Diseases. **2018**;
- 410 218(2):208–217.
- 411 Figure Titles
- 412 Figure 1 Analytic Flow Chart
- 413 Figure 2 MFIVE MAARI Epidemiologic Curve by Detected Virus Type (2017-2020)
- 414 Figure 3 Multimorbidity Violin Plot
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423

	RSV- positive (n=441)	Influenza-positive (n=1,341)	RSV-negative, influenza-negative (n=2,660)
Age, median (IQR)	14 (2-54)	23 (8-54)	37 (10-57)
Age Group			
0-4 years	171 (23.8)	144 (20.0)	404 (56.2)
5-17 years	63 (6.2)	466 (45.6)	493 (48.2)
18-49 years	69 (5.6)	332 (27.1)	823 (67.2)
50-64 years	78 (8.6)	260 (28.6)	571 (62.8)
\geq 65 years	60 (10.6)	139 (24.5)	369 (64.9)
Female	242 (9.1)	752 (28.3)	1,664 (62.6)
Race			
White	310 (10.3)	865 (28.8)	1,824 (60.8)
Black	59 (7.6)	246 (31.7)	471 (60.7)
Other	72 (10.8)	230 (34.5)	365 (54.7)
Education ^a			
< High School	14 (9.9)	42 (29.8)	85 (60.3)
High School/GED	62 (11.0)	145 (25.7)	358 (63.3)
Some college	127 (9.9)	382 (29.7)	776 (60.4)
Bachelor's degree	114 (8.7)	415 (31.5)	787 (59.8)
Advanced degree	121 (11.0)	352 (32.0)	627 (57.0)
Obesity ^b	95 (7.4)	341 (26.4)	854 (66.2)
Self-reported good health ^c	401 (9.8)	1,262 (30.7)	2,451 (59.5)
Smoking ^d			
Every day	13 (10.4)	27 (21.6)	85 (68.0)
Some days	2 (3.0)	14 (21.2)	50 (75.8)
Never	189 (7.6)	682 (27.4)	1,615 (65.0)
Season			
2017/18	192 (12.7)	525 (34.7)	795 (52.6)
2018/19	169 (8.7)	478 (24.5)	1,306 (66.8)
2019/20	80 (8.2)	338 (34.6)	559 (57.2)
Multimorbidity Weighted Index >0 °	142 (9.0)	423 (26.8)	1,015 (64.2)
Children (<12) in household ^f	17 (5.9)	86 (29.9)	185 (64.2)

424 Table 1 Characteristics of participants by infection detection status (2017-2020), n (row %)

^a Missing education status (n=35); If participant < 18, parent's education was used; ^b Missing BMI data (n=30); Obesity not assessed in participants < 18; ^c Missing good health status data (n=4); ^d Didn't know or refused (n=24); Smoking not assessed in participants < 18; ^e Adults missing data for calculating MWI (n=20); Excludes participants < 18; ^f Restricted to adults \geq 18 years (n=2,701)

	RSV-positive (n=441)	Influenza- positive (n=1,341)	RSV-negative, influenza-negative (n=2,660)
Length of Illness (days) *			
0-2	2 (0.45)	10 (0.75)	24 (0.90)
3-6	40 (9.1)	170 (12.7)	251 (9.4)
7+	176 (39.9)	479 (35.7)	941 (35.4)
Self-reported symptoms			
Fever	239 (54.2)	1,053 (78.5)	1,231 (46.3)
Sore throat	243 (55.1)	902 (67.3)	1,808 (68.0)
Congestion	417 (94.6)	1,194 (89.0)	2,267 (85.2)
Self-reported number of symptoms +			
1	87 (19.7)	169 (12.6)	596 (22.4)
2	226 (51.2)	503 (37.5)	1,236 (46.5)
3	120 (27.2)	658 (49.1)	746 (28.0)
Sought subsequent care **			
Yes	51 (11.6)	103 (7.7)	233 (8.8)
No	249 (56.5)	722 (53.8)	1,407 (52.9)

426 Table 2 Illness characteristics by infection detection status (2017-2020), n (%)

* n = 2,349 participants missing length of illness data

+ excludes those who reported 0 symptoms (n=101)

** n = 1,677 participants missing sought subsequent care data

Table 3 Logistic regression analysis of viral load among those with RSV-B vs. RSV-A infection, 429

430 stratified by adults and children

	Unadjusted OR (95% CI)	p-value*	Adjusted OR (95% CI)	p-value*			
Overall (n=353) ^b							
Viral load (copies/mL) $\geq 2.20 \mathrm{x} 10^4$	1.71	0.02*	1.88	0.01*			
$10 + (-10)^{\circ}$	(1.10-2.67)		(1.14-3.11)				
18 + (n = 160)							
$\geq 2.20 \mathrm{x} 10^4$	1.26 (0.62-2.54)	0.53	1.22 (0.56-2.65)	0.61			
<18 (n=193) °							
$\geq 2.20 \mathrm{x} 10^4$	2.48	0.003*	2.44	0.009*			
	(1.37-4.49)		(1.25-4.77)				
^a Defense a summer for all models $< 2.20 \times 10^4$ series/ml							

^a Reference group for all models < 2.20x10⁴ copies/mL ^b Adjusted for age, sex, season, race, and time between illness onset and specimen collection

^c Adjusted for sex, season, race, and time between illness onset and specimen collection * Statistically significant at $\alpha = 0.05$

433 Table 4 Adjusted odds ratios of illness outcomes among adults with multimorbidity compared to

434 adults without multimorbidity by infection status, $OR_{adj}(95\% CI)$ and Wald p-values, (n)

435 observations overall and included in model^{*a, b*}

	RSV-positive	p-value	Influenza- positive	p-value	RSV/FLU Negative	p-value
Overall ^c	(n=207)		(n=730)		(n=1,744)	
Extended illness	(n=80)		(n=304)		(n=695)	
Yes	1.63 (0.31-8.54)	0.56	1.03 (0.55-1.95)	0.93	0.92 (0.58-1.47)	0.73
No. of reported	(n=207)		(n=730)		(n=1744)	
symptoms						
High (≥ 2)	0.91	0.80	1.36	0.16	1.11	0.40
	(0.43 - 1.93)		(0.89-2.08)		(0.87 - 1.41)	
Subsequent care §	(n=128)		(n=422)		(n=1032)	
Yes	0.91 (0.29-2.86)	0.88	1.07 (0.59-1.94)	0.82	1.44 (0.98-2.10)	0.06

^a Reference group for extended illness and sought subsequent care outcomes was 'No', reference group for number of reported symptoms was 'Low (< 2)

^b Adjusted for age, sex, race, and season

^c One influenza-positive adult and 19 adults negative for both did not have data to calculate an MWI score

 $^{\Box}$ length of illness data missing for n=1,049 negative, n=127 RSV-positive, and n=426 influenza-positive adults.

[§] sought subsequent care data missing for n=712 negative, n=79 RSV-positive, and n=308 influenzapositive adults.

436

Cases of MAARI Detected by Virus

