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Abstract 
 
Dilated cardiomyopathy (DCM), an incurable disease of the cardiomyocyte terminating 

in systolic heart failure (HFrEF), is prevalent, causes hospitalization and is associated 

with increased mortality. Despite evidence of immune activation in DCM, anti-

inflammatory interventions so far did not prove to alter the course of this disease. Here 

we show that myeloperoxidase (MPO), the principal heme peroxidase expressed by 

polymorphonuclear neutrophils (PMN) and monocytes, critically contributes to HFrEF 

in DCM. 

Muscle LIM protein (MLP) deficient mice, which spontaneously develop DCM, display 

increased circulating PMN counts and augmented levels of vessel-immobilized MPO. 

Genetic ablation and pharmacological inhibition of MPO resulted in enhanced nitric 

oxide (NO) bioavailability of systemic conductance and resistance vessels, and 

subsequently restoration of systolic left ventricular (LV) function, whereas infusion of 

MPO worsened systolic LV function. When patients diagnosed for DCM were treated 

with an orally available MPO inhibitor, systolic LV function increased, natriuretic 

peptides declined, and functional status improved.  

Impairment of endothelial NO bioavailability by release of leukocyte-derived MPO 

evolves as a disease-aggravating mechanism in DCM. MPO inhibition profoundly 

improved ventricular function by lowering systemic vascular resistance and thus holds 

promise as a novel and complementary treatment strategy for patients with DCM.  
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Introduction  
 
Heart failure with reduced ejection fraction (HFrEF) is the leading cause of 

cardiovascular hospitalization in Western countries, accounts for an annual mortality 

of nearly 10% and - despite recent medical progress – remains uncurable.1 

Pharmacological interventions, which lower mortality in HFrEF, proved beneficial by 

unloading the ventricle rather than by augmenting inotropy: Beta receptor-blocking 

agents blunt sympathetic overstimulation, inhibitors of the renin angiotensin system 

(RAS) and of neprilysin decay reduce systemic vascular resistance and 

mineralocorticoid receptor antagonists and SGLT2 inhibitors lessen myocardial fibrosis 

and fluid retention, respectively. 

 

Pathophysiologically, HFrEF is accompanied by inflammatory processes: Leukocyte 

activation, increase in cytokines and reactive oxygen species (ROS) and impaired nitric 

oxide (NO) bioavailability have been firmly linked to reduced left ventricular ejection 

fraction (LVEF).2 However, whether inflammation is cause or consequence of heart 

failure so far remains elusive, whereas anti-inflammatory treatment strategies have 

largely failed to alter the course of this disease.3 Myeloperoxidase (MPO), a heme 

protein abundantly expressed by and released from neutrophils (PMN) and monocytes, 

functions as a constituent of the innate immune defense but also demonstrated to 

affect ventricular remodeling following ischemic injury: Depletion or pharmacological 

inhibition of MPO in animal models of myocardial infarction improved left ventricular 

function and ameliorated ventricular dilatation, which was linked to decreased 

recruitment of PMN and blunted matrix metalloproteinase activation.4,5 Similarly, MPO 

deficient mice were protected against angiotensin II (Ang II)-mediated atrial fibrosis 

and fibrillation.6 

 

Myeloperoxidase has also been shown to affect vascular tone: MPO binds to 

endothelial cells and oxidizes NO – both directly and via generation of small radical 

intermediates - in the subendothelial space.7,8 Oxidation of the NO synthase (NOS) 

product L-arginine and inactivation of dimethylaminohydrolase (DDAH), which 

increases the bioavailability of endogenous NOS inhibitors, complement the ability of 

MPO to increase vascular tone by reducing endothelial NO bioavailability.8,9 It was 

proposed that MPO inhibition enhances cyclic guanosine monophosphate (cGMP) 
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levels in diseased vessels by reducing oxidation of soluble guanylate cyclase (sGC).10 

Thus, MPO emerges as an enzyme capable of increasing vascular tone by decreasing 

NO bioavailability.   

 

Dilated cardiomyopathy (DCM) is a principal cause of HFrEF and in relevant part based 

on genetic defects in the contractile apparatus of the cardiomyocyte. Muscle LIM 

protein (MLP)-deficiency (Mlp-/-) serves as a well-characterized murine model of DCM 

with development of left ventricular dilation and reduced LVEF irrespective of an 

inflammatory insult and devoid of obvious stimuli of neutrophil activation. We thus used 

this mouse model to investigate whether MPO contributes to the initiation and 

progression of systolic heart failure.11,12  
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Materials and methods 
 

A detailed methods section can be found in the supplementary material. 

 

Animal model 
The generation of Mlp-/- mice has been described previously.12 Here, MPO deficient 

animals13 were backcrossed to the FVB/N background and consecutively, the Mlp-/- 

and Mpo-/- lines were cross-bred to generate animals that are deficient for both 

proteins. All mice experiments were conducted in male mice and controlled in order to 

exclude potential litter effects. All animal experiments were conducted under 

permission of the Landesamt für Natur-, Umwelt- und Verbraucherschutz Nordrhein-

Westfalen, Recklinghausen, license numbers 2015.A459 and 2017.A464. 

 

Treatment of DCM patients with AZD4831 
Patients with documented DCM and HFrEF, who were on stable guideline-directed HF 

therapy for at least 12 weeks, were treated with AZD4831 (5 mg once daily) for 12 

weeks. In order to qualify for study inclusion, all patients underwent right heart 

catheterization. The included patients displayed postcapillary pulmonary hypertension 

(mPAP 28 ± 4.1 mmHg, PVR 2.5 ± 0.49 WE).  All patients underwent clinical 

assessment including physical examination, New York Heart Association (NYHA) 

functional class grading, assessment of the six-minute walking distance (6MWD) and 

NTproBNP serum levels (Elecsys proBNP II Test, Roche Diagnostics GmbH, 

Mannheim, Germany) at baseline, and at regular follow-up visits up to week 12. 

Furthermore, all patients underwent repeat cMRI at baseline and at week 12. The main 

objective was to assess the preliminary efficacy of 12 weeks of AZD4831 

administration on clinical measures (NTproBNP levels, 6MWD) and LVEF in patients 

with HFrEF (DCM). The main safety objective was to evaluate the safety and 

tolerability of multiple doses of AZD4831 in DCM patients. The study was approved by 

the local Ethics Committee of the Medical Faculty of the University of Cologne (No. 19-

1612-AMG-ff). The study is registered as EudraCT-No. 2020-002788-80.   

 

Statistical analysis 
For comparison of apparently normal-distributed measures between two groups, 

Student’s t-test was calculated. For comparison of three or more groups, one-way 
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ANOVA followed by Tukey’s post-hoc comparisons were used. Since the distribution 

of NTproBNP levels is usually positively skewed, logarithms were taken first and 

changes over time were analyzed with the paired t-test (this corresponds to the ratio-

paired t-test on original scale). All calculations and plotting were done using GraphPad 

Prism, Version 9 (GraphPad Software, San Diego, CA, USA) unless otherwise 

indicated. 

 

Data availability 
All data supporting the findings of this study are available from the corresponding 

author upon request. 
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Results  
 
To assess the innate immune response in the context of DCM, PMN counts and 

vascular MPO deposition were analyzed. At 14 weeks, Mlp-/- mice had augmented 

circulating PMN counts and increased levels of vessel-immobilized MPO upon 

liberation by heparin perfusion (Figure 1a-b). Since PMN recruitment and activation in 

DCM was observed in the absence of cardiomyocyte necrosis (Supplemental figure 

1a), we tested if activation of the neurohumoral RAS, a paramount event in systolic 

heart failure,14 is the potential cause for enhanced MPO levels. Indeed, we found 

increased circulating levels of Ang II in Mlp-/- mice (Figure 1c). Furthermore, whole 

blood samples challenged with physiological levels of Ang II revealed MPO release 

from PMN comparable to lipopolysaccharide (LPS; Figure 1d). 

 

In order to characterize the potential role of MPO as a modifier of the cardiac 

phenotype in DCM, Mlp-/- mice were crossbred with MPO deficient (Mpo-/-) animals 

(Mpo-/-/Mlp-/-). At 14 weeks of age, Mlp-/- mice had developed a significant decline in 

systolic LV function. In contrast, Mlp-/-/ Mpo-/- animals revealed significantly improved 

LVEF as compared to MPO competent Mlp-/- mice. Pressure-volume (PV) loop 

assessment of the left ventricle revealed increased stroke work and cardiac output 

(Figure 1d-f).  

 

Given the profound oxidative effects of MPO, we next investigated left ventricular 

remodeling in Mlp-/- and Mlp-/-/Mpo-/- mice: Using electron microscopy, we found no 

difference in sarcomeric ultrastructure in cardiomyocytes of the two groups 

(Supplemental figure 1b). Also, total collagen content, an indicator for fibrotic 

remodeling, was not altered in the absence of MPO (Supplemental figure 1c). 

Moreover, neither mitochondrial stress response nor complexes of oxidative 

phosphorylation were affected by MPO, indicating unaltered mitochondrial function 

(Supplemental figure 2-3). Also, MPO had no impact on cMyBP-C phosphorylation in 

Mlp-/- mice (Supplemental figure 2-3). Finally, ex vivo infusion of MPO did not affect 

inotropy in Langendorff perfusion of explanted hearts (Supplemental figure 1d-f). All in 

all, we did not find any evidence for an adverse effect of MPO on cardiomyocyte 

contractility and myofibroblast activation, respectively.  
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In contrast, we observed a strong MPO-driven vascular phenotype: Explanted aortic 

rings of Mlp-/-/Mpo-/- in comparison to Mlp-/-/Mpo+/+ animals displayed improved 

relaxation in response to acetylcholine (Figure 1g), illustrating increased NO 

bioavailability in the absence of MPO. Also, cGMP levels were increased in MPO naïve 

aortic tissue (Figure 1h). Consequently, peripheral vascular resistance in the absence 

of MPO was markedly attenuated (Figure 1i).  

 

To further determine a mechanistic role of MPO in the progression of DCM, 

recombinant MPO (daily dose: 12.5 pg/g/min body weight) was intravenously infused 

into Mlp-/-/Mpo-/- mice for seven days using minipumps. MPO infusion provoked a 

significant decline in LVEF (Figure 2a). Intravenous infusion of MPO via the tail vein 

yielded a similar yet instantaneous reduction of LVEF, further supporting the notion of 

a vascular-humoral rather than a myocardial-structural effect of MPO in this disease 

(Figure 2b). A single in-vivo injection of MPO in mice rapidly increased systemic 

vascular resistance (SVR) and diminished LVEF (Figure 2b and c). To test whether 

MPO inhibition has the potential to improve LVEF in-vivo, we fed Mlp-/- mice an orally 

active MPO inhibitor, AZM198. Treatment of mice with this compound for seven days 

resulted in a significant improvement of LVEF (Figure 2d).  

 

Finally, we tested whether these observations can be translated into human pathology. 

We therefore conducted an investigator-initiated, open-label phase 2a pilot study 

approved by the German Federal Institute for Drugs and Medical Devices (BfArm) 
using the oral MPO-inhibitor AZD4831 in this disease: Five patients diagnosed with 

DCM (four male, mean age 64.6 ± 6.1 years, mean ejection fraction 33.0 ± 12.4%, full 

patient characteristics in Supplemental table 1) and under optimal heart failure therapy 

were treated with this compound. HF-related medication remained unchanged over the 

course of the study (Supplemental table 2). One patient discontinued the intake at day 

5 due to development of a rash, the remainder received the compound for 12 weeks 

without adverse reactions. At week 12, the 4 patients revealed an increase in 6-minute-

walking distance (+ 67.3 ±26.3 m), a significant decline in NTproBNP serum levels (- 

1390.3 ±821.2 U/l) and an increase in MRI-based LVEF (+ 4.3 ±1.6 %), Figure 2f-h). 

Extensive serum proteomics analysis confirmed significant reduction of NTproBNP 

levels from baseline to end of treatment. At the same time 169 other proteins – among 
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those Interleukin (IL)-10 and IL-13 - were found to be significantly regulated in human 

serum after 12 weeks of treatment with AZD4831 (Supplemental figure 7).  

 

Discussion 
 

Here we show that leukocytes promote systolic heart failure with MPO exerting its 

detrimental effects by increasing peripheral vascular resistance. Genetic ablation and 

pharmacological inhibition of MPO improves systolic LV function in a murine model of 

heart failure and augments functional status in humans with HFrEF.  

 

Mismatch between oxygen supply and demand as in HFrEF triggers a broad spectrum 

of pathways to counteract central hypoperfusion: Endogenous catecholamines and the 

autonomous nervous system increase inotropy of the heart and augment peripheral 

vascular tone - as do vasoactive peptides such as Ang II, endothelin and vasopressin. 

ROS, e.g. superoxide, impair endothelial NO bioavailability and thereby further 

increase peripheral resistance.2 Ultimately this fuels the increase in SVR, a hallmark 

in HFrEF and propagator of disease.15  

We were able to demonstrate, that leukocyte-derived MPO evolves as a promising 

pharmacological target in this disease – irrespective of its well established adverse 

effects on myocardial homogeneity and remodeling in animal models of myocardial 

ischemia.16–18 MPO rapidly binds to and is transcytosed by endothelial cells;19 indeed, 

we not only found significant leukocytosis – a finding previously seen in HFrEF 

patients20 -  but also increased levels of vessel-immobilized MPO and Ang II in our 

animal model. We show that Ang II, a principal and long accepted effector in HFrEF, 

activates PMN and induces release of MPO in a cytokine-like fashion (Figure 1c-d). 

Since MPO is capable of lowering endothelial NO bioavailability by multiple pathways, 

this enzyme evolves as a critical modulator of vascular tone in-vivo.8,21,22  

 

So far, anti-inflammatory treatment strategies have yielded - if any - modest effects on 

the course of systolic heart failure and DCM: antibodies directed against TNF-α did not 

change the course of this disease.23,24 Interference with IL-1 signaling did have a 

modest effect on cardiovascular outcomes in heart failure,25,26 however these effects 

faded in patients with HFrEF of non-ischemic origin.27 Finally, neither methotrexate nor 

colchicine had a substantial impact on LV function and symptoms in HFrEF patients.3  
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Our data reveal that PMN increase vascular resistance by release and endothelial 

accumulation of NO-oxidizing MPO. Thus, PMN exert additional biologic functions as 

circulating modulators of vascular tone. From an evolutionary perspective, this may be 

advantageous to respond to acute bacteremia and counteract exuberant NO 

dependent peripheral vasodilation. However, in the presence of left ventricular 

dysfunction, chronically increased afterload augmented by continuous vascular 

deposition of MPO appears to be detrimental. This maladaptive innate immune 

response potentially aggravates systolic heart failure, and its inhibition warrants larger 

scale investigation as a complementary, anti-inflammatory and non-cardiomyocyte 

centered treatment strategy in DCM and presumably other etiologies of systolic heart 

failure. 
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