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Literature search

Box 1: Web of Science search terms for software review. See https://clarivate.
libguides.com/woscc on how to interpret these terms which are specific to the
Web of Science Core Collection.

(TS=(unmeasured NEAR/3 confound*) OR TS=(unmeasured NEAR/3 variable*) OR
TS=(unmeasured NEAR/3 covariate*) OR TS=(unmeasured NEAR/3 factor*) OR
TS=(unmeasured NEAR/3 predictor*) OR TS=(uncontrolled NEAR/3 confound*)
OR TS=(uncontrolled NEAR/3 variable*) OR TS=(uncontrolled NEAR/3 covariate*)
OR TS=(uncontrolled NEAR/3 factor*) OR TS=(uncontrolled NEAR/3 predictor*)
OR TS=(omitted NEAR/3 confound*) OR TS=(omitted NEAR/3 variable*) OR
TS=(omitted NEAR/3 covariate*) OR TS=(omitted NEAR/3 factor*) OR TS=(omitted
NEAR/3 predictor*) OR TS=(omission NEAR/3 confound*) OR TS=(unobserved
NEAR/3 confound*) OR TS=(unobserved NEAR/3 variable*) OR TS=(unobserved
NEAR/3 covariate*) OR TS=(unobserved NEAR/3 factor*) OR TS=(unobserved
NEAR/3 predictor*) OR TS=(hidden NEAR/3 confound*) OR TS=(hidden NEAR/3
variable*) OR TS=(hidden NEAR/3 covariate*) OR TS=(hidden NEAR/3 factor*) OR
TS=(hidden NEAR/3 predictor*) OR TS=(selection NEAR/3 bias*) OR TS=(residual
NEAR/3 confound*) OR TS=(hidden NEAR/3 bias*))
AND
(TS=(sensitivity NEAR/3 analy*) OR TS=(bias NEAR/3 analys*) OR TS=(bias
NEAR/3 model*))
AND
(TS=(confound*))
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Figure S1. Flowchart of the review

Screened 780 abstracts

Exclude 642:
24 meeting abstracts

and editorials
379 did not conduct a QBA to U

239 applied analyses

Screened full text of 138 papers
Exclude 109:

105 no publicly available programs
4 undocumented programs

Data extracted
from 29 papers

21 publicly
available programs

14 in R 3 in Stata 1 web tool 3 in R, Stata,
web tool
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Further details on software implementing a quantitative bias
analysis for linear regression

In this section we give further details on the five quantitative bias analysis (QBA) programs we
discussed in the main text. These programs implement a QBA to unmeasured confounding when
the naive analysis is an unmatched analysis, where the exposure is binary and the exposure effect
is estimated by a linear regression model.

treatSens
The QBA method of treatSens simulates U under a joint model for the conditional distribution
Y,X,U |C and prespecified values of bias parameters φ = (ζZ , ζY ) and then fits a regression
of Y on X adjusting for C and the simulated U , recording the exposure coefficient and
its standard error 1. The augmented data are then analysed by a regression of Y on X

adjusting for C and the simulated U , recording the exposure coefficient and its standard error.
This process of simulating U and then analysing the augmented data is repeated K (≥ 2)

times and the K sets of exposure estimates and corresponding standard errors [β̂kX|C,U(φ),
se(β̂kX|C,U(φ)) for k = 1, 2, . . . ,K] are combined to generate the bias-adjusted estimate

β̂X|C,U(φ) =
1

K

K∑
k=1

β̂kX|C,U(φ) and its standard error se(β̂X|C,U(φ)) =
√
W + (1 +K−1)B

where W =
1

K

K∑
k=1

se(β̂kX|C,U(φ)) reflects the conventional sampling variance of the exposure

effect for a given simulated value of U , and B =
1

K − 1

K∑
k=1

(β̂kX|C,U(φ) − (β̂X|C,U(φ))
2)

reflects the extra variance due to simulating U . This whole process is repeated for different
prespecified values of φ.

The joint model for Y,X,U |C is the bias model which consists of three sub-models,
p(Y,X,U |C) = p(Y |X,C,U)p(X|C,U)p(U): p(Y |X,C,U) is the analysis model which
estimates the exposure effect adjusting for measured and unmeasured confounding, p(X|C,U)

is the treatment model, and p(U) is a model for the marginal distribution of U . The bias model is
available as a parametric 1 and semi-parametric model 2. For the parametric model, the analysis
model, p(Y |X,C,U), is a linear regression, and the treatment model, p(X|C,U), is either a
linear regression for continuous X or a Probit regression for binary X . The semi-parametric
model is only available for binary X , where p(Y |X,C,U) is a Bayesian Additive Regression
Tree (BART) model 3 and p(X|C,U) is either a Probit regression or a BART model. The
marginal distribution of U , p(U), is normal when X is continuous and Bernoulli when X is
binary. Note that, U denotes the part of the unmeasured confounding that is independent of
measured covariates C (i.e., U is independent of C). Also, U can represent a single unmeasured
confounder or a linear combination of multiple (continuous) unmeasured confounders.
U is simulated from the conditional distribution implied by the bias model using an algorithm

specific to each of the three types of models (i.e., parametric bias model with continuous X ,
parametric bias model with binary X , and semi-parametric bias model with binary X) as
described in 1,2.

Program treatSens is available as an R package from GitHub page https://github.

com/vdorie/treatSens and it requires individual participant data. The analyst can use
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treatSens when the estimand of interest is the average treatment effect (ATE), the average
treatment effect among the treated (ATT), or the average treatment effect among the controls
(ATC). Other options include: (1) reparameterising the bias parameters as partial correlations
instead of model coefficients (only for continuousX), (2) specifying multiple central processing
unit cores for parallel processing to help speed-up the run-time of treatSens, and (3) specifying
the number of times U is simulated for each combination of ζY and ζZ (default is 20).

causalsens
Program causalsens implements a QBA method proposed by Robins 4,5 which is based on
the potential outcomes framework 6. For binary exposure X , let Y (0) and Y (1) denote
the potential outcomes to non-exposure and exposure, respectively, and function f(x, c) =

E[Y (x)|X = x,C = c]− E[Y (x)|X = 1− x,C = c] represent the average difference in the
potential outcome Y (x) (for x = 0 or 1) between the exposure groups, among the subgroup
of individuals with C = c. Function f(x, c) is called the “confounding function” and setting
f(x, c) = 0 corresponds to the assumption of no unmeasured confounding, conditional on
C = c. Examples of the functional form of f(x, c) are given in 7. Note that, the confounding
function is parameterised by a single bias parameter α which implies a combination of the
strengths of the X − U and Y − U relationships, conditional on C. Since bias parameter α is
difficult to interpret, causalsens offers the alternative parameterisation,R2

α. See 8 for explanation
of how to derive R2

α from α.
Program causalsens has two options for f(x, c): the one-sided function f(x, c) = α(2x− 1)

and the alignment function f(X = x,C = c) = α. The one-sided function assumes the true
exposure effect is identical in the exposed and unexposed groups. When α > 0 the mean of
the potential outcomes to exposure (and non-exposure) is higher for the exposed group than the
unexposed group, leading β̂X|C to be positively biased; and vice versa for α < 0 7. Under the
alignment function the true exposure effect can differ between the exposure groups (i.e., U is
an effect modifier). Naive estimate β̂X|C is biased by α(Pr[X = 0|C = c]Pr[X = 1|C = c]),
where Pr[X = 0|C = c] and Pr[X = 1|C = c] denote the probability of being unexposed
and exposed, respectively 7. When the same proportion of people are exposed and unexposed
(Pr[X = 1|C = c] = Pr[X = 0|C = c] = 0.5) then β̂X|C is unbiased by U . However, when
proportionally more individuals are unexposed than exposed (i.e., Pr[X = 0|C = c] > Pr[X =

1|C = c]) then β̂X|C is positively biased for α > 0 and negatively biased for α < 0; and vice
versa when Pr[X = 0|C = c] < Pr[X = 1|C = c] 7.

Program causalsens is an R package available from the Comprehensive R Archive Network
(CRAN) or GitHub page https://github.com/mattblackwell/causalsens and
it requires individual participant data. Exposure X must be binary and outcome Y can be
continuous or binary although the naive analysis is restricted to a linear regression. Program
causalsens can be applied when the estimand of interest is the ATE or ATT (or ATC). The
program outputs results with respect to the original bias parameter, α, and the alternative
parameterisation, R2

α. By default, causalsens chooses values for the bias parameter based on
the distribution of the outcome, Y . The analyst can override this default to specify their own
values and can customise their own confounding function.

The output of causalsens does not explicitly indicate the tipping points of the point estimate
or CI. Instead using the outputted plot, the analyst can determine the values of bias parameter,
φ, at which the bias-adjusted estimate, β̂X|C,U(φ), equals a specific value (e.g., the null) and
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the CI includes the null. Note that, the R package downloaded from CRAN fixes the statistical
significance to be at the 5% level whereas the R package downloaded from GitHub allows the
analyst to change the statistical significance level.

sensemakr
The absolute difference between the naive and bias-adjusted estimates, given values of φ =

(R2
X∼U|C , R

2
Y∼U|X,C) is calculated as

|∆̂φ| = se(β̂X|C)

√√√√R2
Y∼U|X,CR

2
X∼U|C

1−R2
X∼U|C

× df, (1)

where se(β̂X|C) and df are the standard error of the exposure effect and degrees of freedom
from the naive analysis, respectively. Depending on the direction of effect of U , ∆̂φ is either
added to or subtracted from β̂X|C to obtain β̂X|C,U(φ) and its standard error is calculated as

se(β̂X|C,U(φ)) = se(β̂X|C)

√√√√1−R2
Y∼U|X,C

1−R2
X∼U|C

× df

df − 1
. (2)

The robustness value of the point estimate can be calculated by setting R2
X∼U|C =

R2
Y∼U|X,C and ∆̂φ to the relevant tipping point value, such as β̂X|C for a null effect, and

then solving equation (1) for R2
X∼U|C . Similarly for the t-value, where we first calculate

se(β̂X|C,U(φ)) using equation (2) (which simplifies to a function of se(β̂X|C) and df ) and then
derive the value of ∆̂φ which corresponds to a κ% critical value of the Student’s t-distribution
with df degrees of freedom (for a given null or non-null hypothesis).

Program sensemakr makes no distributional assumptions about U but does assume that U
is either a single unmeasured confounder or a linear combination of two or more unmeasured
confounders. Cinelli and Hazlett state that their assumption about multiple unmeasured
confounders is conservative 9.

Program sensemakr also implements a QBA for an extreme scenario which is a worst-case
setting where all of the unexplained variation in outcome Y is due to U (i.e., R2

Y∼U|X,C = 1).
For this extreme scenario, the program outputs (1) summary measures for the point estimate and
t-value of the minimum strength of the relationship between X and U (i.e., R2

X∼U|C ) in order
to change the study conclusions, (2) benchmark bounds for R2

X∼U|C , and (3) a plot of the bias-
adjusted results for different values of R2

X∼U|C . Note that, the R package will also generate the
plot for different extreme scenarios such as R2

Y∼U|X,C = 0.75.
Program sensemakr is available as an R package (install from CRAN or github page

https://github.com/carloscinelli/sensemakr), Stata command (install from
the Statistical Software Components (SSC) archive) and as a Shiny app
(https://carloscinelli.shinyapps.io/robustness_value/). The analyst
can either apply sensemakr to their individual participant data using R or Stata or input summary
data from the naive analysis using R or the web tool. By default, the direction of the effect of
U is towards the null and the tipping points for the point estimate and t-value are the null and
t-critical value at 5% statistical significance, respectively. Available options allow the analyst to
set the direction of effect to be away from the null, a different statistical significance level, and
a non-null value for the tipping point. All three implementations will generate results under the
extreme scenario.
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EValue
The rationale of the E-value is based on an upper bound, BFφ, for the maximum amount of bias
due to unmeasured confounding that will reduce a naive risk ratio (e.g., point estimate of the
exposure effect adjusted for C only) to a prespecified level (e.g., the null) 10,11. The upper bound,
BFφ, is defined on the risk ratio scale as

BFφ =
RRUYRRXU

RRUY +RRXU − 1
, (3)

where RRUY and RRXU are the bias parameters for the Y − U and X − U associations,
respectively. Assuming the naive risk ratio, R̂R, is greater than 1 then the E-value for reducing
R̂R to at least the null (i.e., ≤ 1) is the minimum value of the bias parameters when RRUY and
RRXU are equal to each other and BFφ equals R̂R. The formula for the E-value is

E-value = R̂R+

√
R̂R× (R̂R− 1) (4)

and can be derived from equation (3) by setting BFφ = R̂R and E-value = RRUY = RRXU
and then solving the resulting quadratic equation. When the naive risk ratio is less than 1,
equation (4) is applied with R̂R set to the inverse of the naive risk ratio. See 12 for further
technical details of the E-value. When the naive exposure effect, β̂X|C , is a risk ratio then the E-
value for a null exposure effect is calculated by setting R̂R equal to β̂X|C . Similarly, the E-value
for a statistically insignificant exposure effect is calculated by setting R̂R equal to the CI limit of
β̂X|C closest to the null. When the exposure effect is not a risk ratio (e.g., a mean difference, risk
difference, odds ratio or hazard ratio) then β̂X|C and its CI limit are first converted to the risk
ratio scale before applying equation (4) 11. Note that, the E-value can also be calculated when
the tipping point for the point estimate is a non-null value such as the maximum value of the
exposure effect that is clinically irrelevant (see Supplementary Materials of 11 for more details).

The E-value makes no distributional assumptions about the unmeasured confounding, where
U can denote a single or multiple unmeasured confounders of disparate variable types 10. Also,
the E-value allows U to be a modifier of the exposure effect. However, for effect measures other
than the risk ratio then additional assumptions are required to convert the naive results to the risk
ratio scale 11.

The E-value evaluates the sensitivity to unmeasured confounding in the worst-case scenario 13.
For example, when U is a single, binary unmeasured confounder then the E-value assumes that
the prevalence of U is 100% in one of the two exposure groups 14. Therefore, the E-value is
limited to establishing robustness to unmeasured confounding.

Software to calculate an E-value is available in R (package EValue 15,16 available from
CRAN), in Stata (command evalue 17 available from the SSC archive and from GitHub page
https://github.com/mayamathur/evalue_package) and as a web tool (the E-
value calculator 15 available at
https://www.evalue-calculator.com/evalue). All implementations only require
summary data (e.g., point estimate and CI limit from the naive analysis) and output E-values for
the point estimate and CI limit. Additionally, the online tool, the E-value Calculator, includes a
feature that outputs the bias factor, BFφ, and corresponding bias-adjusted estimate of the point
estimate or CI limit (on the risk ratio scale) for prespecified values of RRUY and RRXU .

The analyst can specify a null or non-null value for the tipping point of the point estimate (null
is the default setting). For effect measures other than the risk difference and mean difference, the
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analyst inputs the naive point estimate and CI limit closest to the null and so the level of statistical
significance is automatically set by the analyst. For a risk difference, the analyst inputs the cells
of a 2× 2 table (i.e., number of exposed individuals who experienced the outcome, number of
unexposed individuals who experienced the outcome, number of exposed individuals who did
not experience the outcome, and the number of unexposed individuals who did not experience
the outcome) and can specify the statistical significance level (5% is the default setting). For a
mean difference, the analyst inputs a standardised mean difference and corresponding standard
error but the statistical significance is fixed at 5%.

In addition to computing E-values for unmeasured confounding in a single study, the E-
value Calculator and R package EValue include features to calculate an E-value to assess
sensitivity to unmeasured confounding in a meta-analysis 18 and an E-value to assess sensitivity
to selection bias 19. Also, R package EValue can implement a sensitivity analysis to differential
misclassification 20, multiple sources of bias simultaneously (i.e., confounding, selection bias,
and misclassification) 21, and assess sensitivity of effect heterogeneity estimates to unmeasured
confounding 22.

konfound
konfound reports two measures that quantify the level of unmeasured confounding necessary
to invalidate or sustain statistical significance of the exposure effect: percent bias and impact
threshold.

For statistically significant naive estimate β̂X|C , standard error se(β̂X|C) and degrees of
freedom df , the percent bias to invalidate inference is calculated as

percent bias = 100×

(
1−

βκX|C,U

β̂X|C

)
,

where βκX|C,U is the threshold value of the exposure effect for κ% statistical significance
(i.e., the two-sided P-value of βκX|C,U is exactly κ%) 23. Note that, βκX|C,U = sgn(β̂X|C)×
se(β̂X|C)× tκ,df where sgn(β̂X|C) and se(β̂X|C) are the sign and standard error of β̂X|C ,
respectively, and tκ,df is the κ% critical value of the Student’s t-distribution with df degrees
of freedom. For example, for β̂X|C = 2, se(β̂X|C) = 0.4 and 95 degrees of freedom, the value
of βκX|C,U corresponding to 5% statistical significance is 0.4× 1.985 = 0.794 which gives a
percent bias of 60.3%. Therefore, inference would be invalidated if the magnitude of the bias-
adjusted estimate of the exposure effect was less than 0.794 (i.e., |β̂X|C,U(φ)| < 0.794).

The impact threshold is based on a partial correlation framework 24. The partial correlation
between X and Y given C and U , rY∼X|C,U(φ), can be written as follows

rY∼X|C,U(φ) =
rY∼X|C − rY∼U|C × rX∼U|C√

1− r2Y∼U|C
√

1− r2X∼U|C
, (5)

where rY∼X|C is the partial correlation between X and Y given C from the naive analysis, and
rX∼U|C and rY∼U|C are the two bias parameters 23. The impact threshold is the product of the
minimum value of rX∼U|C and rY∼U|C , when |rY∼U|C | = |rX∼U|C |, such that rY∼X|C,U(φ)

equals rκY∼X|C,U , the threshold value for the partial correlation between X and Y given C and
U when the two-sided P-value for the exposure effect is exactly κ%. Value rκY∼X|C,U is given

Prepared using sagej.cls



by

rκY∼X|C,U = sgn(rY∼X|C)× tκ,df√
n− q − 1 + t2κ,df

,

where sgn(rY∼X|C) denotes the sign (or direction) of rY∼X|C , n is the sample size, q is
the number of independent variables (i.e., X and C), and tκ,df is the κ% critical value of
the Student’s t-distribution with df degrees of freedom. Setting rY∼X|C,U(φ) = rκY∼X|C,U ,
|rY∼U|C | = |rX∼U|C |, and impact = rY∼U|C × rX∼U|C then equation (5) can be rearranged
as follows

impact =
rY∼X|C − rκY∼X|C,U

1− |rκY∼X|C,U |
.

When rY∼X|C > rY∼X|C,U the impact threshold is calculated as 23

impact =
rY∼X|C − rκY∼X|C,U

1− rκY∼X|C,U
.

And, when rY∼X|C < rY∼X|C,U the impact threshold is calculated as

impact =
rY∼X|C − rκY∼X|C,U

1 + rκY∼X|C,U
.

For example, let β̂X|C = 2, se(β̂X|C) = 0.4, df = 95 and rY∼X|C = 0.456. At 5% statistical
significance, tκ,df = 1.985, the threshold value, rκY∼X|C,U , is 0.200, and impact = 0.321.
Therefore, the magnitudes of the partial correlations of U with X and with Y given C must
both exceed 0.567 in order to invalidate an inference for a null hypothesis at the 5% level.

Software konfound is available as an R package (from CRAN or GitHub page
https://github.com/jrosen48/konfound), a Stata command (see 23 for download
instructions), and a web tool (Shiny app https://jmichaelrosenberg.shinyapps.

io/konfound-it/). The R and Stata implementations can be applied to individual
participant data and to summary data (i.e., point estimate, standard error, sample size and number
of measured covariates from the naive analysis) using function or command pkonfound. The web
tool and R package can be used with two types of summary data: (1) point estimate, standard
error, sample size and number of measured covariates from the naive analysis, and (2) 2× 2

cross tabulation of exposure and outcome data.
Note that, the Stata command only generates a threshold plot to assess sensitivity to an

invalidated inference (i.e., when β̂X|C is statistically significant) whereas the R package
and online tool will generate a threshold plot to assess sensitivity to an invalidated or
sustained inference (i.e., when β̂X|C is statistically significant and insignificant). By default,
all implementations assume the significance level is 5% and the null hypothesis is “no exposure
effect”. These settings can be changed in the R and Stata implementations. Other options include
application of the QBA to multiple studies (function or command mkonfound in R and Stata,
respectively) and a nonlinear option for application when the analysis model is a logistic or
probit regression, although the R package and Stata command reports a warning to ignore the
impact threshold for a binary outcome.
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The Barry Caerphilly Growth (BCG) study

In this section, additional results of the QBA analysis of the Barry Caerphilly Growth study are
presented.
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Figure S2. Quantitative bias analysis for effect of child overweight on adult body mass
index from the Barry Caerphilly Growth study. sensemakr contour plots when unmeasured
confounding increases the exposure effect: black contours (bias-adjusted estimates for the
point estimate in (a) and t-value at 5% significance in (b)), diamonds (benchmarks), and
black triangle (naive estimate).
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Table S1. Benchmark upper bounds for sensemakr’s bias parameters, R2
X∼U|C and

R2
Y∼U|X,C , based on partial R2 of a measured covariate (or group of covariates) with

exposure X and outcome Y . Data from the Barry Caerphilly Growth study.

Measured covariate R2
X∼U |C(%) R2

Y∼U |X,C(%)

Sex 0.89 0.00
Gestational age 0.10 0.14
Birth weight 2.52 0.07
Paternal height 0.14 1.03
Paternal weight 0.73 3.77
Maternal height 0.27 1.43
Maternal weight 0.94 6.61

All covariates 5.47 13.52

Figure S3. E-value quantitative bias analysis plot for the effect of childhood overweight on
adult body mass index from the Barry Caerphilly Growth study. Curves denote value
combinations of the bias parameters that explain away 100% of the naive point estimate
(red) and statistical significance at the 5% level (black); dots denote corresponding E-value.
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Table S2. Benchmark E-values, for the point estimate and lower confidence interval (CI)
limit, based on omitting each measured covariate while controlling for the remaining
covariates. For the effect of child overweight on adult body mass index from the Barry
Caerphilly Growth study.

E-value
Measured covariate Point estimate Lower CI limit
Sex 2.50 1.94
Gestational age 2.49 1.92
Birth weight 2.53 1.96
Paternal height 2.53 1.95
Paternal weight 2.62 2.03
Maternal height 2.55 1.97
Maternal weight 2.68 2.08

Figure S4. konfound : Threshold plot representing the percent bias necessary to invalidate
inference (at 5% statistical significance) for the effect of childhood obesity on adult body
mass index from the Barry Caerphilly Growth study.
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Figure S5. konfound : Correlation plot of the impact of unmeasured confounding
necessary to invalidate inference (at 5% statistical significance) for the effect of childhood
body obesity on adult body mass index from the Barry Caerphilly Growth study. Partial
correlations Rx·cv|Z and Ry·cv|Z are between unmeasured confounder cv and exposure X,
and outcome Y , respectively, after accounting for measured covariates Z.

Confounding
Variable

Predictor of Interest Outcome

Rx.cv | Z =
 0.361

Ry.cv | Z =

0.361

Rx.cv | Z * Ry.cv | Z =
0.13

To invalidate an inference
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Table S3. konfound : Benchmark values for rX∼U|C and rY∼U|C , and impact threshold
rX∼U|C × rY∼U|C , based on partial correlations of each measured covariate with
childhood obesity and adult body mass index (BMI). Data from the Barry Caerphilly Growth
study.

Measured covariate Partial correlation Partial correlation Impact threshold
with childhood obesity with adult BMI

Sex 0.0938 0.0216 0.0020
Gestational age −0.0312 0.0298 −0.0009
Birth weight 0.1568 0.0576 0.0090
Paternal height −0.0368 −0.1062 0.0039
Paternal weight 0.0854 0.2030 0.0173
Maternal height −0.0518 −0.1267 0.0066
Maternal weight 0.0965 0.2614 0.0252

The National Health and Nutrition Examination Survey
(NHANES)

We applied treatSens,causalsens,sensemakr,EValue and konfound to data from the NHANES
study. As per the analysis of the BCG study, we used measured variables to represent the
unmeasured confounders U . So, in effect our analyses examined the effect of not including
certain confounders and we assumed that after adjustment for U andC there was no unmeasured
confounding.

For treatSens we used Probit regression for its treatment model because X was binary, and
for causalsens we used the one-sided confounding function because we assumed the exposure
effect was the same in both exposure groups.

As this is an illustrative example of applying a QBA to unmeasured confounding, we have
ignored other potential sources of bias (such as missing data) and only considered a small number
of measured covariates. We restricted our analyses to participants with complete data on Y,X,C
and U .

Description of the study
The NHANES study consists of a series of health and nutrition surveys conducted by the National
Center for Health Statistics. Every year since 1999, approximately 5, 000 individuals of all ages
are interviewed in their homes with health examinations conducted in a mobile examination
centres. We analysed data from the 2015− 2016 NHANES survey 25.

Our analysis was a linear regression of systolic blood pressure (SBP) on diabetes among adults
aged ≥ 18 years. Diabetes was defined as a HbA1c measurement of at least 6.5% (diabetes= 1

if HbA1C ≥ 6.5%, 0 otherwise) 26. Measured covariates C were age and sex, with age as the
strongest measured covariate (i.e., largest associations with diabetes and SBP). The unmeasured
confounders U were BMI, ethnicity and poverty income ratio (PIR; the ratio of family income to
the federal poverty line 27). Based on the 4, 576 participants with complete data on all variables,
β̂X|C was 3.48 mmHg (99% CI 1.55, 5.40 mmHg; P-value < 0.0001) and the fully adjusted
estimate (i.e., adjusted for C and U ) was 1.67 mmHg (99% CI −0.27, 3.61 mmHg; P-value
0.03). So, controlling for BMI, ethnicity and PIR explained 48% of β̂X|C and resulted in a 99%
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CI that contained the null (i.e., P-value greater than 0.01). Statistical significance was defined at
the 1% level.

Note that, EValue and the CRAN version of causalsens fix the statistical significance at the
5% level. To get around this we used the Github version of causalsens (which allows the analyst
to change the statistical significance level) and for EValue we converted the mean difference (of
the point estimate and CI limit closest to the null) to an approximate risk ratio and then used the
function applicable when the effect measure is a risk ratio.

We begin with a description of the outputted results and then compare the results across the
five programs.
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Results
treatSens
Supplementary Figure S6(a) shows the results of the treatSens QBA. If the magnitudes of
the diabetes−U and SBP-U associations were comparable to those of the strongest measured
covariate, age (diabetes−age= 0.45, and SBP−age= 0.44 on the standardised scale) then
β̂X|C,U(φ) could be ≈ 0.28 standard deviations of SBP (i.e., 46% increase of β̂X|C and
statistically significant) or approximately 0.10 standard deviations of SBP (48% reduction
of β̂X|C ) with a P-value of 0.01. Potentially, a U comparable to age could explain away the
statistical significance of β̂X|C . For unmeasured confounding to explain away all of β̂X|C then
U would need to have stronger associations with either diabetes, SBP or both (e.g., double
that of diabetes−age (ζz ≈ 1, ζy ≈ 0.49), or double that of SBP−age (ζz ≈ 0.45, ζy ≈ 1), or
in-between for both (ζz ≈ 0.60, ζy ≈ 0.75)).

causalsens
Supplementary Figure S6(b) shows the results of the causalsens QBA, where R2

α > 0

corresponds to individuals in the diabetic group tending to have higher potential SBP values
(to both exposure to diabetes and no exposure) than the non-diabetic group (i.e., individuals in
the non-diabetic group tended to be healthier regardless of diabetic status); and the converse
for R2

α < 0. Note that, the default scale for R2
α > 0 excluded the benchmark for the strongest

measured covariate (age).

If the residual variance explained by U was comparable to that of the weakest measured
covariate, sex, (|R2

α| = 0.015 or 1.5%) then β̂X|C,U(φ) could be as large as 10 mmHg or a
reversed effect of about −2.5 mmHg; both with a P-value < 0.01. Additionally, if U had a
partial R2 value closer to that of age then β̂X|C,U(φ) could be ≤ −10 mmHg or ≥ 15 mmHg.
A U weaker than covariate sex (with respect to proportion of the explained residual variance)
could explain away the statistical significance of β̂X|C . Furthermore, if individuals in the
non-diabetic group were healthier than the diabetic group (regardless of diabetes status; i.e.,
R2
α ≈ 0.01) then U could explain away all of β̂X|C (i.e., β̂X|C,U(φ) = 0).

sensemakr
The robustness values for β̂X|C and 1% statistical significance were 6.65% and 3.03%,
respectively. Values for R2

X∼U|C and R2
Y∼U|X,C exceeding 6.65% are plausible given the

benchmark bounds reported in Supplementary Table S4. Therefore, we cannot exclude the
possibility that unmeasured confounding could explain away all of β̂X|C or all of its 1%

statistical significance. This is supported by Supplementary Figures S6(c) and (d) which
show that even if U was a weaker confounder than age, provided the direction of its effect
was to reduce the point estimate, then accounting for U could result in a null or statistically
insignificant exposure effect. Depending on the direction of the effect of U , if the magnitude of
the confounding effect of U was comparable to that of age then the exposure effect could be
reversed with β̂X|C,U(φ) = −3.41 mmHg (Figure S6(c)) or increased to β̂X|C,U(φ) = 10.36

mmHg (Supplementary Figure S7(a)).

EValue
The E-values for β̂X|C and its 99% lower CI limit were 1.67 and 1.38, respectively
(Supplementary Figure S8). Supplementary Table S5 reports the benchmark E-values after
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excluding age and sex, separately. Adjusting for age reduces the E-value for the point estimate
and lower CI limit by about 1 (e.g., moved from 2.61 to 1.67). Therefore, if the confounding
effect of U was comparable to age, adjusting for age, sex and U could result in E-values close
to 1. Therefore, we cannot exclude the possibility that unmeasured confounding could explain
away all of β̂X|C or all of its 1% statistical significance.

konfound
The percent bias and impact threshold were 44.67% and 0.032, respectively. Therefore,
adjusting for U could result in a statistically insignificant exposure effect if U explained away at
least 44.67% of β̂X|C (i.e., β̂X|C,U(φ) < 1.93 mmHg; Supplementary Figure S9) or if the partial
correlations of U with SBP and diabetes both exceeded 0.178 (Supplementary Figure S10). Note
that, the benchmark values for rX∼U|C and rY∼U|C based on age (Supplementary Table S6)
were larger than 0.178 implying that a U comparable to age could explain away the statistical
significance of the exposure effect.

Comparison of the results
If U was comparable to the strongest measured covariate, age, then causalsens, sensemakr,
and EValue indicated that the exposure effect adjusted for C and U would either be null or
in the reverse direction, while treatSens suggested that the exposure effect would still be positive
although not statistically significant at the 1% level. Program konfound also indicated that the
statistical significance of the exposure effect was not robust to unmeasured confounding (if U
was comparable to age). Given there were only two measured covariates, it seems plausible
that there could be a U comparable to age (with respect to confounding of the diabetes-SBP
relationship) and possibly that there were multiple unmeasured confounders. In context of
multiple unmeasured confounders, then the results of treatSens also indicate that the exposure
effect adjusted for C and U could either be null or in the reverse direction.
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Figure S7. Quantitative bias analysis for effect of diabetes on systolic blood pressure from
the National Health and Nutrition Examination Survey. sensemakr contour plots when
unmeasured confounding increases the exposure effect: black contours (bias-adjusted
estimates for the point estimate in (a) and t-value at 1% significance in (b)), diamonds
(benchmarks), and black triangle (naive estimate).
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Table S4. Benchmark upper bounds for sensemakr’s bias parameters, R2
X∼U|C and

R2
Y∼U|X,C , based on partial R2 of a measured covariate (or group of covariates) with

exposure X and outcome Y . Data from the National Health and Nutrition Examination
Survey.

Measured covariate R2
X∼U |C(%) R2

Y∼U |X,C(%)

Age 6.43 27.08
Sex 0.07 1.09

Age and sex 6.53 28.49

Figure S8. E-value quantitative bias analysis plot for the effect of diabetes on systolic
blood pressure from the National Health and Nutrition Examination Survey study. Curves
denote bias parameter values that explain away 100% of the naive point estimate (red) and
statistical significance at the 1% level (black); dots denote corresponding E-value.
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Table S5. Benchmark E-values, for the point estimate and lower 99% confidence interval
(CI) limit, based on omitting each measured covariate while controlling for the remaining
measured covariates. For the effect of diabetes on systolic blood pressure from the
National Health and Nutrition Examination Survey.

E-value
Measured covariate Point estimate Lower CI limit

Age 2.61 2.27
Sex 1.69 1.40

Figure S9. konfound : Threshold plot representing the percent bias necessary to invalidate
inference (at 1% statistical significance) for the effect of diabetes on systolic blood pressure
from the National Health and Nutrition Examination Survey study.
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Figure S10. konfound : Correlation plot of the impact of unmeasured confounding
necessary to invalidate inference (at 1% statistical significance) for the effect of diabetes on
systolic blood pressure from the National Health and Nutrition Examination Survey study.
Partial correlations Rx·cv|Z and Ry·cv|Z are between unmeasured confounder cv and
exposure X, and outcome Y , respectively, after accounting for measured covariates Z.

Confounding
Variable

Predictor of Interest Outcome

Rx.cv | Z =
 0.178

Ry.cv | Z =

0.178

Rx.cv | Z * Ry.cv | Z =
0.032

To invalidate an inference

Table S6. konfound : Benchmark values for rX∼U|C and rY∼U|C , and impact threshold
rX∼U|C × rY∼U|C , based on partial correlations of each measured covariate with diabetes
and systolic blood pressure (SBP). Data from the National Health and Nutrition
Examination Survey study.

Covariate Partial correlation with diabetes Partial correlation with SBP Impact Threshold
Age 0.25 0.46 0.12
Sex -0.03 -0.11 -0.33

The panel study
We conducted a small panel study to obtain feedback on how easy it is to interpret the graphical
and tabular output of the five QBA programs: treatSens, causalsens, sensemakr, EValue and
konfond. We invited researchers from the Leiden University Medical Center to participate and
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provided each participant with a document that contained the QBA output from our analysis of
the BCG study. We also asked the participants their experience of a QBA analysis and their prior
knowledge of the above five QBA methods.

Seven early career researchers, with up to five years of research experience, agreed to
participate. Only one researcher had previously conducted a QBA as part of their own research.
With regards to the five QBA methods, two participants had previously heard or read about
causalsens and sensemakr and five had previously heard or read about EValue. Not one
participant had come across treatSens or konfound. The researchers were asked to interpret the
outputs and comment on the study conclusions. In the absence of benchmark values, participants
found it difficult to interpret the output of EValue. When referring to the benchmark values
to gauge the plausible effect of unmeasured confounding, all participants reached the same
conclusions (i.e., only the results from causalsens indicated sensitivity of the study conclusions
to unmeasured confounding by childhood socioeconomic position). With regards to ease of
interpretation, three participants reported difficulties interpreting the output of sensemakr and
konfound, and one participant did not understand the output from program EValue. Furthermore,
one participant commented that the output from causalsens was easier to interpret than that of
treatSens and another participant reported the reverse.
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