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 2 

Abstract 17 

Immune checkpoint inhibitors, especially PD-1/PD-L1 blockade, have revolutionized cancer 18 

treatment and brought tremendous benefits to patients who otherwise would have had a 19 

limited prognosis. Nonetheless, only a small fraction of patients responds to immunotherapy, 20 

and the costs and side effects of immune checkpoint inhibitors cannot be ignored. With the 21 

advent of machine and deep learning, clinical and genetic data has been used to stratify 22 

patient responses to immunotherapy. Unfortunately, these approaches have typically been 23 

“black-box” methods that are unable to explain their predictions, thereby hindering their 24 

clinical and responsible application. Herein, we developed a “white-box” Bayesian network 25 

model that achieves accurate and interpretable predictions of immunotherapy responses 26 

against non-small cell lung cancer (NSCLC). This Tree-Augmented naïve Bayes model (TAN) 27 

precisely predicted durable clinical benefits and distinguished two clinically significant 28 

subgroups with distinct prognoses. Furthermore, Our state-of-the-art white-box TAN 29 

approach achieved greater accuracy than previous methods. We hope our model will guide 30 

clinicians in selecting NSCLC patients who truly require immunotherapy and expect our 31 

approach will be easily applied to other types of cancer. 32 
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 3 

Structured Abstract 52 

Background 53 

Immune checkpoint inhibitors have revolutionized cancer treatment. Given that only a small 54 

fraction of patients responds to immunotherapy, patient stratification is a pressing concern. 55 

Unfortunately, the “black-box” nature of most of the proposed stratification methods, and 56 

their far from satisfactory accuracy, has hindered their clinical application. 57 

 58 

Method 59 

We developed a “white-box” Bayesian network model, with interpretable architecture, that 60 

can accurately predict immunotherapy response against non-small cell lung cancer (NSCLC). 61 

We collected clinical and genetic information from several independent studies, and 62 

integrated this via the Tree-Augmented naïve Bayes (TAN) approach. 63 

 64 

Findings 65 

This TAN model precisely predicted durable clinical benefit and distinguished two clinically 66 

significant subgroups with distinct prognoses, achieving state-of-the-art performance than 67 

previous methods. We also verified that TAN succeeded in detecting meaningful interactions 68 

between variables from data-driven approach. Moreover, even when data have missing 69 

values, TAN successfully predicted their prognosis. 70 

 71 

Interpretation 72 

Our model will guide clinicians in selecting NSCLC patients who genuinely require 73 

immunotherapy. We expect this approach to be easily applied to other types of cancer. To 74 

accelerate the uptake of personalized medicine via access to accurate and interpretable 75 

models, we provide a web application (https://pred-nsclc-ici-bayesian.shinyapps.io/Bayesian-76 

NSCLC/) for use by the researchers and clinicians community. 77 

 78 
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 4 

Research in context 83 

Prior evidence 84 

Many studies have advocated the use of biomarkers, such as Programmed Death Ligand-1 85 

(PD-L1) and Tumor Mutational Burden (TMB), to estimate the therapeutic effect of immune 86 

checkpoint inhibitors in cancer and utilize them in personalized medicine. Because such 87 

single factors are insufficient, many artificial intelligence (AI)-based prediction models have 88 

been developed. However, most of these have been “black box” models, in that they lack 89 

interpretability. Furthermore, most of them are unable to handle missing data, which is 90 

problematic because it is challenging in clinical settings to acquire all of the necessary input 91 

information. 92 

 93 

Added valued 94 

To address this, we developed an interpretable graphical Tree-Augmented naïve Bayes (TAN) 95 

model, and demonstrated its state-of-the-art “white box” performance. It achieved good 96 

predictive performance, even when some of the data were missing, and identified 97 

relationships between variables that were consistent with previous reports. 98 

 99 

Implications 100 

We present the first evidence of a specialized graphical “white-box” model that achieves 101 

state-of-the-art performance in immunotherapy, providing strong support for the applicability 102 

of interpretable AI models in clinical decision-making. Research using larger datasets will 103 

further improve stratification and precision medicine. 104 
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Introduction 106 

Lung cancer is the most prevalent cancer and the leading cause of cancer-related death in 107 

men and women worldwide1. Non-small cell lung cancer (NSCLC) accounts for nearly 85 108 

percent of all lung cancers, and its five-year survival rate remains dismal, ranging from 68% in 109 

patients with stage IB cancer to as low as 10% in patients with stage IVA-IVB cancer2. Since 110 

the invention of immune checkpoint inhibitors (ICIs), many patients have gained tremendous 111 

benefits, with improved life expectancy3. For instance, nivolumab, an inhibitor of the 112 

programmed cell death 1 (PD-1)/ligand (PD-L1) pathway, increased the 2-year survival rate of 113 

patients with stage IIIB/IV cancer from 16% to approximately 30%4. 114 

The decision to administer ICIs to NSCLC patients has been based primarily on the 115 

expression level of PD-L1 on the surface of cancer cells, referred to as PD-L1 score5. In most 116 

cases, patients with higher PD-L1 scores are deemed suitable candidates for ICIs. 117 

Nonetheless, numerous studies have demonstrated that not all patients with higher PD-L1 118 

scores respond to ICIs, and even patients with lower PD-L1 scores respond to ICIs5–7. 119 

According to a meta-analysis of randomized controlled trials, PD-L1 expression alone was 120 

insufficient to predict immunotherapy response7. In support of this, the PD-L1-based 121 

predictive ability was reported to be 0.646 (based on the area under the curve, AUC)8, 122 

indicating that other factors must determine immunotherapy benefits. Further, immunotherapy 123 

can have devastating side-effects, particularly immune-related adverse events such as 124 

pancreatitis and interstitial pneumonia9. The use of ICIs in patients who do not respond to 125 

treatment may thus eventually reduce their life expectancy. It is therefore urgent to elucidate 126 

the factors other than PD-L1 score that determine the response and prognosis of patients 127 

under immunotherapy10. 128 

Studies to identify factors for stratifying NSCLC patients on ICI treatment have focused on 129 

the tumor mutational burden (TMB). Tumors with high TMB would contain many neoantigens 130 

and generally respond well to ICIs10. However, the predictive ability of TMB was 0.601, based 131 

on AUC8. Rather than relying on a single indicator (such as PD-L1 score or TMB) to predict 132 

immunotherapy response, methods combining multiple factors have emerged. For example, 133 

LIPI11 and EPSILoN12 integrate clinical data such as clinical stage, performance status, and 134 

smoking status. The ratio of neutrophils to lymphocytes, a predictor of rapid progression10, 135 

has been incorporated into these methods. Despite the use of multiple variables, prediction of 136 

immunotherapy response rate has remained inadequate, with AUC values of 0.606 and 0.666 137 

for LIPI and EPSILoN, respectively13. This evidence indicates that classical approaches cannot 138 

provide satisfactory predictions concerning immunotherapy. 139 

In recent years, machine learning (ML)-based methods have been applied to unravel the 140 

factors determining the efficacy of ICI treatment for NSCLC. For one example, the AUC of a 141 
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 6 

neural network model that integrated several factors (TMB, PD-L1 score, mutant-allele tumor 142 

heterogeneity, and immune-related pathways) was as high as 0.80 in a test cohort14. Another 143 

study integrated PD-L1 score and CT images achieved an AUC of 0.7615. Other ML methods, 144 

such as LightGBM, XGBoost, and regression analysis have also been investigated16. Although 145 

they harness various types of information (PD-L1 score, radiological images, and clinical 146 

features) as input, the AUC remains below 0.80 even for their best models, indicating that it 147 

remains challenging to predict responses in ICI therapy. Moreover, ML methods, including 148 

neural networks, often lack transparency due to the complexity arising from neural 149 

connections and mathematical abstractions17–19, making it potentially impossible to explain 150 

their predictions. This "black-box" nature has retarded the clinical application of established 151 

models. Predictive models with higher accuracy and accountability are therefore necessary 152 

for the appropriate use of ICIs in NSCLC patients. 153 

With this in mind, we harnessed Bayesian theory and developed an interpretable AI model 154 

with state-of-the-art predictive power about immunotherapy. Specifically, we utilized 155 

Bayesian network (BN)-based models that capitulate causal relationships in the form of a 156 

graphical model20, allowing us to avoid the black-box problems prevalent in other ML 157 

methods17. We demonstrate that a Tree-Augmented naïve Bayes (TAN) model predicts the 158 

durable clinical benefit (DCB) of patients treated with ICIs with comparable or even better 159 

accuracy than conventional ML methods, stratifying patients in a clinically significant manner. 160 

It achieved robust predictive ability, even with limited information. This data-driven approach 161 

can be used to further elucidate the factors determining immunotherapeutic responses. We 162 

anticipate that our interpretable and state-of-the-art approach will expand the knowledge of 163 

immunotherapy and be readily applicable to other types of cancer. 164 
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Methods 166 

Public cohorts 167 

The cBioPortal (http://www.cbioportal.org)21 was accessed to retrieve clinical and mutation 168 

data for NSCLC patients. We chose two studies examining the effects of ICIs on NSCLC 169 

patients8,22 to use as a dataset for this study. The inclusion criteria and clinical and mutation 170 

information for the two cohorts are explained in the original papers8,22.  171 

The characteristics of our dataset are shown in Table 1, including age (<65 years or not), 172 

gender, smoking status, and histopathological information. We excluded 25 samples, 173 

comprising mostly those with unspecified histological data (described only as “NSCLC”), and 174 

a few categorized as “Large Cell Neuroendocrine Carcinoma”. We obtained mutation data to 175 

prepare the “frequency-based” and “evidence-based” gene-sets. For the patients in these 176 

cohorts, we also analyzed progression-free status. 177 

 178 

Model construction 179 

The characteristic of TAN lies in its structural constraints that each explanatory variable can 180 

be connected with one node other than an objective variable. 181 

A complete undirected graph with nodes and edges is constructed to estimate this 182 

structure. In this stage, one node is wholly connected to every other node. Each variable is 183 

described as 𝑋!, ⋯ , 𝑋", and mutual information values are given to each edge. The edge 184 
weights between two nodes (𝑋# , 𝑋$) are given by Equation 4: 185 

𝐼%𝑋# , 𝑋$&𝐶( = 𝑝(𝑋# , 𝑋$ , 𝐶)𝑙𝑜𝑔
𝑝(𝑋# , 𝑋$|𝐶)

𝑝(𝑋#|𝐶)𝑝(𝑋$|𝐶)
⋯ (4) 186 

To obtain the constrained structure of TAN from this complete graph, a structure with the 187 

highest total weights under the constraint is used as an estimated structure. To transform the 188 

given undirected graph tree into a directed one, a root variable is randomly chosen, and the 189 

direction of the edges is set to outward from the root variable20,23,24. The data were then 190 

randomly split into training (2/3) and test data (1/3) (Figure 1b). 191 

The training data were used to construct the models and to learn the conditional 192 

probability between each node. ROC curves were constructed from the test-data predictions. 193 

We constructed the model using the bnlearn (4.7.1) R package, and used the ROCR package 194 

(1.0-11) for evaluation. 195 

 196 

Model evaluation 197 

Model-averaging methods were adopted to measure the reliability of the connections 198 

between nodes in the network, by performing multiple structural estimations using the hill-199 

climbing method23. In the Bayesian network, it is important to measure the confidence level 200 
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 8 

for a particular graph feature (the graph edge). This confidence level (in terms of relative 201 

frequencies) referred to as arc strength23,25,26, is defined as the number of times an internode 202 

connection appears while generating multiple graphs; frequencies >85% are considered 203 

strong23. 204 

We adopted two model-averaging methods for evaluating the node connections of our 205 

model. The first is the bootstrap approach, which applies nonparametric bootstrapping to 206 

generate multiple networks, and estimates the arc strength23,25. 207 

Algorithm 1 provides the specific method. 208 

 209 

Algorithm 1 210 

1. For 𝑏 = 1,2, … , 𝐵: 211 

   1.1. Sample a data set 𝐷% from the original data 𝐷 via nonparametric bootstrapping. 212 

   1.2. Learn the Bayesian network, ℊ% = (𝑉, 𝐸%) from 𝐷%. 213 

2. Estimate the arc strength, defined as follows: 214 

𝑝&< = 𝑃>(𝑎#) =
1
𝐵@ℕ{(!∈*"}

,

%-!

 215 

where ℕ is equal to 1 if 𝑒# ∈ 𝐸% and 0 otherwise. 216 

 217 

The second model-averaging method is the random generation of multiple graphs from a 218 

uniform distribution, using the MCMC algorithm (Algorithm 2). We randomly sampled one 219 

graph for every 50 graphs generated and measured arc strength from 500 sampled graphs26. 220 

 221 

Algorithm 2 222 

1. For 𝑏 = 1,2, … , 𝐵: 223 

   1.1. Sample a data set 𝐷% from the original data 𝐷 via parametric or nonparametric 224 

bootstrapping. 225 

   1.2. Learn the Bayesian network, ℊ% = (𝑉, 𝐸%) from 𝐷%. 226 

2. Estimate the arc strength, defined as follows: 227 

𝑝&< = 𝐸(𝑒#|𝐷) ≈
1
𝐵@ℕ{(!∈*"}𝑃(ℊ%|𝐷)

,

%-!

 228 

 229 
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The robustness of the TAN structure estimation was evaluated by examining whether the 230 

connections between nodes determined to be significant by these model-averaging methods 231 

were also present in the structure of the TAN. 232 

 233 

Inference with limited evidence 234 

To estimate the conditional probability of an event using only the limited evidence available, 235 

we used the cpquery function of the bnlearn package (4.7.1). In this method, logic sampling, 236 

or an approximate inference, enables it to obtain the probability27. First, a new data set is 237 

created by randomly extracting data that matches the specified evidence from the whole data 238 

set. In our case, patient profiles or genetic mutation information were specified. By repeating 239 

this method, one million random samples are generated, and an approximate probability is 240 

returned based on them. 241 

 242 

Survival analysis 243 

We conducted survival analysis using the survival package (3.3-1). P< 0.05 was considered 244 

statistically significant. 245 

 246 

Data availability 247 

All clinical and mutation information is available from the cBioPortal database, 248 

(http://www.cbioportal.org), and the specific explanation of each cohort can be obtained in 249 

the original papers8,22.  250 

We provide a web application (https://pred-nsclc-ici-bayesian.shinyapps.io/Bayesian-251 

NSCLC/) using the shiny package (1.7.2), providing both frequency- and evidence-based 252 

models. 253 

 254 

Code availability 255 

The R code for training the NB and TAN models, and for validation and scoring via ROC and 256 

survival analysis are available at GitHub (https://github.com/Hideki-Hozumi/Prediction-with-257 

bayesian-network.). 258 
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Results 260 

Manual curation of clinical information related to immunotherapy 261 

To develop a state-of-the-art explanatory model, we first retrieved data for immunotherapy-262 

receiving cancer patients from cBioPortal (http://www.cbioportal.org), which offers clinical 263 

data with mutational information21. Specifically, two previously published studies8,22 examining 264 

the effect of ICIs on NSCLC patients were selected and used as a dataset for this study: the 265 

Hellman cohort, comprising of 75 NSCLC patients who underwent immunotherapy22, and the 266 

Rivzi cohort, of 240 NSCLC patients treated with immunotherapy8. In total, our dataset 267 

includes 315 patients (Figure 1a). The characteristics of our dataset are shown in Table 1. 268 

Among the available clinical information, we set the objective variable as DCB, which is 269 

defined in the revised RECIST guideline (version 1.1) as partial response/stable disease 270 

lasting >6 months28. We focused on DCB because the follow-up criteria for overall survival 271 

and progression-free status were inconsistent between the two cohorts8,22. Given that DCB 272 

has been used to assess the efficacy of immunotherapy for various tumors such as 273 

melanoma29 and lung cancer8, we believe that predicting DCB is of clinical value for stratifying 274 

the patients in our study. 275 

We used the three known clinical risk factors of NSCLC: age (< 65years of age or not30), 276 

gender, and smoking status31. Our model incorporated histopathological information, because 277 

the pathological subtype substantially affects the prognosis32. We excluded 25 samples for 278 

which there was insufficient histopathological information (Figure 1a). 279 

Genetic covariates were determined in two ways. First, genes with mutation rates higher 280 

than 10% in our dataset were incorporated (hereafter, the "frequency-based geneset”); these 281 

include TP53, KRAS, TTN, KMT2C, SMARCA4, STK11, and KEAP1. Second, based on a 282 

literature survey, we identified six genes (KRAS33 STK1134,35, TP5336, EGFR37, ALK37, and 283 

ROS137) associated with NSCLC-patient ICI-treatment responses or prognosis (hereafter, 284 

“evidence-based geneset”). We categorized "Deletion", “in-frame deletion (IF del)”, 285 

“frameshift deletion (FS del)”, “splice mutation (Splice)” and "Missense" modifications as 286 

"Mutation" since they would likely impair the original function of the gene38,39. 287 

We attempted to decipher the relationships underlying DCB by combining clinical 288 

characteristics with mutation data. For this purpose, we randomly divided the dataset into 289 

training and test data (Figure 1a), using the former to build a model and the latter solely for 290 

evaluation40. Receiver operating characteristic (ROC) analysis was performed to evaluate 291 

model performance. Survival analysis was conducted to verify the model’s ability to predict 292 

prognosis in addition to DCB (Figure 1b). We describe the model construction procedure in 293 

the following section. 294 

 295 
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Tree-Augmented naïve Bayes model robustly and interpretability predicted DCB 296 

We harnessed a Bayesian network graphical model to achieve accurate and interpretable 297 

predictions of DCB. Bayesian networks graphically represent multivariate probability 298 

distributions20, and are broadly applied in various biomedical tasks, including gene network 299 

feature selection41, signaling network prediction42, and predicting hematological malignancy 300 

type43. Naïve Bayes (NB) networks, the simplest type of Bayesian network, but generally 301 

achieve favorable prediction accuracy44. Based on Bayes’ theorem (Equation 1), NB assumes 302 

that all covariates are equally important without distinction and are conditionally independent 303 

given a class value (Equation 2)44. 304 

 305 

𝑝(𝐶|𝑋!, ⋯ , 𝑋") =
𝑝(𝑋!, ⋯ , 𝑋"|𝐶)𝑝(𝐶)

𝑝(𝑋!, ⋯ , 𝑋")
⟺ 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝑃𝑟𝑖𝑜𝑟 × 𝐿𝑖𝑘𝑙𝑖ℎ𝑜𝑜𝑑
𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ⋯ (1) 306 

𝑝(𝐶|𝑋!, ⋯ , 𝑋") ∝ 𝑝(𝐶)S𝑝(𝑋.|𝐶)⋯ (2)
"

.-!

 307 

The probability associated with a parent node (objective variable) is described as 𝑝(𝐶), and 308 

the probability is updated to 𝑝(𝐶|𝑋!, ⋯ , 𝑋") when explanatory information from child nodes 309 

(𝑋!, ⋯ , 𝑋") is provided. In terms of its network structure, arrows (directed edges) extend from 310 

one node (a parent node or objective variable) to all other nodes (child nodes) (Supplementary 311 

Figure 1a). Despite its simple design and assumptions, NB achieves much better 312 

classification than expected, and is used in medical data analysis45. Nonetheless, in its 313 

original form, it depends relatively heavily on the assumption that the covariates are 314 

statistically independent, hampering its application to real-world biomedical data. 315 

To address this, we utilized Tree-Augmented naïve Bayes models (hereafter, “TAN”; Equation 316 

3): 317 

 318 
𝑝(𝐶|𝑋!, ⋯ , 𝑋") ∝ 𝑝(𝐶) ∙ 𝑝(𝑋!|𝐶) ∙ 𝑝(𝑋/|𝑋. , 𝐶) ∙ ⋯ ∙ 𝑝(𝑋"|𝑋0 , 𝐶)⋯ (3)	 319 

 320 

TAN alleviates the conditional independence between features, while keeping the directed 321 

acyclic graph simpler than in conventional neural network models (Supplementary Figure 1b, 322 

1c). TAN does not assume conditional independence, partially allowing dependent 323 

relationships between variables (Equation 3)46. Therefore, because it can express a greater 324 

number of states, TAN must outperform NB model. Indeed, it has been applied in numerous 325 

biomedical tasks, including risk stratification in pulmonary hypertension47, and 326 

mammography48, achieving high accuracy. Here, we used NB and TAN to establish predictive 327 
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models with higher accuracy and interpretability, and compared their ability to predict DCB in 328 

NSCLC patients. 329 

First, we constructed frequency-based models, using clinical data and seven genes from 330 

the frequency-based geneset (TP53, KRAS, TTN, KMT2C, SMARCA4, STK11, and KEAP1) as 331 

covariates. The structure of frequency-based NB is shown in Figure 2a. TAN structure was 332 

estimated using a training dataset (Figure 2b). For the NB model, the area under the curve 333 

(AUC) was 0.686 for the training dataset and 0.726 for the test dataset. (Figure 2c); for the 334 

TAN model, these values were 0.836 and 0.728, respectively (Figure 2d). These results 335 

indicate that the TAN model has comparable or greater predictive accuracy than the NB 336 

model. 337 

We next constructed evidence-based NB (Figure 2e) and TAN (Figure 2f) models, using 338 

clinical information and six genes from the evidence-based geneset (KRAS, STK11, TP53, 339 

EGFR, ALK, and ROS1) as covariates, using the same approach used for the frequency-340 

based models. Using the test dataset, the NB and TAN AUCs were 0.712 (Figure 2g) and 341 

0.823 (Figure 2h), respectively, suggesting that TAN outperformed NB. 342 

These lines of evidence demonstrate that the optimized TAN model outperforms NB, and 343 

robustly predicts DCB via frequency- and evidence-based approaches. 344 

Its performance is comparable to that of other cutting-edge methods15,49,50, while retaining 345 

explainability. 346 

 347 

Optimized TAN yields a robust graphical structure 348 

We next evaluated the robustness of the structural estimation of our model in immunotherapy. 349 

We statistically generated multiple directed acyclic graphs (DAGs): significant edges 350 

(internode connections) were detected when it appeared in >85% of the graphs. 351 

We used two model-averaging methods25,51 to determine if the relationships identified by 352 

our methodology (Figure 2b for the frequency-based model and Figure 2f for the evidence-353 

based model, respectively) were sufficiently robust. We performed bootstrap sampling25 and 354 

Markov chain Monte Carlo (MCMC) methods to randomly constructed DAGs from a uniform 355 

distribution, as previously reported51. This revealed several significant connections (Table 2, 356 

Figure 3a, 3b for the frequency-based model; Table 3, Figure 3c, 3d for the evidence-based 357 

model). These results demonstrate that the model-averaging methods produce similar 358 

architectures, indicating that our method robustly discovers crucial relationships governing 359 

the immunotherapy response. 360 

 361 

Our TAN model stratifies and inferences even with limited clinical information 362 
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Patient stratification is crucial to the development of personalized medicine52. We thus 363 

evaluated our model's applicability to the stratification of NSCLC patients. We obtained the 364 

progression-free status of the patients in our dataset from the cBioPortal database8,22. Our 365 

models identified two distinct and clinically significant groups based on binary prediction 366 

(Figure 4a for the frequency-based model and Figure 4b for the evidence-based model). 367 

Importantly, the optimized TAN model can handle missing data and calculate conditional 368 

probabilities. For instance, it can predict whether a tumor will respond to immunotherapy, 369 

even if all we know about a particular NSCLC patient is that they have TP53 and STK11 370 

mutations; the estimated response probability is 0.163, indicating that this patient would not 371 

benefit substantially from ICIs (Figure 5). This speculation is consistent with established 372 

evidence33. In contrast, for a young female patient with a KMT2C mutation, but no STK11 and 373 

TP53 mutations, the estimated ICI response probability is 0.592, indicating that ICI treatment 374 

would be valuable. Previous models, including those based on ML and deep learning 375 

methods, cannot adequately handle missing data, requiring all of the necessary information53. 376 

Given that data acquisition can be laborious, particularly in clinical settings, our model may 377 

help clinicians in decision-making, especially in data-limited situation. 378 

 379 

 380 

Discussion 381 

Most prior attempts to predict immunotherapy responses have used ML-based approaches14–382 
16, which are complex “black-box” systems that cannot handle missing data. As input, they 383 

require all of the necessary clinical and molecular information to be provided. Such data are 384 

often difficult to obtain, especially in hospitals with limited resources, hampering the clinical 385 

application of these models. 386 

Transparency and clinical validation are necessary to achieve trustable medical AI17. 387 

Therefore, we sought to develop an interpretable and robust model that predicts NSCLC 388 

patient responses to immunotherapy. We used clinical information, selected mutation data 389 

based on the frequency and evidence-based approaches, and established optimized TAN 390 

models. Our approach is comparable with, or even superior to, several cutting-edge ML-391 

based methods15,49,50, while retaining explainability. It provides clinically informative 392 

predictions even when data are limited (Figure 5), as is quite common in clinical settings. 393 

Furthermore, because this model only computes conditional probabilities based on Bayes’ 394 

theorem25, it is possible, if necessary, to control which nodes should have (or should not) have 395 

connections, using a “white list” (or “black list”) based on expert knowledge. 396 

We selected several genes based on the mutation frequency or previous evidence. KRAS, 397 

an immunomodulatory oncogenic gene, leads to escape from immunotherapy34. Together 398 
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with TP53 or STK11 mutations, KRAS mutation is a potent prognostic factor33,36. STK11 is 399 

associated with diminished immunotherapy response35. BRAF mutation, which are associated 400 

with a higher tumor burden, may make tumors vulnerable to immunotherapy54. Mutations in 401 

driver oncogenes such as EGFR, ALK, and ROS1 in tumors cause a lack of immunogenicity, 402 

and thus, a poor response to immunotherapy, regardless of PD-L1 score55. Therefore, the 403 

expert consensus suggests that patients with these mutations should not be treated with 404 

immunotherapy5. 405 

Our models could also be used to generate intriguing hypotheses for future research. For 406 

instance, our inferences based on limited data (Figure 5) are consistent with the findings of 407 

recent reports33,35. This suggests that, by using more clinical samples with diverse genetic 408 

profiles, our approach may reveal new targets in immunotherapy, providing an invaluable 409 

resource for both clinical and basic medicine. 410 

Consistent with an earlier analysis of clinical data on the utility of TAN48, our TAN-based 411 

approach provided greater value than the NB model. Because of the small sample, the 412 

conventional NB model using hill-climbing methods were unable to construct suitable 413 

structures for inference (Supplementary Figure 2), suggesting that our approach is better 414 

suited to inference with a small dataset. TAN alleviates the conditional constraints imposed by 415 

NB. Here, some of the essential connections in TAN structural learning were also detected via 416 

model-averaging using bootstrap sampling and MCMC (Figure 3). Our model-averaging 417 

findings obtained using the frequency-based approach (Figure 3a, 3b), for instance, strongly 418 

suggest an association between smoking status and KRAS mutation, which has been 419 

established in a previous report37. Other strong connections between nodes inferred by 420 

model-averaging method (Figure 3) are expected to reveal immunotherapy-related hidden 421 

relationships. 422 

In terms of potential limitations, we cannot rule out selection bias due to the integrated use 423 

of public datasets. Although the datasets comprise patients who underwent immunotherapy, 424 

it is plausible that the data do not represent a specific population. In addition, the strength of 425 

the internode relationships that we estimated may reflect the small sample size, and an 426 

analysis employing a larger dataset may reveal additional relationships. We therefore 427 

developed a web-based intuitive DCB estimator (https://pred-nsclc-ici-428 

bayesian.shinyapps.io/Bayesian-NSCLC/) that does not require computational expertise. 429 

Future analyses with larger clinical samples are likely to overcome these limitations, and 430 

provide further support for the validity of this approach. 431 

In summary, these robust models are comparable with, or even superior to, other 432 

predictive models for immunotherapy. They can predict meaningful and interpretable 433 

connections and inferences, even with a limited number of observations. We hope that this 434 
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model will guide clinicians in selecting NSCLC patients who require immunotherapy, and 435 

expect it to be easily applied to other types of cancer. 436 

  437 
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Tables 588 

Table 1. Characteristics of the dataset 589 

Characteristic Numbers 
Age  

≧65 157 
<65 133 

Histopathology  
Adenocarcinoma 256 

Squamous 34 
Gender  

Male 141 
Female 149 

Smoker  
Ever 231 

Never 59 
DCB  

Yes 99 
No 191 

TP53  
Mutation 168 

No Mutation 122 
KRAS  

Mutation 100 
No Mutation 190 

STK11  
Mutation 50 

No Mutation 240 
KEAP1  

Mutation 47 
No Mutation 243 

TTN  
Mutation 34 

No Mutation 256 
KMT2C  
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 590 

 591 

  592 

Mutation 32 
No Mutation 258 

SMARCA4  
Mutation 30 

No Mutation 260 
EGFR  

Mutation 26 
No Mutation 264 

ALK  
Mutation 13 

No Mutation 277 
ROS1  

Mutation 7 
No Mutation 283 
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Table 2. Node verification via bootstrapping and MCMC for the frequency-based model 593 

 594 

Methods Connection Strength TAN model 

Bootstrap Smoker-KRAS 0.956 ○ 

Smoker-KMT2C 0.874 ○ 

TP53-KRAS 0.990 ○ 

KRAS-Cancer 0.968 ○ 

TTN-Cancer 0.854 × 

STK11-KEAP1 1.000 ○ 

MCMC Cancer-KRAS 1.000 ○ 

Smoker-Age 0.878 ○ 

Smoker-TP53 0.982 × 

Smoker-KRAS 0.982 ○ 

Smoker-KEAP1 0.962 ○ 

KRAS-TP53 1.000 ○ 

TTN-Cancer 0.978 × 

TTN-KMT2C 0.868 × 

TTN-SMARCA4 0.974 × 

STK11-TP53 0.978 × 

KEAP1-SMARCA4 0.970 × 

KEAP1-STK11 1.000 ○ 

 595 
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Table 3. Node verification via bootstrapping and MCMC for the evidence-based model 597 

 598 

Methods Connection Strength TAN model 

Bootstrap Cancer-KRAS 0.978 ○ 

Cancer-ROS1 0.880 × 

Smoker-TP53 0.942 × 

Smoker-EGFR 0.872 ○ 

KRAS-TP53 1.000 ○ 

STK11-TP53 0.847 ○ 

ALK-ROS1 0.956 ○ 

MCMC Smoker-KRAS 0.958 ○ 

Smoker-STK11 0.980 × 

Smoker-TP53 0.998 × 

Smoker-EGFR 0.908 ○ 

KRAS-Cancer 1.000 ○ 

KRAS-TP53 1.000 ○ 

STK11-TP53 1.000 ○ 

ALK-EGFR 0.942 × 

ROS1-Cancer 1.000 × 

ROS1-ALK 0.970 ○ 

 599 
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Figures and figure legends 601 

 602 

 603 

 604 

Figure 1. Workflow of the study 605 

(a) We obtained clinical and genetic data of non-small cell lung cancer (NSCLC) patients from 606 

cBioPortal (http://www.cbioportal.org). There were 315 data samples, of which 25 samples 607 

were excluded because they had insufficient histopathology data, or because the disease 608 

were rare. Two-thirds of the data was used to construct the models (train data), and the rest 609 

was used for evaluation (test data). 610 

(b) We developed the naïve Bayes (NB) and Tree-Augmented naïve Bayes (TAN) models and 611 

evaluated their predictive accuracy for whether patients will benefit from immunotherapy. We 612 

performed survival analyses to compare the two groups based on the binary predictions by 613 

TAN model. 614 
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Figure 2. Bayesian network predicted the benefit of immunotherapy with high accuracy. 617 

(a, b) The naïve Bayes (NB, a) and Tree-Augmented naïve Bayes (TAN, b) models were trained 618 

using the frequency-based dataset. The predictor variable “Benefit” (DCB, shown in red) is 619 

defined in the RECIST guideline (version 1.1)28. Explanatory variables include patient data 620 

(yellow), tumor tissue information (orange), and the frequency-gene dataset (green). (c, d) 621 

Predictive performance of the frequency-based models (a, b) for the test dataset. TAN 622 

achieved greater accuracy than NB in terms of the Area Under the Curve (AUC), and was 623 

comparable to, or even more accurate than, state-of-the art methods15,49,50. (e, f) The naïve 624 

Bayes (NB, e) and Tree-Augmented naïve Bayes (TAN, f) models were trained using the 625 

evidence-based dataset. (g, h) Predictive performance of the evidence-based models (e, f) in 626 

the test dataset. TAN was more accurate than NB in terms of AUC, and comparable to, or 627 

even more accurate than, state-of-the-art methods15,49,50. 628 
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 630 

Figure 3. Evaluating the validity of the structure estimated by TAN through model-631 

averaging methods 632 

The linkages between nodes estimated by TAN were validated using model-averaging 633 

methods (bootstrap and MCMC). (a, b) Bootstrap (a) and MCMC (b) sampling was used to 634 

create models using frequency-based datasets; connections considered to be significant in 635 

each process are illustrated. Relationships detected by the model-averaging methods but not 636 

by TAN are shown in red. Connections detected both by model-averaging methods and TAN 637 

are in black. (c, d) Bootstrap (c) and MCMC (d) sampling was used to create models using 638 

evidence-based datasets; connections considered to be significant in each process are 639 

illustrated. The dependencies among variables estimated by TAN included many of the 640 

connections detected by model-averaging methods, indicating the robustness of our models. 641 

See also Tables 2 and 3. 642 
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Figure 4. Our TAN-based interpretable models stratify NSCLC patient prognosis 645 

(a, b) We tested whether these TAN models are suitable for stratifying progression-free 646 

survival. We classified patients into two groups (durable clinical benefit “DCB”, and “non-647 

DCB”) based on the binary predictions of the frequency-based (a) or evidence-based (b) 648 

models, and estimated progression-free survival status of the patients in our dataset via the 649 

Kaplan-Meier method. The p-values shown in this figure are from log-rank tests. 650 
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Figure 5. The optimized TAN model can infer DCB even from limited data 653 

(a, b) We investigated whether our model (frequency-based TAN, for instance) could infer the 654 

durable clinical benefit (DCB) from limited information. (a) In this example, the only information 655 

provided to the model was the TP53 and STK11 mutations in the patient. (b) Using rejection 656 

sampling, and approximate inference of the probability distribution of the unknown 657 

information, we were able to obtain probabilities for all of the hidden states. From only the 658 

information that TP53 and STK11 are co-mutated, the model computed a response 659 

probability to be 0.163, suggesting that immunotherapy would not be effective for this patient, 660 

consistent with the previous reports33. The white boxes and DCB status were calculated using 661 

our approach. 662 
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