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Abstract 

Alzheimer’s disease (AD) has been traditionally associated with episodic memory 

impairment and medial temporal lobe atrophy. However, recent literature has highlighted the 

existence of atypical forms of AD, presenting with different cognitive and radiological 

profiles. Failure to appreciate the heterogeneity of AD in the past has led to misdiagnoses, 

diagnostic delays, clinical trial failures and risks limiting our understanding of the disease. 

AD research requires the incorporation of new analytic methods that are as free as possible 

from the intragroup homogeneity assumption underlying case-control approaches according 

to which patients belonging to the same group are comparable to each other. 

Neuroanatomical normative modelling is a promising technique allowing for modelling the 

variation in neuroimaging profiles and then assessing individual deviations from the 

respective distribution. Here, neuroanatomical normative modelling was applied for the first 

time to a real-world clinical cohort of Alzheimer’s disease patients (n=86) who had a positive 

amyloid PET scan and a T1-weighted MR performed as part of their diagnostic workup. The 

model indexed normal cortical thickness distributions using a separate healthy reference 

dataset (n= 33,072), employing hierarchical Bayesian regression to predict cortical thickness 

per region using age and sex. Transfer learning was used to recalibrate the normative model 

on a validation cohort (n=20) of scanner-matched cognitively normal individuals. Brain 

heterogeneity was quantified as z-scores at each of the 148 ROIs generated within each AD 

patient. Z-scores < -1.96 defined as outliers. Clinical features including disease severity, 

presenting phenotypes and comorbidities were collected from health records to explore their 

association with outlier profiles. Amyloid quantification was performed using an automated 

PET-only driven method to examine the association between amyloid burden and outliers. 
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The total number of individual outliers (total outlier count) in biomarker-confirmed AD 

clinical patients ranged between 1 and 120 out of 148 (median 21.5). The superior temporal 

sulcus was the region with the highest count of outliers (60%) in AD patients. The mean 

proportion of outliers was higher in the temporal (31.5%) than in the extratemporal (19.1%) 

regions and up to 20% of patients had no temporal outliers. We found higher mean outlier 

count in patients with non-amnestic phenotypes, at more advanced disease stages and without 

depressive symptoms. Amyloid burden was negatively associated with outlier count. This 

study corroborates the heterogeneity of brain atrophy in AD and provides evidence that this 

approach can be used to explore anatomo-clinical correlations at an individual level. 
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Introduction 

For decades, the ‘typical' Alzheimer’s disease (AD) patient has been described as an older 

adult with marked episodic memory impairment and loss of grey matter volume in the medial 

temporal lobe (MTL). However, over recent years, it has become increasingly clear that AD 

is more heterogeneous than previously thought and can present with several forms which 

vary in age of onset, clinical presentation, neuropathological and genetic profiles 1. Moreover, 

research into its earlier phases has highlighted that AD is a continuum, rather than a discrete 

clinical entity, that goes from normal cognitive status to mild cognitive impairment to 

dementia 2 3. Moreover, AD often coexists with other neuropathologies 4 or clinical 

comorbidities 5-8 that contribute to interindividual heterogeneity. In a recent study evaluating 

a memory clinic cohort, we have found that about half of patients requiring biomarker 

confirmation of AD due to diagnostic uncertainty also reported depressive symptoms 8. 

Hypertension, heart disease and diabetes are also commonly comorbid with AD. 

 

Advances in diagnosis, treatment and understanding of the pathophysiological mechanisms of 

AD require research to move beyond the idea of a 'typical’ AD patient 9 as this implies an 

interindividual similarity that is not reflected in the real-world clinical population. Not all AD 

patients present with a typical phenotype and age of onset, and failure to recognise this 

frequently leads to diagnostic delays and errors 10. Efforts to incorporate the concept of AD as 

a continuum and as a heterogeneous condition into the clinical framework are illustrated by 

the evolution of AD diagnostic guidelines, which have been giving increasing weight to 

biological markers of AD to diagnose it accurately and at its earlier stages 11, 12. On the other 

hand, AD research has yet to progress towards analysis methods that make interindividual 

differences the focus rather than a source of error. Finding ways to dissect the heterogeneity 

of clinical and neuropathological profiles has become one of the central priorities in this field 
13. 

 

The dominant approach in case-control studies is to compare the average patterns of atrophy 

of AD patients with those of healthy individuals. While this method has been fundamental for 

the detection of important hallmarks of 'typical’ AD, such as MTL atrophy 14, it provides 

limited information about disease mechanisms across individuals 15. AD patients are grouped 

together, hence considered comparable to each other and clearly distinct from healthy 
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controls. This implies assumption of intragroup homogeneity and conceives the disease as a 

discrete entity rather than as a spectrum. Moreover, this approach carries the notion that the 

typical population likely represents a more homogeneous group that is presumably a more 

adaptive or optimal state 16, making it the reference standard for AD research and clinical 

trials. This is in contrast with recent studies that have demonstrated intragroup variability 

even within the clinical population of ‘typical AD’ 17. Making heterogeneity the object of 

study requires to move beyond the classic case-control approach and use techniques that 

address interindividual variation.  

 

As neuroimaging has entered the era of big data, data-driven clustering methods have been 

the predominant avenue for the exploration of heterogeneity in dementia (see Habes et al., 

2020 18 for a review). These have led to the discovery of neuropathological subtypes of AD 

associated with different distribution of tau neuropathology 19, 20, patterns of atrophy 21, 22 and 

of hypometabolism 23, and cognitive and demographic characteristics 19, 24, but comparable 

amyloid distribution 25, 26. Although these studies marked significant progress in the 

comprehension of AD heterogeneity, their generalisability requires prior evaluation of key 

potential issues18 27 15, 27, 9, 28.  

 

Neuroanatomical normative modelling is an emerging statistical technique, alternative and 

complementary to clustering 15, which shifts the focus from group averages to cohort 

variation 28. Similar to growth charts used in paediatric medicine, this method aims to gather 

individual-level information by comparison with the norm 15, 28. This is done by estimating 

centiles of variation of a brain measure (e.g., cortical thickness) across a normative 

population and then assessing how much each individual deviates from the respective 

distribution 9. Moreover, it allows spatially mapping of the extent to which an individual 

deviates from the norm at any given brain region, providing a map of individual variability 9. 

This technique has been used in psychiatric research over the last years with the aim of 

conceptualizing mental disorders as deviations from expected functioning and parsing disease 

heterogeneity 29. Recent studies have used normative modelling to map interindividual 

differences in brain structure among patients with attention-deficit hyperactivity disorder 30, 

bipolar disorder 31, 32, autism 33-36, and schizophrenia 31, 32. On the other hand, this technique 

has had limited use in AD research so far 37, 38, despite its potential to unveil disease 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.02.22281597doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281597
http://creativecommons.org/licenses/by-nd/4.0/


heterogeneity. In a recent application by Verdi and colleagues, neuroanatomical normative 

models revealed a largely heterogeneous distribution of cortical atrophy in a group of AD 

patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) research cohort 39 

(where the unwanted noise from acquisition across multiple sites was modelled using a 

hierarchical Bayesian regression40). Moreover, while previous studies have examined the 

association between amyloid and mean cortical thickness 41, no study to date has investigated 

how amyloid burden relates to individual-level deviations in cortical thickness from the 

norm.  

 

In the present study, for the first time, neuroanatomical normative modelling employing 

hierarchical Bayesian regression is applied to a real-world clinical cohort in order to map 

disease variation in diagnostically challenging patients who required biomarker confirmation 

of Alzheimer’s disease. Patients from the Imperial Amyloid PET Cohort (APC) were 

included in this study if they had an MRI and an amyloid PET as part of their diagnostic 

investigations. This clinical cohort was established at Imperial College Healthcare NHS Trust 

in 2013 and includes all patients seen at the Imperial Memory Clinic and receiving amyloid 

PET imaging as part of their diagnostic workup 42. The objectives of this study were to: (i) 

assess intragroup neuroanatomical heterogeneity in a real-world clinical cohort of patients 

with confirmed AD; (ii) evaluate the use of normative modelling to explore anatomo-clinical 

correlations at an individual level; (iii) examine the association between global amyloid 

burden and deviations in cortical thickness. 

 

Material and Methods 

Subjects  

We reviewed 256 amyloid-positive patients from the Imperial APC Cohort who had a clinical 

amyloid PET scan between 2014 and 2021 as part of their diagnostic workup. At Imperial 

College Healthcare NHS Trust (ICHT), all amyloid PET referrals are made by consensus 

within a multidisciplinary team 42 and are in line with the Amyloid Imaging Taskforce’s 

appropriate use criteria 43. Patients were included in this study if they had a positive amyloid 

PET and an available clinical MRI scan performed within 12 months of amyloid PET 
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(n=186). Of these, 80 had to be excluded following preliminary inspection of MRI images 

due to unavailable or ineligible T1-weighted images, motion artefacts, other pathologies 

affecting brain integrity (i.e., normal pressure hydrocephalus, multiple sclerosis, large 

infarcts) or previous neurosurgery, leaving a total of 106 subjects, hereafter termed the 

‘clinical cohort’. As explained in greater detail below, the normative modelling framework 

also requires a reference and a validation cohort to respectively build and validate the model. 

The ‘reference cohort’ consisted of a large group of 33,072 cognitively normal adults pooled 

from publicly available neuroimaging datasets under a previous study 39; the relevant 

methods are described elsewhere 39. The ‘validation cohort’ constituted a group of 28 

cognitively normal (CN) older adults who had an MRI scan for research purposes at ICHT.  

 

MR image acquisition 

All subjects had whole-brain T1-weighted volumetric images. A total of 86 (81%) patients 

from the clinical cohort were scanned at ICHT using a 1.5T Siemens MAGNETOM Avanto 

with the following parameters: repetition time = 900ms; echo time = 3.37ms; 160 slices/slab, 

yielding voxel size of 1x0.5x0.5mm. Patients scanned at other sites were excluded from the 

model. All CN individuals were scanned at ICHT using a 3T Siemens MAGNETOM Verio. 

Image parameters were as follows: repetition time = 900ms; echo time = 2.52ms; 176 

slices/slab, yielding voxel size of 1x1x1mm. The imaging protocol for the reference cohort 

varied across different studies 39. 

 

MR image analysis 

Cortical segmentation 

After a preliminary inspection of raw T1-weighted images, cortical reconstruction and 

volumetric segmentation were performed using FreeSurfer 6.0 recon-all function 

(https://surfer.nmr.mgh.harvard.edu/) 44. To be consistent with the reference cohort, we used 

the Destrieux atlas of 148 cortical parcellations (74 in each hemisphere) that are classified as 

gyral or sulcal 45. In the ‘clinical’ and ‘validation’ cohorts, the output was visually checked 

for quality control by three authors independently (F.L., A.D., H.H.) following preliminary 

training on a subset of cases to ensure consistency. Unclear issues were discussed and 

addressed jointly by the team. Output errors were found in 87 (82%) patients and 19 (68%) 
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CN individuals and addressed in line with FreeSurfer guidelines  

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData) (examples in 

Supplementary Fig.1). After correction, the recon-all command was re-run to re-generate 

surfaces and the output underwent further visual inspection. At this stage, 2 patients had to be 

excluded due to persistent segmentation errors after multiple correction attempts, leaving a 

total of 104 patients. Cortical segmentation procedures for the reference cohort are described 

elsewhere 39. We extracted the estimates of total intracranial volume and cortical thickness 

across 148 regions of interest from the Destrieux atlas 45. 

 

Neuroanatomical normative modelling 

In this study, we used the Hierarchical Bayesian Regression proposed by Kia and colleagues 

which provides a solution for normative modelling on real-world clinical data because first, it 

handles artefactual variability in data associated with site effects; and second, due to its 

federated nature and model transferability, it provides the possibility for normative modelling 

on distributed data without the need to retrain a reference cohort40, 46. Hierarchical Bayesian 

Regression was previously trained on a reference cohort (compiled by Kia and colleagues), 

using age and sex as the covariates, to index population variability in cortical thickness across 

all 148 ROIs 43. This process modelled centiles of variations for any value of the covariates, 

hence describing the full range of normal variation 15. Transfer learning was used to 

recalibrate the previously run normative model to the scan site using cortical thickness data 

from a subgroup of scanner-matched CN participants (n=20) of the validation cohort. The 

recalibrated model was then applied to the clinical cohort. Deviations in cortical thickness 

from the normative cohort were quantified as separate z-scores at each ROI for each patient; 

z-scores < -1.96 were defined as ‘outliers’, and the count of each patient’s outlier regions was 

totalled (total outlier count). The analysis of outliers was limited to negative deviations as the 

primary interest of this study was AD-related neurodegeneration as indexed by lower cortical 

thickness. To assess the spatial distribution of these deviations (i.e., areas with significantly 

lower cortical thickness), we built individualised outlier maps and computed the overlap in 

outlying regions across patients.  

 

Amyloid PET image acquisition 
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All clinical patients included in this study were scanned using a Siemens Biograph 64 

PET/CT scanner. The PET ligand used for amyloid PET imaging changed from 18F-

Florbetapir (Amyvid) to 18F-Florbetaben (Neuraceq) in December 2017, following cessation 

of UK (18)F-florbetapir manufacture. For 18F-Florbetapir, a 20-min acquisition of the brain 

was obtained following a 40-min interval post-injection of an intravenous bolus of 370 MBq 

(minimum 333MBq); for 18F-Florbetaben, a 30-min brain acquisition was obtained 

following a 90-min interval post-injection of an intravenous bolus of 360 MBq (minimum 

240MBq). A low dose CT image was also acquired and used for attenuation correction and 

anatomical localization of the PET images 47. Both the Amyvid and Neuraceq images were 

reconstructed using OSEM 3D, 4 iterations, 14 subsets, 168 matrix size, zoom 2, Gaussian 

3mm FWHM. 

 

Amyloid PET review and analysis  

Clinical interpretation  

As part of the diagnostic workup, all amyloid PET images underwent standard clinical 

interpretation: an experienced nuclear medicine radiologist classified them as ‘amyloid-

positive’ or ‘amyloid-negative’ through visual reads using greyscale images and the 

cerebellum as the reference region 48. Equivocal cases were independently read by two 

nuclear medicine radiologists and by a third reader when there was disagreement. Amyloid 

PET positivity was one of the inclusion criteria of this study. A positive amyloid PET scan 

indicates increased burden of Alzheimer’s pathology and, in the clinical context, is highly 

suggestive of an AD clinical diagnosis.  

 

Amyloid quantification 

Quantification of amyloid PET images was performed using Hermes BRASS version 4.0 

(Hermes Medical Solutions AB, Stockholm, Sweden) software package, a fully automated 

PET-only driven method fully described in Lilja et al. 2019 49. Briefly, each PET image is 

first spatially normalized to Montreal Neurological Institute (MNI) space. The images are 

then registered to a synthetic tracer-specific adaptive template that was created using a linear 

combination of two tracer-specific principal component images. The two principal 

components were designed to span from Aβ-negativity to Aβ-positivity: the first consists in 
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the average of all the images of the dataset, the second corresponds to the difference between 

Aβ-positive and Aβ-negative images 49. This method provides regional standardized uptake 

value ratio (SUVR) and a global Aβ index. The SUVR is the ratio between tracer uptake 

within each ROI to that in the reference region. The reference region used in this study was 

the cerebellum, which has been shown to allow earlier detection of amyloid accumulation 

compared to the pons 50. The regional SUVR was computed across 48 ROIs defined with a 

probabilistic atlas 49. The Aβ index is a novel measure of amyloid burden 49, 51 corresponding 

to the total weight of global amyloid deposition; its value ranges between -1 (Aβ-negative 

appearance) and +1 (Aβ-positive appearance). In this study, amyloid PET quantification was 

not used to define amyloid status, which was solely based on expert visual reads.   

 

Clinical measures 

Alzheimer’s disease heterogeneity within the normative modelling framework can be further 

explored by examining how individual profiles of deviations relate to the clinical features as 

observed within the clinical setting. All patients included in this study had a comprehensive 

clinical assessment at ICHT, including medical history review, patient and caregiver 

interview, neurological examination, and cognitive screening. Referral letters and cognitive 

neurology clinical correspondence were stored within the Imperial College Healthcare NHS 

Trust’s electronic patient record, allowing us to retrospectively collect clinical background 

information relevant to this study. For all patients, we recorded whether they presented with 

an amnestic or non-amnestic clinical phenotype, the disease stage (mild cognitive impairment 

vs dementia stage) at the time of MRI scanning, and whether they had a history of depressive 

symptoms (Table 1). Patients were categorised as ‘amnestic’ if the predominant cognitive 

difficulties at presentation involved the episodic memory domain, and as ‘non-amnestic’ if 

disease onset was characterised by impairment in non-memory domains (namely visuospatial, 

behavioural or language). The classification into ‘mild cognitive impairment’52 or ‘dementia’, 

instead, was performed through structured review of clinical records and was in line with 

Petersen et al.’s criteria, which differentiate the two stages of the disease on the basis of 

preserved/impaired independent functioning 53. In addition, we systematically assessed 

whether patients had previous or ongoing depressive symptoms, defined as any signs of low 

mood that were severe enough to be discussed in the clinical notes by the referring clinician 

and/or dementia expert (as described in Loreto et al., 2022).  
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Statistical analysis 

Standard case-control comparisons 

Cortical thickness from FreeSurfer was compared between a subgroup of patients from the 

clinical cohort (n=79) and an age- and sex-matched subgroup of healthy controls (n=79) from 

the ADNI reference cohort. Analysis of variance with age and sex as the covariates was used 

to compare mean overall thickness between the two groups. Region-level comparison was 

performed using two-tailed t-tests at each region, adjusting for multiple comparisons using 

the False Discovery Rate (FDR).   

 

Total outlier count analysis 

The total outlier count indicates the total number of outliers summed across all ROIs in each 

participant and ranges between 0 (no regions are outliers) and 148 (all regions are outliers). 

Outliers were defined as a z-score < -1.96. The total count of outliers does not provide 

information on the spatial distribution of atrophy, but it is an estimate of how widespread 

across the brain an individual’s deviation from the normative model is. A higher outlier count 

indicates significantly lower thickness compared to the reference cohort in a greater number 

of brain regions. The distribution of the total outlier count was tested for normality using 

Shapiro–Wilk test, which showed positively skewed data. Therefore, data were log-

transformed to test for the effect of Group (with grouping based on sex, phenotype, disease 

stage, or depression history) on mean outlier count using analysis of covariance (ANCOVA), 

with age and sex as the covariates. Pearson’s correlation coefficient was used to test for the 

association between total outlier count and age at the time of MR scanning.  

 

Analysis of spatial distribution of outliers 

To assess the spatial distribution of cortical thickness, we computed the percentage of 

patients classified as outliers in each given ROI, indicating the degree of overlap in outlying 

regions (i.e., with lower thickness) across patients. Mapping outlier ROIs on the Destrieux 

atlas allowed visualization of spread and distribution at the individual- and the group-level. 

Analysis of variance models or Mann-Whitney non-parametric tests were run to investigate 
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associations between clinical features and percentage of outliers in single, specified or across 

all ROIs. Multiple comparisons were always adjusted through Bonferroni correction. 

Intragroup dissimilarities in patterns of outliers were quantified using Hamming distance 

matrices and median Hamming distances were compared between groups (with grouping 

based on clinical features or disease severity). In addition, we zoomed in on the selective 

involvement of temporal brain regions by grouping all 30 (15 in each hemisphere) temporal 

gyri and sulci of the Destrieux atlas together (‘temporal’), separately from the remaining 118 

(59 in each hemisphere) extratemporal gyri and sulci (‘extratemporal’) and averaging the 

proportion of outliers across these sets of regions. The mean percentage of ‘temporal’ outliers 

was compared to the mean percentage of ‘extratemporal’ outliers using an analysis of 

variance. To investigate whether the percentage of temporal outliers was higher in the 

amnestic than the non-amnestic group, a two-way ANOVA was run, testing for the 

interaction between outlier location and phenotype. 

 

Exploratory analysis of brain-phenotype associations 

Normative modelling provides the additional advantage over case-control studies of 

exploring the relationship between individual-level outliers and clinical features 35. We run 

three separate sets of ANCOVAs, covarying for age and sex, to investigate differences in 

total outlier count according to disease severity (i.e., MCI vs. dementia), disease phenotype 

(i.e., amnestic vs non-amnestic), or history of depression (ongoing vs no symptoms). When 

disease phenotype and depression history were used as independent variables, disease 

severity was included among the covariates. Total outlier count was log-transformed to meet 

normality assumption. Outlier maps were built to compare spatial distribution of outliers 

between these groups. Hamming distance matrices and median hamming distances were used 

to assess intra-group dissimilarity and differences in median hamming distances between 

group were assessed using linear regression.  

 

Amyloid quantification 

Here, we explored the association between global amyloid and the total outlier count as an 

index of neurodegeneration. Linear regression analysis was used to test for the association 

between total outlier count and mean SUVR. Outlier maps were compared between patients 
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with higher (n=37) and lower (n=49) levels of amyloid, defined as an SUVR respectively 

above or below the median. 

 

Data availability  

Data not provided in the article are available upon reasonable request. 

 

Results 

Demographics and clinical characteristics  

AD patients scanned at sites other than ICHT were excluded by the model, leaving a total of 

86 patients. The mean age at the time of MRI scanning of the final group was 67.56±8.06 

years (range 49.2-87.41) and 49% were females. Sample characteristics including disease 

stage (MCI-AD vs AD dementia), presenting phenotypes (amnestic vs non-amnestic), 

depression history, and amyloid PET appropriate indications met by the study sample are 

provided in Table 1.  

 

Table 1. Demographic and clinical information of Alzheimer’s patients 

 Aβ-pos  
(n=86) 

Demographics  

Mean age ± SD (years) 67.56±8.06 

Age range  49.1-87.4 

Sex (female), n (%) 42 (48.8%) 

Presentation (Amnestic/Non-amnestic) 64/22 

Non-amnestic  22 

Visuospatial, n (%) 

Language, n (%) 

Behavioural, n (%) 

7 (32%) 

11 (50%) 

4 (18%) 

Alzheimer’s disease stage  
(Dementia/MCI) 

48/38 

Depressive symptoms 82 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.02.22281597doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281597
http://creativecommons.org/licenses/by-nd/4.0/


Ongoing, n (%) 
Past, n (%) 
None, n (%) 

24 (29%) 
7 (9%) 

51 (62%) 

Appropriate use criteria 46  

Indication 1 
Persistent or progressive unexplained mild 
cognitive impairment 

51.2% 

Indication 2 

Dementia with atypical clinical course or 
aetiologically mixed presentation 

44.2% 

Indication 3 

Dementia with early age of onset (age<65) 
39.5% 

 

 

Clinical AD vs. ADNI controls cortical thickness 

The two subgroups from the clinical cohort (n=79) and the ADNI controls (n=79) were 

matched for age (mean±SD=68.69±7.32 years and 68.71±7.23 years, respectively) and sex 

(%females: 50% in each group). After controlling for age and sex, mean cortical thickness 

was significantly lower in the patient group (mean±SD=2.29±0.13) than in the control group 

(mean±SD=2.46±0.11) (F(1,154)=88.78, p<0.001). Region-level comparisons adjusted for 

multiple comparisons (FDR corrected) highlighted significantly lower thickness in the AD 

group for 104 of the 148 (83%) analysed regions (Supplementary Fig.2). 

 

Overall total outlier count 

The median number of regions classified as outliers across the clinical cohort (n=86) was 

21.5 (IQR=35), with a total outlier count ranging between 1 and 120 out of the 148 ROIs. 

Females had significantly higher number of outliers (median=31.5, IQR=52) than males 

(median=17.5, IQR=33) (U=565, p=0.002), while there was no evidence of an association 

between age and total outlier count (r=-0.17, p=0.11).  

 

Regional distribution of outliers 
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The overall proportion of outliers was comparable between the left (median=21.5%, 

IQR=18%) and right (median=19%, IQR=17%) hemispheres (U=2620, p=0.65) (Fig.1A). 

Across the whole clinical cohort, the superior temporal sulcus (STS) featured the highest 

proportion of outliers in both the right (60%) and left (52%) hemispheres (Fig.1B). This 

means that this brain region showed significantly reduced thickness compared to the norm in 

just over half of AD patients. Specifically, the STS was classified as outlier in both 

hemispheres in 48% patients, in either the left or the right in 17% patients, and in none of the 

two in the remaining 35%. We further explored the characteristics of these three groups and 

found that patients with bi-hemispheric STS outliers had significantly lower mean cortical 

thickness and younger age than the other two groups (Table 2); moreover, they presented 

more often with non-amnestic symptoms and at more advanced disease stages than those with 

no STS outliers (Table 2). Bonferroni-adjusted post-hoc comparisons for the association 

between sex and STS status revealed a trend towards higher proportion of females in patients 

with left or right STS outlier than in those with no outliers in this region (p=0.057). Hamming 

distance matrices indicated within-group dissimilarity across the whole clinical cohort (Fig.1, 

panel C,D), (median= 35.25, IQR=20.75).  

 

Table 2. Comparison of clinical and demographic characteristics according to STS outlier status 

 No  
STS outliers 
(n=30) 

Left or Right 
STS outliers  
(n=15) 

Left and Right 
STS outliers 
(n=41) 

Significance 

Mean age ± SD (years) 71.11±6.31c 70.35±8.26c 63.93±7.71a,b F(2,83)=9.59,  
p<0.001 

Mean cortical thickness ± SD 
(mm) 

2.38±0.093c 2.31±0.064c 2.21±0.13a,b F(2,83)=21.31, 

p<0.001 

Sex (%female) 30% 66.7% 56.1% χ²(2)=7.03, 

p=0.03 

Disease stage (%Dementia) 40%c 46.6% 70.7%a χ²(2)=7.25, 

p=0.03 

Phenotype (%amnestic) 93.3%c 66.7% 34.14%a χ²(2)=8.72, 

p=0.01 

Bonferroni adjusted significance  
a Significantly different from ‘No STS outliers’  
b Significantly different from ‘Left or Right STS outliers’  
c Significantly different from ‘Left and Right STS outliers’ 
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Fig. 1 Overall outlier distribution (A) Distribution of outlier prevalence across the left (LH) and right (RH) 

hemispheres. (B) Outlier maps showing spatial distribution of outliers in the clinical cohort (n=86). The superior 

temporal sulci (in green) featured the highest number of outliers in both hemispheres. (C) Hamming distance 

plot illustrating dissimilarity between patients in the spatial distribution of outliers. Yellow indicates greater 
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dissimilarity. (D) Outlier distance density illustrates the spread of outlier dissimilarity (calculated by Hamming 

distance). 

 

Temporal Lobe 

The mean percentage of ‘temporal’ outliers was 31.5% (SD=13.7%), ranging between 7% in 

left lingual gyrus and 56% in the superior temporal sulcus. This was significantly higher than 

the extratemporal regions (F(1,146)=29.39, p<0.001), where the mean outlier percentage was 

19.1% (SD=10.5%), ranging between 0% in the left suborbital sulcus to 47% in the right 

supramarginal gyrus. There was no interaction effect between outlier location (temporal vs 

extratemporal) and phenotype (amnestic vs non-amnestic) on the percentage of outliers 

(F(1,144)=0.003, p=0.96), suggesting comparable difference between proportion of temporal 

and extratemporal outliers in amnestic (mean difference=12%) and non-amnestic (mean 

difference=13%) patients. Notably, 12% and 20% of patients had no outliers in the left or 

right temporal regions respectively, and these were not more likely to be non-amnestic.  

 

Disease stage 

The severity of clinical impairment at the time of MR scanning was extracted from clinical 

records and patients were classified as MCI-AD (n=38) or AD-dementia (n=48). Analysis of 

covariance on log-transformed total outlier count data, using age and sex as covariates and 

disease severity as a predictor, revealed a significantly higher total outlier count in the AD-

dementia group (median=30, range 2-120) than in the MCI-AD group (median=17.5, range 1-

109) (F(1,82)=8.33, p=0.005). In the AD-dementia group, the highest proportion of outliers was 

seen at the level of the STS in both the left (67% of patients) and right (69% of patients) 

hemispheres. In the MCI-AD group, instead, the highest involvement of the STS was seen in 

the right hemisphere (50% of patients) but not in the left one where the most frequently 

outlying region was the planum polare (37% of patients), that is the part of the superior 

aspect of the superior temporal gyrus located anterior to the transverse temporal gyrus 

(Fig.2A) 45. Overall, in both groups there was a widespread distribution of outliers across the 

brain with limited overlap of outlying regions outside the temporal lobe (Fig.2A). This is 

suggestive of high heterogeneity in the spatial patterns of atrophy which is independent of 

disease severity. Hamming distance matrices indicated greater within-group dissimilarity in 

patients within the dementia group (median=41, IQR=22), relative to the MCI group 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.02.22281597doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281597
http://creativecommons.org/licenses/by-nd/4.0/


(median=28, IQR=21) (Fig.2, panels B;C). Linear regression revealed that participants 

within the dementia group were statistically more dissimilar to each other than were people in 

the MCI group (F(1,73)= 8.15, p<0.01).  
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Fig. 2 Outlier profiles according to disease severity (A) Outlier maps showing distribution of outliers 

according to disease severity. (B) Hamming distance plot illustrating dissimilarity between patients in the spatial 

distribution of outliers; yellow indicates greater dissimilarity. (C) Outlier distance density illustrates the spread 

of outlier dissimilarity (calculated by Hamming distance).  

 

Presenting phenotype 

Analysis of covariance on log-transformed data, using age, sex and disease stage as 

covariates and phenotype as a predictor, revealed a significantly higher total outlier count in 

the non-amnestic (median=37.5, range 11-120) than the amnestic (median=19.5, range 1-109) 

group (F(1,81)=5.49, p=0.02). In the amnestic group, the highest proportion of outliers was 

seen at the level of the superior temporal sulcus in the right hemisphere (53% of patients) and 

in the inferior temporal sulcus in the left hemisphere (47% of patients). In the non-amnestic 

group, the STS was the highest involved region in both the left (77%) and right (82%) 

hemispheres (Fig.3A). Hamming distance matrices indicated greater within-group 

dissimilarity in patients within the non-amnestic group (median= 44.75, IQR= 15.38), relative 

to the amnestic group (median= 31.5, IQR= 19.62) (Fig.3, panels B; C). Linear regression 

revealed that participants within the non-amnestic group were statistically more dissimilar to 

each other than were people in the amnestic group (F(1,84)= 8.13, p < 0.01).  
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Fig. 3 Outlier profiles according to phenotype (A) Outlier maps showing distribution of outliers according to 

phenotype. (B) Hamming distance plot illustrating dissimilarity between patients in the spatial distribution of 

outliers; yellow indicates greater dissimilarity (C) Outlier distance density illustrates the spread of outlier 

dissimilarity (calculated by Hamming distance).  

 

Comorbid depressive symptoms 

Comorbid depressive symptoms are a frequent feature in patients with AD 8, but the nature of 

this link is still unclear. Where possible (n=83), we classified patients according to whether 

they had past (n=7), ongoing (n=24), or no (n=51) depressive symptoms at the time of 

presentation to our clinic (see Loreto et al., 2022 for classification procedure). After 

controlling for age and sex and disease severity, ANCOVA on log-transformed data showed a 

significantly higher total outlier count in patients without history of depression (median=30, 

IQR=47) than in those with ongoing depression (median=16, IQR=15) (F(1,70)=8.56, 

p=0.005). The left and right superior temporal sulci were again the regions with the highest 

percentage outliers in patients without (59% and 65% respectively) and with ongoing (42% 

and 50% respectively) depression. Other regions showing a high proportion of outliers in 

patients with depressive symptoms were the inferior temporal gyrus (40%), the left 

intraparietal sulcus (42%) and the left inferior temporal sulcus (42%) but these were also 

highly overlapping in those without depressive symptoms (41%, 49%, 57%, respectively). 

Hamming distance matrices indicated greater within-group dissimilarity in patients without 

depression (median= 42, IQR= 24), relative to patients with depression (median= 25.5, IQR= 

8.8). Linear regression revealed that participants without depressive symptoms were 

statistically more dissimilar to each other than those with depressive symptoms (F(1, 73)= 

24.69), p < 0.001).  

 

Case series  

Fig. 4 provides a short case series of four patients selected from our clinical cohort who 

presented to our Clinic with a comparable magnitude of episodic memory impairment and 

spared functioning of the other cognitive domains, preserved activities of daily living, similar 

age of onset but different outlier maps. For example, patients a) and c) presented with similar 

clinical symptoms and comparable performance on cognitive screening, but regional outlier 

distribution in the former was limited to the left middle-anterior part of the cingulate gyrus 
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and sulcus while it involved 67 other regions in the latter. This finding corroborates the large 

heterogeneity of AD atrophy profiles at presentation and indicates another possible 

application of normative modelling for a closer investigation of anatomo-clinical 

associations.  

 

 

 

 

Fig. 4 Case series This short case series illustrates the possible use of outlier maps to gain insight into the 

association between atrophy profiles and clinical history. These four MCI patients had a similar clinical 

presentation but very heterogeneous patterns of outliers. Purple-coloured areas indicate outlier regions (z-

score<-1.96).  

a) A man in his 70s presenting to our clinic with a 3-year history of memory problems, intact activities of daily 

living (ADLs) and preserved insight. Medical history review did not highlight significant comorbidities or 

presence of depressive symptoms. On examination, he scored 94/100 on the ACE-III and 26/30 on the MMSE. 

Clinical follow-ups revealed slow progression of cognitive deficits. b) A man in his late 60s presenting with a 4-

year history of memory problems and preserved ADLs. Insight into the cognitive difficulties was limited and 

collateral account reported behavioural features such as passivity and reduced empathy. No history of 

depression was recorded. On examination, ACE-III score was 85/100. Follow-up visits revealed slow 

progression of the cognitive deficits with relative sparing of ADLs. c) A lady in her 70s presenting with a 2-year 

history of memory problems with intact ADLs, preserved insight, and no history of depression. MMSE score 
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was 26/30. Follow-up visits revealed steady decline with gradual involvement of ADLs. d) A man in his mid 

60s presenting with a 2-year history of memory problems and intact ADLs and no history of depression. The 

ACE-III score was 78/100 and follow-up highlighted clinical progression. The MMSE score at 2 years from first 

examination declined to 22/30.  

 

totOC: total outlier count; MCI: mild cognitive impairment; ACE-III: Addenbrooke's Cognitive Examination 

version III 61; ADLs: activities of daily living; MMSE: mini-mental state examination 62 

 

Association between total outlier count and amyloid burden 

Linear regression revealed a significant negative association between total outlier count and 

mean SUVR (p=0.01, R2=0.077) (Supplementary Fig.3A), which survived after controlling 

for age (p=0.02, R2=0.093). A similar pattern was observed when analysing the association 

between mean cortical thickness and mean SUVR, with (p=0.03, R2=0.082) and without 

(p=0.01, R2=0.08) age correction (Supplementary Fig.3B). The lowest mean regional SUVR 

was in the anterior division of the parahippocampal gyrus (mean SUVR: 1.08±0.15) while the 

highest was in the posterior division of the cingulate gyrus (mean SUVR: 1.99 ±0.31). Outlier 

maps and dissimilarity density plot for the low SUVR and high SUVR groups are provided in 

Supplementary Fig.4; notably, patients with lower levels of tracer uptake showed a higher 

number of outlying regions and higher within-group dissimilarity compared to those with 

higher SUVR. 

 

Discussion 

In this study, we applied normative modelling to a real-world clinical cohort with confirmed 

Alzheimer’s disease to examine individual neuroanatomical variation. Patients included in 

this study were seen at the Imperial Memory Clinic (London, United Kingdom), referred for a 

structural MRI and an amyloid PET as part of their diagnostic workup, and received a 

biomarker-confirmed clinical diagnosis of AD 54. Normative modelling shifts the focus from 

group means and case-control comparisons to individual-level deviations from the norm, 

making it possible to parse spatial heterogeneity in neuroimaging profiles. Using this 

technique, we found that the total outlier count (i.e., count of each patient’s regions with 

significantly lower thickness than the normative cohort) ranged widely within patients with 

confirmed Alzheimer’s disease. In addition, the analysis of outlier maps (i.e., individual 
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regional distribution of outliers, and hence of thickness, across the brain) highlighted 

prominent involvement of the superior temporal sulcus, but widespread distribution across 

the remaining regions with minimal were associated with clinical features including severity, 

presenting phenotype and comorbid depression.  

 

We found that the individual magnitude of deviation from the normative model varied widely 

across AD patients, with the total number of outliers ranging between 1 and 120 out of 148 

and a median of 21.5. This is in line with Verdi and colleagues’ previous findings on a 

research cohort, in which the total outlier count ranged from 0 and 106 with a median of 12, 

while highlighting even wider spread in the present clinical cohort 39. Importantly, the range 

of outliers was equally wide in both our MCI and dementia groups, suggesting that this 

finding was not attributable to disease stage. Moreover, the lack of correlation between total 

outlier count and age would exclude a possible confounding effect of age on the observed 

outlier distribution.  

 

The examination of the spatial distribution of outliers across ROIs revealed prominent 

involvement of the superior temporal sulci, which were affected in up to 60% of patients, 

most frequently in younger and non-amnestic patients. Recent studies assessing the role of 

sulcal morphology in AD diagnosis have reported significantly wider superior temporal sulci 

in both early- and late-onset AD 55, 56 and negative association with memory performance 56. 

In another study, this region was also the one showing the earliest deposition of amyloid-beta 

in patients at risk of cognitive decline 57. Our findings are in line with those reported by Verdi 

et al.’s recent study on the ADNI cohort in which STS was among the set of temporal outlier 

regions differentiating AD from MCI and controls. On the other hand, in the ADNI 

Alzheimer’s disease group, the highest proportion of outliers was situated in the left 

parahippocampal gyrus and it involved 47% of patients 39. In the present clinical cohort, the 

left parahippocampal gyrus was classified as an outlier in 30% of all subjects and in 31% of 

the subgroup with AD-dementia. Conversely, in the ADNI cohort, the percentage of outliers 

in the STS ranged between 36% in the left hemisphere and 31% in the right hemisphere 39. 

Differences in the outlier maps shown in AD patients by the two studies may be due to 

different disease severity, phenotypic variation and, most importantly, cohort type. 

Alzheimer’s disease diagnosis in the ADNI study is solely based on clinical criteria and did 
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not involve biomarker confirmation (http://adni.loni.usc.edu). Moreover, patients meeting the 

appropriate use criteria for amyloid PET 43 are a real-world cohort that, by its very nature, is 

more difficult to diagnose due to so-called atypical features. As such, the study of this cohort 

provides insight into atypical AD and its use in this clinical cohort of standard diagnostic 

hallmarks that originated from a disease homogeneity assumption. Notably, our analyses 

showed that no brain region deviated in more than 52 out of 86 clinical patients with 

confirmed Alzheimer’s pathology; spatial patterns of temporal lobe outliers were 

heterogeneous with an average overlap equal to 32%. Moreover, we identified a relatively 

large proportion of patients that did not significantly deviate from the norm in any of the 

temporal regions, despite amnestic presentation. These findings bring into question the 

validity of a ‘typical Alzheimer’s disease patient’.  

 

We broadly characterised the presenting clinical picture of our cohort in terms of cognitive 

phenotype, disease stage, and concomitant depressive symptoms to explore anatomo-clinical 

associations using normative models for the first time in AD. The dementia groups showed 

significantly higher outlier count as well as higher dissimilarity in the regional distribution of 

outliers. This would support the expected greater involvement of cortical areas as disease 

progresses 58. With respect to disease phenotype, instead, the non-amnestic groups showed 

significantly higher total outlier count and greater within-group dissimilarity than the 

amnestic one. This was not surprising as the non-amnestic group would have encompassed a 

wider range of phenotypes, such as the visuospatial, language and dysexecutive, each with 

prominent involvement of different network of brain regions.   

 

The presence of concomitant depressive symptoms was associated with a lower mean outlier 

count and reduced within-group dissimilarity in outlying regions. Interestingly, a recent study 

reported a significant association between the severity of depressive symptoms and superior 

temporal sulcus thickness in a group of patients with clinical AD 59. In our cohort, the 

average proportion of outliers in this region was indeed high but comparable between patients 

with (46%) and without (62%) depression. We did not identify any cortical regions 

selectively involved in patients with depression, although a different pattern may have been 

revealed by the analysis of subcortical structures 60.  
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The negative association between outlier count and SUVR was an unexpected finding as this 

indicated higher cortical volumes in patients with higher amyloid pathology burden. This was 

further corroborated by the significant positive association between SUVR and raw mean 

cortical thickness. It is possible that, within the group of amyloid-positive patients, the SUVR 

starts decreasing with decreasing cortical volumes.    

 

This study presents some limitations. First, the sample size was relatively small due to the 

unavailability of eligible T1-w data in clinically acquired scans. However, the very strict 

criteria we adopted at the time of image selection and at output evaluation ensure that the 

observed outliers represent clinically relevant deviations rather than deviations based on 

artefacts or inaccurate segmentation. Second, due to the retrospective nature of our data 

collection, we were not able to administer scales for granular quantification of cognitive 

functioning and depressive symptoms. Future studies are required to map out these 

relationships in addition to understanding how different pathogenic mechanisms, such as 

ApoE genotype, might influence the heterogeneity in the type of clinical cohort that we have 

described. Third, the assessment of the association between atrophy and depression was 

limited by the unavailability of subcortical outliers, which are currently not part of our 

normative model, and of information on antidepressant treatment. This highlights an 

important future direction in this area. 

 

To conclude, this is the first study illustrating the possible applications of neuroanatomical 

normative models to parse spatial heterogeneity across individual neuroimaging data from a 

real-world clinical cohort of patients with confirmed Alzheimer’s disease. Our findings 

highlight striking variability across patients despite comparable disease stage and 

presentation. While case-control studies have been important in the progress of AD research, 

these are not well placed to advance our understanding of disease heterogeneity. As 

illustrated by our analysis of group differences between the AD patients and healthy control 

individuals, the standard case-control approach would have hidden intragroup variation and it 

is likely that ‘statistical outlier’ patients would have driven most of the limited case-control 

differences. As AD research finds its path to precision medicine, it is crucial to explore and 

incorporate novel methods of analysis that are as free as possible from the assumption of 

intragroup homogeneity. Neuroanatomical normative modelling provides a principled bridge 
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between big data analytics and personalised medicine by shifting the analytical focus from 

group means to intragroup variation through the analysis of individual deviations 15, 28. 
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Figure Legends  

Fig. 1 Overall outlier distribution (A) Distribution of outlier prevalence across the left (LH) 

and right (RH) hemispheres. (B) Outlier maps showing spatial distribution of outliers in the 

clinical cohort (n=86). The superior temporal sulci (in green) featured the highest number of 

outliers in both hemispheres. (C) Hamming distance plot illustrating dissimilarity between 

patients in the spatial distribution of outliers. Yellow indicates greater dissimilarity. (D) 

Outlier distance density illustrates the spread of outlier dissimilarity (calculated by Hamming 

distance).  

Fig. 2 Outlier profiles according to disease severity (A) Outlier maps showing distribution 

of outliers according to disease severity. (B) Hamming distance plot illustrating dissimilarity 

between patients in the spatial distribution of outliers; yellow indicates greater dissimilarity. 

(C) Outlier distance density illustrates the spread of outlier dissimilarity (calculated by 

Hamming distance).  

Fig. 3 Outlier profiles according to phenotype (A) Outlier maps showing distribution of 

outliers according to phenotype. (B) Hamming distance plot illustrating dissimilarity between 

patients in the spatial distribution of outliers; yellow indicates greater dissimilarity (C) 

Outlier distance density illustrates the spread of outlier dissimilarity (calculated by Hamming 

distance).  

Fig. 4 Case series This short case series illustrates the possible use of outlier maps to gain 

insight into the association between atrophy profiles and clinical history. These four MCI 
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patients had a similar clinical presentation but very heterogeneous patterns of outliers. 

Purple-coloured areas indicate outlier regions (z-score<-1.96).  

a) A man in his 70s presenting to our clinic with a 3-year history of memory problems, intact 

activities of daily living (ADLs) and preserved insight. Medical history review did not 

highlight significant comorbidities or presence of depressive symptoms. On examination, he 

scored 94/100 on the ACE-III and 26/30 on the MMSE. Clinical follow-ups revealed slow 

progression of cognitive deficits. b) A man in his late 60s presenting with a 4-year history of 

memory problems and preserved ADLs. Insight into the cognitive difficulties was limited and 

collateral account reported behavioural features such as passivity and reduced empathy. No 

history of depression was recorded. On examination, ACE-III score was 85/100. Follow-up 

visits revealed slow progression of the cognitive deficits with relative sparing of ADLs. c) A 

lady in her 70s presenting with a 2-year history of memory problems with intact ADLs, 

preserved insight, and no history of depression. MMSE score was 26/30. Follow-up visits 

revealed steady decline with gradual involvement of ADLs. d) A man in his mid 60s 

presenting with a 2-year history of memory problems and intact ADLs and no history of 

depression. The ACE-III score was 78/100 and follow-up highlighted clinical progression. 

The MMSE score at 2 years from first examination declined to 22/30.  

totOC: total outlier count; MCI: mild cognitive impairment; ACE-III: Addenbrooke's 

Cognitive Examination version III 61; ADLs: activities of daily living; MMSE: mini-mental 

state examination 62  
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